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Abstract: In this paper, we develop a multi-scale model to describe the particle growth in a fluidized
bed reactor. Population balance model is presented to describe the dynamical behavior of particle
size distribution. Stability analysis is derived to determine the control configuration for the complex
particulate process. Inventory control strategy is applied to control the particle size distribution.
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1. INTRODUCTION

Particulate processes have distributed properties along both ex-
ternal coordinates and internal coordinates. Hulburt and Katz
(1964) used the theory of statistical mechanics to develop a con-
tinuous phase space description of the particulate system behav-
ior. The so called population balance equation describes parti-
cles evolution in phase space. The population balance equation
expresses the conservation of probability in the phase space.
Population balance is usually difficult to solve because it can
include partial integro-differential equations. Moment transfor-
mation and discretization are two commonly used methods of
solution. Those methods simplify the continuous population
balance equation and then obtain a tractable approximation of
the equation. One problem with such dicretization schemes is
that the conservation principles may not hold exact for pre-
cise gridding. Another problem is that the methods may be
computationally expensive. White (2007) developed a discrete
population balance which ensures that conservation laws are
maintained at all discretization levels and facilitates computa-
tion without additional discretization. In section 2, we review
this newly developed model and show its relationship with
classical population balance model.

Fluidized bed reactors are typical examples of processes in
which this type of dynamics are characterized by the pro-
duction, growth, or decay of discrete particles contained in a
continuous phase. Numerous computational studies have been
carried out on fluidized bed processes. However, a simplified
solution strategy with a complete and detailed model which
integrates CFD, chemical reaction and population balances for
possible use in process scale-up, detailed design and control
studies is still missing. White et al. (2007) proposed a popula-
tion balance model for size distribution of particulate processes
using particle mass and number balances over discrete intervals.
The novel approach for solving population balance equations
proposed in this paper reduces the computation time consid-
erably. They further showed the possibility of coupling popula-
tion balance with CVD calculations to capture the dynamic par-
ticle size distribution. In continuation of the above mentioned
works by White et al., we present the complete multi-scale
modeling approach including the effect of computational fluid

dynamics along with population balance and chemical vapor
deposition models.

Particulate processes can exhibit sensitive response to changes
in operating conditions. The continuous phase may operate on a
completely different time scale than the dispersed phase. Much
work has been accomplished to apply and solve the population
balance for a variety of particulate systems. Semino and Ray
(1995) proposed the first controllability analysis. Christofides
(2002) tested nonlinear output feedback control on a crystal-
lization process. Diez et al. (2008) was the first to apply inven-
tory control to the particulate process. In this paper, we apply
stability analysis to show that two manipulated variables are
required to control the particle size distribution. The universal
storage function developed by Antonio and Ydstie (2001) is
employed to show the closed loop stability. In addition, inven-
tory control strategy is implemented to control the particle size
distribution.

2. POPULATION BALANCE

Particle phase space consists of the least number of independent
coordinates which provide a complete description of the proper-
ties of the particle distribution. Those independent coordinates
can be separated into two categories given by external and
internal coordinates. External coordinates simply describe the
spatial distribution of the particles. Such coordinates are not
always necessary, such as, in the description of a well-mixed
particulate process. Internal coordinates refer to the properties
of each individual particle by measuring its state. The prime
example is particle size. In the framework of this phase space,
Randolph and Larson (1988) proposed a general form of popu-
lation balance to represent the dynamical behavior of the parti-
cle distributions,

∂n

∂t
+∇ · vn−B +D = 0. (1)

Here, n represents the particle distribution function. The rate of
change of particles along internal and external coordinate axes
is represented by ∇ · vn. The birth or death of particles due to
particle agglomeration or attrition is represented by the B and
D terms respectively.

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

TuMT1.5

Copyright held by the International Federation of Automatic Control 407



Fig. 1. Size interval characterization of particles

White et al. (2006) developed a finite dimensional population
balance model to track the dynamic size distribution. They
assumed that the particles are distributed along N discrete
size intervals, characterized by an average mass mi for i =
1, ..., N seen in Figure 1. The discretized model consists of
mass balance and number balance on each size interval. The
relationship between the total mass of particles (Mi) in an
interval and the number of particles in each interval (ni) is given
by

Mi = mini (2)
The mass balance over size intervals is written as:

dMi

dt
= fi−1 − fi + ri + qi + ai (3)

The rate of material transfer from the continuous phase to the
particle is represented by ri. The rate of transition of particles
from one size interval to the next, caused by particle growth, is
represented by fi−1 for flow into interval i and fi for flow out
of interval i. The external flow rate is qi. ai represents the rate
of agglomeration or breakage of particles.

