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Abstract: A method for forward and inverse integration of a class of population balance
equations with a size-dependent growth rate is contributed in this article. A unique differential
transformation of the independent time and internal coordinates is introduced, leading to
straight line characteristics with constant values for the density function. The evolution of
the density function is then given by transporting the initial and boundary conditions. For
the integration of the temporal behavior of the boundary conditions, a generalization of the
standard method of moments is introduced, resulting in integro-differential equations involving
convolution integrals. The solution to the inverse integration problem involves a pre-computation
of given correlation/convolution integrals. The usability of the method is illustrated in a case
study of a batch crystallization process with size-dependent growth rate kinetics. The proposed
method is compared to a high resolution finite volume scheme using a numerical example.
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1. INTRODUCTION & OUTLINE

Particulate processes are conveniently modeled by a par-
tial differential equation (PDE), designated as the popu-
lation balance equation (PBE), see Randolph and Larson
(1988), Ramkrishna (2000). The population balance equa-
tion expresses the balance of the number of particles in an
infinitesimal particle length interval according to

∂f

∂t
+

∂ (Gf)

∂ℓ
= 0, ℓ > 0, t > 0 (1)

fb.c.(t) , f(t, 0) =
B

G
(t), t ≥ 0 (2)

fi.c.(ℓ) , f(0, ℓ) = f0(ℓ), ℓ ≥ 0, (3)

where each particle is associated the internal coordinate ℓ,
commonly referred to as the size of the particle. The func-
tion f = f(t, ℓ) represents the population density function
or particle size distribution, defined as the number density
of particles per unit length. The underlying population
entities may be crystals, droplets, molecules, cells, clouds
etc. f0(ℓ) stands for the given initial conditions, e.g. seed
crystal distribution in a batch crystallization process. The
variable G represents the growth rate of the particle size,
which, in general, is a time- and size-dependent function,
i.e. G = G(t, ℓ). The birth rate term B = B(t) counts the
number of created particles at ℓ = 0 in a unit time, and
hence it impacts the boundary condition (2). In general,
additional creation/depletion rate terms modeling diverse
phenomena, such as aggregation, agglomeration, breakage,
material flux, etc, are included in the right-hand side of
the equation (1), thus resulting in an inhomogenous PDE
structure. Moreover, e.g. in dispersive systems, the PBE in
(1) is coupled to additional transfer equations (for mass,

momentum, energy, species, etc) providing a feedback to
(1). PBE systems including such a coupling are of main
concern here.

Computation of the density function f = f(t, ℓ) for
given initial and operating conditions in (1-3) is referred
to as the forward integration or simulation problem in
this manuscript. An accurate integration of a population
density function can be challenging in that the distribu-
tion may extend over orders of magnitude in both, size
and time, and changes in the distribution can be very
sharp. This has been an impetus to the development of
a variety of numerical integration schemes, including the
method of moments, the method of characteristics, finite
difference schemes (discrete population balances), recent
high-resolution finite volume schemes, etc. As opposed to
the numerical discretization schemes, which are developed
for a general-purposed use at the price of numerical diffu-
sion and dispersion, the method of characteristics and the
method of moments are highly accurate and are efficiently
solved, but apply to a rather limited class of problems;
for details refer to e.g. Braatz (2002). The method of
characteristics tempts to identify the characteristic curves
in the (t, ℓ)-plane, where the PDE (1) converts to an
ODE. The method of moments involves the Mellin integral
transform as the definition for the moments of the density
function f = f(t, ℓ), leading to a closed system of ODEs.
However, in a more complex setting, in particular, in the
case of size-dependent growth rate, i.e. G = G(t, ℓ), the
method of moments may be afflicted with the violation of
the closure condition.

Rather than constructing closure conditions, such as by
the quadrature method of moments from McGraw (1997),
in this paper, a direct integration scheme (i.e. without loss
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of accuracy, since no integral approximations employed)
involving the method of characteristics and a generaliza-
tion of the method of moments is presented. A suitable
differential coordinate transformation (t, ℓ) → (τ, λ) is first
introduced in (1) to transform it into a transport equation
with a unity growth rate (see Section 2)

∂f̃

∂τ
+

∂f̃

∂λ
= 0, λ > 0, τ > 0 (4)

f̃b.c.(τ) , f̃(τ, 0) =
B̃

G̃0

(τ), τ ≥ 0 (5)

f̃i.c.(λ) , f̃(0, λ) = f̃0(λ), λ ≥ 0, (6)

where a scaled density function f̃ = f̃(τ, λ) has been in-
troduced additionally; the precise definitions of the ingre-
dients are given in (11-14). Hereby, the variable separation
condition is assumed to hold for the growth rate term

G(t, ℓ) = γ(ℓ)G0(t), (7)

which is a commonly encountered assumption in the liter-
ature (see Section 3.1).

By making use of the method of characteristics, the
solution of equation (4) can be easily expressed in terms

of the boundary condition f̃(τ, 0) = B̃/G̃0(τ). To solve
for the latter, the method of moments has been utilized in
Section 2. It turns out, that the underlying problem can be
eventually reformulated as a system of integro-differential
equations involving convolution integrals of the boundary
condition. In other words, at a specific instant τ = τe,
the left-hand side derivatives of the system of differential
equations are determined by the history of the boundary
conditions in 0 < τ < τe, and not just by the current
values at τe, as in a standard ODE form.

The PBE in (1) often involves external variables which
can be used to manipulate the evolution of the density
function f̃(τ, λ). For instance, in a batch crystallizer, the
temperature of the cooling medium circulating through
the crystallizer is typically used as a control variable. Ob-
viously, the control variable must appear in the boundary
condition term B̃/G̃0(τ) in (5). For a variety of engineer-
ing purposes (e.g. in process control and optimization)
the inverse integration or dynamic inversion problem,
i.e. computation of the required profile of the control vari-
able producing a prespecified desired final density function
f̃des(λ) = f̃(τe, λ), λ ∈ [0,∞] may be crucial. The dy-
namic inversion problem reduces eventually to solving the
algebraic equation f̃des(τe − τ) = B̃/G̃0(τ) for the control
variable in the interval τ ∈ [0, τe].

The paper is organized as follows. In Section 2, the
underlying differential transformation of the independent
time and size coordinates is introduced, and a generaliza-
tion of the method of moments is devised. In Section 3,
the usability of the method is illustrated in a case study of
a batch crystallization process with size-dependent growth
kinetics. A numerical simulation example is drawn to com-
pare the efficiency of the proposed method to the high
resolution finite volume scheme from Koren (1993). In Sec-
tion 3.3 the feedforward solution scheme to the dynamic in-
version problem is presented, and an associated numerical
example is inspected. The presented inversion scheme can
be interpreted as a generalization of the dynamic inversion
method proposed in Vollmer and Raisch (2006), where the
(orbital) flatness (i.e. analytical invertibility) of a batch

crystallization process with size-independent growth rate
kinetics has been utilized. The useful flatness property
is unfortunately lost in the setting with size-dependent
growth rate kinetics. However, the invertibility property
is recovered by the work in this paper.

2. MAIN IDEA

Consider the population balance equation in (1-3). Intro-
duce new independent coordinates (τ, λ) by the differential
maps

dτ = G0(t)dt, dλ =
dℓ

g(ℓ)
, τ(0) = 0, λ(0) = 0. (8)

Since at any point (t, ℓ), G0(t) > 0 and g(ℓ) > 0 holds, a
bijection mapping between the two coordinate frames (t, ℓ)
and (τ, λ) exists, i.e. the following invertible functions are
well defined

τ = τ(t), λ = λ(ℓ), t ≥ 0, ℓ ≥ 0 (9)

t = t(τ), ℓ = ℓ(λ), τ ≥ 0, λ ≥ 0. (10)

The mapping is decoupled in the sense that variables ℓ and
t do not interact to τ and λ, respectively. Since the size-
independent factor G0(t) of the growth rate depends on
the process evolution, i.e. on the evolution of the density
function f(t, ℓ), the function τ = τ(t), i.e. its inverse
t = t(τ), have to be computed online. On the other hand,
for a given size-dependent growth rate term γ(ℓ), the
equation λ = λ(ℓ), that is, its inverse ℓ = ℓ(λ), can be
integrated directly from (8), as shown e.g. in Section 3.1
for a particular model.