The discretized population balance model is closed by number
balance model. The relationship(2) implies that the time deriva-
tives of number can be written as

dni
dt

=
1
mi

dMi

dt
(4)

The particle number balance over each size interval is repre-
sented as

dni
dt

=
fi−1

mi
− fi
mi+1

+
ai
mi

(5)

They have shown that the discrete model approaches the con-
tinuous population balance (1) as the number of size intervals
increases. Therefore the discrete population balance can be
viewed as a physically based discretization scheme for contin-
uous population balance.

3. STABILITY ANALYSIS FOR POPULATION BALANCE

In industry, many dispersed phase particulate systems are car-
ried out in one or more regions which can be considered as well-
mixed. The particle growth process we are interested is such
case. The system can be represented only by the distribution
of particles in the internal phase space. As reactor is assumed

Fig. 2. Storage function for chemical processes

as well mixed, spatial distribution is not our main concern and
hence the particle distribution function is only a function of
internal coordinate axes. The macroscopic population balance
represents the transient particle size distribution in a continu-
ous, isothermal, well-mixed and constant volume crystallizer.

The particle behavior along the internal and external coordinate
axes is described by the population balance equation, in the
general form(1). Multiplying (1) by dV and integrating over
V gives∫

V

(
∂n

∂t
+∇ · ven+∇ · vin−B +D)dV = 0 (6)

Here, vi is the internal coordinate velocity and ve is the external
coordinate velocity. The second term, an integral over the
volume of the spatial divergence of the population flux can be
transformed into the boundary condition of the population flux
flowing into and outside the system. Hence,∫

V

∇ · vendV = −Qn (7)

Therefore the spatial averaged population balance can be writ-
ten as

∂n

∂t
+∇ · vin = B −D +

Qn

V
(8)

As the internal coordinate is taken as particle size x and assume
that particle growth rate is independent of size, an empirical
observation known as McCabe’s law holds true, the population
balance equation (8) is reduced as,

∂n

∂t
+G

∂n

∂x
= B −D +

Qn

V
(9)

Here, G ≡ ∂x/∂t, it is always positive as particle sizes keep
increasing along time due to chemical reaction and G is the
convective velocity of a particle along the x axis. Q is positive
for flow into system and negative for flow out of system.

Ydstie and Antonio (1997) have proven that as long as dissipa-
tive effects dominate the chemical process, the process is guar-
anteed to be stable. The storage function referred as generalized
availability is developed to show the stability of system. The
geometry of the storage function is illustrated in Figure 2.

b(n, n∗) = [s(n∗) +A∗(n− n∗)]− s(n) (10)
where s(·) is the entropy function and A = µ

T called intensive
variable of the system. Here we assume s(·) is strictly concave
in order to guarantee that the map from n → A is bijective.
The first term on the right side inside the brackets corresponds
to the supporting hyperplane tangent to s(n) at n = n∗. Since
s(z) is concave, it follows that the difference is positive for any
n 6= n∗. As b(·) is convex itself, it is easy to show that b(·) has
a upper bound given as:

0 ≤ b(n, n∗) ≤ [A(n)−A(n∗)]T (n− n∗) (11)
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where n is arbitrarily chosen. Therefore we have shown that
b(·) is qualified as a storage function for a dissipative system.

∂b

∂t
= (A−A∗)T ∂(n− n∗)

∂t
= A

T ∂n

∂t
(12)

A=
µ− µ∗

T
(13)

n= n− n∗ (14)

where overbar stands for deviations with respect to the refer-
ence.

Substitute (9) into (12) we obtain:
∂b

∂t
= A

T
(−G∂n

∂x
+B −D +

Qn

V
) (15)

Assume that no agglomeration and breakage phenomena take
place in the reactor such that B and D terms can be set to zero.

As we are interested in the overall stability, we integrate the
storage function b over the whole size intervals[x1, xn] such
that: ∫ xn

x1

∂b

∂t
dx =

∫ xn

x1

A
T

(−G∂n
∂x

+
Qn

V
)dx (16)

let

B =
∫ xn

x1

bdx (17)

dB

dt
=−GA(n(x))

T
n(x)|xn

x1
+
∫ xn

x1

QA
T
n

V
dx (18)

=−GA(n(xn))
T
n(xn) +GA(n(x1))

T
n(x1)

+
∫ xn

x1

QA
T
n

V
dx

Here G is always positive,A and n have the same sign such that
the product of them always nonnegative. Therefore, Inventory
control is required to be implemented on the boundary condi-
tion which is the particle inlet and outlet flow rate to enforce
that dB

dt < 0 so that the population balance converges to the
stationary point.