Applying the differential maps (8) into the original PBE
(1-3) leads directly to the transformed PBE equation to
(4-6). Thereby, the following settings hold

f̃(τ, λ) , γ(ℓ(λ))f(t(τ), ℓ(λ)) (11)

B̃(τ) , B(t(τ)) (12)

G̃0(τ) , G0(t(τ)) (13)

f̃0(λ) , g(ℓ(λ))f0(ℓ(λ)). (14)

Equations (8) infers that the lines dℓ/dt = γ(ℓ)G0(t) ,

G(t, ℓ) map to
dλ

dτ
= 1 (15)

in the (τ, λ)-domain, that is, all particles grow with the
same rate equal to unity. It is easy to show, that straight
lines with unity slope constitute the characteristics of the
PDE (4) in the sense of the method of characteristics.
The solution of the (4) along such characteristics reads

f̃(τ, λ) = const, see Fig. 1. This is an important outcome,
since the evolution of the density function in (1) is directly
expressed in terms of the initial and boundary conditions.
Indeed, for a fixed τ , see Fig. 1, the distribution f̃(τ, λ)
reads

f̃(τ, λ) =







f̃(τ − λ, 0) =
B̃

G̃0

(τ − λ), λ < τ

f̃(0, λ − τ) = f̃0(λ − τ), λ > τ.

(16)

In other words, the integration of the PBE (4) reduces to
the computation problem of the temporal evolution of the
boundary condition (5) in the τ -domain. Therefore, in the
sequel, a generalization of the method of moments is used.

First, notice that the 0th moment of the distribution
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λ

ττef̃b.c.(τ) = B̃
G̃0

(τ)

f̃ (τe, λ) = B̃
G̃0

(τe − λ), λ < τe

f̃ (τe, λ) = f̃0(λ − τe), λ > τe

f̃ i
.c
.(

λ
)
=

f̃ 0
(λ

) d
λ
d
τ
=
1

f̃ =
co
ns
t

Fig. 1. Characteristic lines (dλ/dτ = 1) for the PBE (4).

(i.e. the number of the crystal particles) is an invariant of
the transformation (8) since

∫

∞

0

f̃(τ, λ)dλ =

∫

∞

0

f(t, ℓ)dℓ. (17)

Application of the ’dot’-operator ∂/∂τ on the left-hand
side of the equation after usual integral manipulations
(i.e. substitution of (4) and integration by parts) reveals
the ODE

µ̇0 =
B̃

G̃0

(τ). (18)

It is further obvious that the analytical expressions for the
higher moments µi = µi(τ) of the distribution function
f(t, ℓ) in the (τ, λ)−domain read

µi(τ) =

∫

∞

0

ℓi(λ)f̃(τ, λ)dλ, i = 1, 2, · · · . (19)

Differentiation of these integral expressions w.r.t. τ does
not, however, produce an analytical expression in µi.
Hence, no closed ODE system can be constructed consist-
ing purely of the moments µi of the distribution function
f(t, ℓ). Instead, one has to introduce the integral moments
of the scaled density function γ(ℓ)f(t, ℓ)

µ̃i(τ) ,

∫

∞

0

ℓi(λ)γ̃(λ)f̃ (τ, λ) dλ, i = 1, 2, · · · , (20)

where γ̃(λ) = γ(ℓ(λ)). In fact, it can be checked that the
following system of integro-differential equation results

µ̇0 =
B̃

G̃0

(τ), (21)

µ̇i = iµ̃i−1(τ), i = 1, 2, · · · . (22)

[Remark: For size-independent growth rate, i.e. γ(ℓ) = 1,
µ̃i = µi, and a closed ODE system consisting of a chain of
integrators, i.e. sharing the flatness property, results]. A
structural reduction and a better insight into the process
dynamics described by (21-22) is gained if the moments
µi and µ̃i are separated into portion (or partial) moments
stemming from the initial and boundary conditions (5) and
(6). Indeed, it can be easily checked that

µi = µi,n + µi,s, µ̃i = µ̃i,n + µ̃i,s, , i = 1, 2, · · · (23)

with

µi,n ,

∫ τ

0

ℓi(λ)
B̃

G̃0

(τ − λ)dλ, (24)

µ̃i,n ,

∫ τ

0

ℓi(λ)γ̃(λ)
B̃

G̃0

(τ − λ)dλ, (25)

µi,s ,

∫

∞

0

ℓi(λ)f̃0(τ + λ)dλ, (26)

µ̃i,s ,

∫

∞

0

ℓi(λ)γ̃(λ)f̃0(τ + λ)dλ, (27)

where, additionally, the transport equations (16) have
been substituted, leading to correlation and convolution
integral forms. It is clear hereof that partial moments
stemming from the initial conditions µi,s and µ̃i,s are
driven by the ’time’ τ only, and, thus, can be integrated
directly, independently on the process evolution. [Remark:
This is a generalization of the polynomial dependency of
the moments µi in τ in the case with a size-independent
growth rate, see Bajcinca et al. (2010).]

On the other hand, it is an easy exercise to prove that
the form of the net dynamics (22) is inherited by the
moments µi,n and µ̃i,n, that is,

µ̇0,n =
B̃

G̃0

(τ), (28)

µ̇i,n = iµ̃i−1,n, i = 1, 2, · · · . (29)

[Remark : Eq. (22) holds for the moments µi,s and µ̃i,s, too.
In particular, µ̇0,s = 0.] Hence, equations (28-29) represent
a reduced version of the moment model in (21-22). The
resulting model consists of a system of integro-differential
equations, where moment derivatives are driven by ap-
propriate convolution integrals applying on the boundary
conditions.

The PBE (1) in dispersive particulate processes is cou-
pled to additional transfer equations for mass, energy,
etc. Such equations implicitly impact the driving force for
the particle growth, Ramkrishna (2000), by providing a
feedback from the net moments µi into the input term
B̃/G̃0(τ) in (28). For instance, mass balance law describing
the material transfer between the continuous and dispersed
phase reads

ṁc = −3ρkv

∫

∞

0

ℓ2(λ)γ̃(λ)f̃(τ, λ)dλ

= −3ρkv(µ̃2,n + µ̃2,s), mc(0) = m0, (30)

i.e.

mc = m0 + ms − ρkvµ3, (31)

where mc = mc(τ) is the mass dispersed in the continuous
phase, ms = ρkvµ3,s(0) is the initial mass in the dispersed
phase, ρ is the particle mass density, and kv is a volume
shape factor, Randolph and Larson (1988). The latter
equation reveals the impact of the moment µ̃2,s, i.e. µ3,s

on the process dynamics in the (τ, λ)-domain. In this
particular case, the 3rd moment µ3,n closes the system,

due to its feedback to the input term B̃/G̃0(τ).
To summarize, by this approach, no closure conditions

for the method of moments are constructed. Rather, a
direct method for the integration of the density function
f̃(τ, λ), that is, f(t, ℓ), is obtained, provided that a higher
moment, as µ3 in the latter example, couples to the
equation (28), e.g. by a transfer equation. The model (28-
29) can be integrated numerically, e.g. by using standard
fixed step solvers.
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3. CASE STUDY: BATCH CRYSTALLIZATION

In this section, the proposed scheme is applied for forward
and inverse integration of a batch crystallization process.
For the sake of completeness, the standard size-dependent
kinetics is first reviewed.

3.1 Process kinetics

A batch crystallizer is made up of a large number of
crystal particles immersed in a dispersed phase system
(solution), constituted by a continuous liquid medium
(solvent, typically water) and dispersed crystalline (solute)
entities (molecules or ions), in which mass transfer of the
solute from the liquid to a pure solid crystalline phase
occurs. The fundamental force for crystallization from the
solution arises effectively from the level of supersaturation
(S), which is a measure of the difference between the
solution concentration (c) and saturation concentration
(csat), see Myerson (2002),

S = c/csat, with c = mc/(mw + mc), (32)

where mw is the solvent and mc the solute mass. The latter
can be e.g. controlled by the temperature (T ) using the
empirical model

csat = a0 + a1T + a2T
2, (33)

where a0, a1, and a2 are positive parameters.
Batch crystallization is usually used for a purposeful

growth of rather small seed crystals, which are dipped into
a supersaturated solution containing a solute of the same
material. In parallel to the growth process, nucleation oc-
curs, i.e. solute molecules gather into stable clusters which
constitute new nuclei. Within the so-called metastable re-
gion, which exists in a moderately supersaturated solution,
the nucleation rate B and the growth rate G0 are driven
by the supersaturation level according to

B = kb (S − 1)
b
µ3, G0 = kg (S − 1)

g
, (34)

where kg, g, kb and b are empirical (positive) parameters,
too, and µ3 is the 3rd moment of the density function of
the solid phase.

Experimental investigations of different crystallization
processes (e.g. certain inorganic hydrated salts) demon-
strate a size-dependent growth rate of crystal particles.
Different models on size-dependent growth rate have
been proposed, such as Abegg-Stevens-Larson (abbr. ASL)
model, Canning and Randolph (abbr. C-R) model, Bran-
som model, MJ2/MJ3 models, see Abegg et al. (1968),
Myerson (2002). All models fulfill the separation condition
(7), e.g. ASL-model: γ(ℓ) = (1 + αℓ)z, z < 1, C-R model:
γ(ℓ) = 1 + αℓ. For the ASL-model the bijection condition
(9) is clearly observed from

λ(ℓ) =
(1 + αℓ)1−z

α(1 − z)
, and ℓ(λ) =

1 − (α(1 − z)λ)
1

1−z

α
.

3.2 Forward integration

The dynamics of a batch crystallization process can be
completely captured by a PBE of the form (1), augmented
by the mass-balance law (31), referring to the material
transfer from the liquid to the solid phase due to nucleation
and crystal growth. Owing to the discussion in Sections 2

and 3.1, one can directly constitute the system of integro-
differential equations representing the full model of a batch
crystallization process with size-dependent growth kinetics
in the (τ, λ)-domain

µ̇0,n =
B̃

G̃0

(T, µ3,n + µ3,s) (35)

µ̇3,n = 3µ̃2,n (36)

ṫ =
1

G̃0

(T, µ3,n + µ3,s), (37)

with

µ̃2,n =

∫ τ

0

ℓ2(λ)γ̃(λ)
B̃

G̃0

(τ − λ)dλ, (38)

µ̃3,s =

∫

∞

0

ℓ3(λ)f̃seed(τ + λ)dλ, (39)

and µ0,n(0) = µ2,n(0) = 0. Note that it is convenient to
include an ODE for the ’real’ time variable t, in order to
keep track of certain specifications (e.g. process length),
which are naturally expressed directly in terms of the the
’real’ time t. Moreover, the algebraic equation for the mass-
balance (31) is substituted in (32) and (34). Again, µ3,s is

pre-computed by making use of (39) with f̃seed(λ) = f̃0(λ)
representing the distribution function of the seeded crystal
particles. Apart from the temperature T = T (τ), the 3rd

moment µ3,s = µ3,s(τ) plays the role of an input to the
resulting simulation scheme.

The precise formulation of the forward integration
(i.e. simulation) problem in the (τ, λ)-domain reads: for

a given initial distribution of seed crystals f̃seed(λ), i.e. for
a given evolution of µ3,s(τ), and an input temperature
profile T (τ), τ ∈ [0, τe], compute the evolution of µ3,n(τ)
for τ ∈ [0, τe]. Having solved this problem, the evolution
of the boundary condition is computed from

f̃b.c.(τ) = f̃(τ, 0) =
B̃

G̃0

(T (τ), µ3,n(τ) + µ3,s(τ)). (40)

In the t-domain, the moments µi(t) = µi,n(t) +
µi,s(t), i = 0, 3, for t ∈ [0, te], where te = t(τe), are
computed by the composition of the solutions in the τ -
domain with the function τ = τ(t), i.e. the inverse of
the solution t = t(τ) from (37). The distribution function
f = f(te, ℓ), 0 < ℓ < ∞ is, finally, constructed by

f(te, ℓ) =

{

f̃b.c. (τe − λ(ℓ)) /γ(ℓ), 0 < ℓ < γ−1(τe)

f̃seed (λ(ℓ) − τe) /γ(ℓ), ℓ > γ−1(τe).

3.3 Inverse integration

In the (τ, λ)-domain, the temperature profile can only
influence the density function originating from the bound-
ary conditions, i.e. from the nucleation. Thus, the precise
formulation of the inverse integration problem requires the
computation of the input temperature profile T (τ), τ ∈
[0, τe] that produces a desired distribution function

f̃des(λ) = f̃(τe, λ), λ ∈ [0, τe].

Due to (16), this is equivalent to setting a desired course
for the boundary condition

f̃des(τe − τ) =
B̃

G̃0

(T, µ3,n + µ3,s) , τ ∈ [0, τe]. (41)
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Fig. 2. Simulation numerical results with the high resolution finite volume scheme (HRFV) and the with the proposed
method of moments (MOM*). The marks α1, α2, and α3 refer to the α parameter in the C-R model, see Table 1.

Given the inputs f̃seed(λ) and f̃des(λ), the temporal evo-
lution of the 3rd moment µ3(τ) = µ3,n(τ) + µ3,s(τ) is
again pre-computed by (39). Hence, the dynamic inversion
problem, reduces to solving the algebraic equation (41)
for T = T (τ), τ ∈ [0, τe]. Note that strictly speaking, the
computed profile refers to the set-point temperature for
the cooling medium in the crystallizer jacket Tj . But, for
the sake of simplicity the ODE for the heat exchange is
here ignored.

A specification of the desired shape of the density func-
tion fdes(ℓ) is naturally set in the (t, ℓ)-domain. But, this
can be easily converted to a specification in the (τ, λ)-
domain. Indeed, from the shifting of the final seed dis-
tribution portion fseed(ℓ) in the desired fdes(ℓ) = f(te, ℓ),
the process ’length’ τe can be directly computed, and using
(10), f̃des(λ) = f̃(τe, λ) is constructed from f(te, ℓ). The
back-mapping of the solution T = T (τ) in the t-domain
is done, as in the simulation scheme, by the composition
T = T (τ(t)). Hence, hereby, the ODE (37) for the time t
has to be integrated, additionally.

3.4 Numerical example

For validation purposes, two numerical problems concern-
ing the forward and inverse integration of a batch crys-
tallization process with a threonine enantiomer are con-
sidered here. In a first numerical example, the simulation
results produced by the method proposed in this paper
(abbr. MOM*), are compared to those resulting from the
high-resolution scheme, introduced in Koren (1993) (abbr.
HRFV). Recall that high-resolution schemes are developed
to provide a high-order of accuracy while avoiding nu-
merical diffusion and dispersion associated to other finite
difference and finite volume schemes, see Qamar et al.
(2006), Gunawan et al. (2004). In the second example,
numerical results for the dynamic inversion scheme are
presented. The problem data, borrowed from Qamar et al.

(2006), including the process parameters and the initial
conditions are listed in Table 1. Note that C-R model
γ(ℓ) = 1 + αℓ has been utilized for the size-dependent
kinetics.

In simulation plots, the crystallization process is driven
by a constant temperature T = 29.5998 ◦C, corresponding
to csat = 0.0907. As time progresses, the supersaturation is
exhausted (S → 1), that is, the solid-liquid phase system
reaches the equilibrium and the crystallization process is
completed. This is clearly observed in Fig 2; for a larger pa-
rameter α, the process terminates earlier. The predictions
of both methods for the 3rd moment µ3, supersaturation
S−1 and τ are nearly identical for different values of size-
dependent growth parameter α. However, the final distri-
bution function f(te, ℓ) reveals major accuracy differences,
especially in the portion arising from the nucleation. The
differences are further clearly reflected in the predictions
for µ0, and less for µ1. The inaccuracy of the high resolu-
tion scheme is caused by the numerical diffusion, clearly
observed about the discontinuity of the density function
(≈ 1[µm]). [Remark : A grid with 300 discretization points
in the internal size and time axis has been used]. On
the other hand, the proposed scheme predicts an accurate
shape with a sharp discontinuity. [Remark : The numerical
integration of the system (35-37) has been carried out by
using the classical fixed-step RK4 solver, involving 300
equal discreatization steps in [0, τe].]

For validation of the dynamic inversion scheme, a ref-
erence temperature profile (solid gray plot denoted by
’ref’ in Fig 3) is applied to generate the desired profile
fdes(te, ℓ) (solid gray). The latter is then used to compute
the required temperature profile (dashed plot denoted by
’inv’ in the figure) by the dynamic inversion scheme. The
two temperature profiles, and the resulting distribution
functions show a perfect match. Additionally, the supersat-
uration, as an important process variable, of the forward
and inverse integration schemes are compared, too.
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Fig. 3. Numerical results of the dynamic inversion scheme with α = α2, see Table 1.

CONCLUSION

In this manuscript a new method for the forward and
inverse integration of the PBE (population balance equa-
tion) involving size-dependent growth kinetics is proposed.
A unique coordinate transformation has been introduced,
leading to straight line characteristics. As a consequence,
the forward and inverse integration problems are equiv-
alently posed in terms of the temporal evolution of the
boundary condition. While a feedforward solution scheme
to the inverse integration problem involving computations
of correlation/convolution integrals results, for forward in-
tegration, a system of integro-differential equations driven
by convolution integrals has to be solved. The resulting
scheme can be classified as a method of moments, as the
impact of the moments into the evolution of the boundary
condition is required to complete the system model. The
method is illustrated on a batch crystallization process
case study. In other applications, the method needs to be
adapted accordingly.

Several extensions of the method are of interest, in-
cluding to the inhomogenous PBE with additional cre-
ation/depletion terms, as well as, to the multidimensional
PBE with multiple internal coordinates. The proposed
approach provides a new framework for future research
in optimization and control of PBEs involving size depen-
dent growth kinetics. Using the inverse integration scheme
a dynamical optimization problem can be reduced to a
static nonlinear program for a given parametrization of the
control variable. Alternatively, the introduced modeling
formalism provides a suitable testbed for application of
semi-analytical optimization techniques such as the mini-
mum principle. Its use in the flatness-based control context
seems to be appealing.

Process parameters:

kb = 3.4177 · 1010 1
m3 s

; b = 2.3463; kg = 1.3718 · 10−5 m
s ; g = 0.7253

a0 = 0.0257; a1 = 1.2 · 10−3 1
◦C

; a2 = 3.442 · 10−5 1
◦C2

ρ = 1250
kg

m3 ; kv = 0.0288

C-R model:

γ(ℓ) = 1 + αℓ ; α1 = 200 1
m ; α2 = 400 1

m ; α3 = 800 1
m

Initial conditions:

f0(ℓ) = 1
η0

· N(ℓ); N(ℓ) = N (ℓ; µ̄1, σ
2
1 ) +N (ℓ; µ̄2, σ

2
2 ));N → normal distribution

µ̄1 = 8 · 10−4; σ1 = 1.7 · 10−4; µ̄2 = 16 · 10−4; σ2 = 2.5 · 10−4; η0 = ms
ρkv

∫

∞

0 ℓ3N(ℓ)dℓ
ms = 2.5 · 10−3kg; mw = 0.8017 kg
m0 = 0.09915 kg (simulation); m0 = 0.105 kg (dynamic inversion)

Table 1. Case study table.
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