4. APPLICATION

4.1 Process Description

Silicon based solar cells are expected to play an important role
in meeting future energy demand and new processes have been
introduced to increase production rate and reduce cost. Thermal
decomposition of silane (SiH4) in a fluidized bed reactor as
shown in Figure 3 is one new technology for solar grade silicon
production. The fluidized bed reactor considered in this study
is shown in Figure 1. The silicon seed particles are fed into the
system at rate S. The silane and hydrogen gas (reactants) are
fed from the bottom of the reactor. The reactants are fed at the
rate of Fin to maintain the fluidization and control the residence
time to ensure maximum conversion. The feed consists of silane
diluted by hydrogen or argon which acts as the fluidization gas.
Silicon particles grow in the reactor due to the deposition of sili-
con and are removed from the bottom (product) at rate P . Some
of the fine silicon particles (powders) escape the reactor along
with hydrogen (Fout) at the top exit. The powder production
should be minimized to maximize yield. The reactor is heated

Fig. 3. Fluidized bed reactor

at specified locations as shown in the figure to heat the reactants
to the reaction temperature. Product particles are withdrawn at
a rate such that the solid particle hold-up is controlled. Addi-
tionally, seed particles are added in such a way that the desired
product size distribution is achieved. Thus, the size distribution
of the silicon particles at the exit (product) can be controlled
by manipulating the reactant flow rate Fin, product flow rate P
and silicon seed rate S.

4.2 Multi-Scale Modeling

The reaction between silane and hydrogen is almost instan-
taneous and the flow and mixing regimes reach steady state
within few seconds of operation. However, based on the in-
let conditions, temperature reaches steady state only after few
minutes. These systems level phenomena are captured well by
solving the mass, momentum and energy balance equations
simultaneously using a two-dimensional heterogeneous model.
On the other hand, the micro-level deposition of silicon parti-
cles produced in gas phase on to the silicon seed particles is cap-
tured by CVD equations. The particle size distribution and the
dynamics of the particle growth are represented through particle
mass and number balances. This particular dynamics is slow (in
the order of hours). Thus, in modeling such a complex system
which is characterized by different space and time scales, multi-
scale approach is employed as illustrated in this section.
The multi-scale modeling strategy consists of three steps:

Define framework to integrate submodels
In this work, we follow multi-domain framework ?) where
the micro-scale and macro-scale parts occupy adjacent, non-
overlapping parts of the system domain S. Interface regions
exist between domains where both models apply. Micro-scale
models define particle nucleation growth and agglomeration
which determine the size distribution of particles in the reac-
tor. The macro-scale model represents homogenous reaction
in the gas phase. The micro-scale model is represented by a
population balance module while the macro-scale model is rep-
resented by a fluid dynamics module. Heterogeneous reaction
takes place in the gas phase. The interface between them is
developed by Chemical Vapor Decomposition which describes
particle growth process caused by depositing long chain silicon
polymers and scavenging powder produced through homoge-
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Fig. 4. Multi-scale Modeling scheme

neous reaction in the gas phase.

Define length scales in each models
Different scales are identified based on the nature of the process
and the characteristic length and time scales.
1. Particle scale: The important phenomena are the growth of
each particle due to the reaction taking place.
2. Granule scale: Powder formation, granule nucleation, con-
solidation and coalescence are the main processes at this level.
3. Vessel scale: Temperature, concentration and velocity profile
of both the gas and solid phase are crucial at this level.

The hydrodynamics are modeled using CFD, which provides a
basis for a simplified reactor flow model as illustrated in Figure
2. The kinetic terms and the reactor temperature and concen-
trations can be expressed as functions of reactor dimensions,
void volume and time in the CFD module. Reactor temperature
and concentration from the CFD module provide inputs to the
CVD module. The CVD module calculates the overall process
yield which provides an input to the population balance module.
The average particle diameter is then calculated by population
balance module and imported into the CFD module for further
calculation. The population balance module and CVD module
are solved using MATLAB and the fluid dynamic module is
solved using the Multi-physics modeling software COMSOL.
The interlink between COMSOL and MATLAB is exploited
well to integrate the different modules in a single computational
platform. The details about the multi-scale model is presented
in Balaji et al. (2009).

4.3 Multi-scale Modeling Results

The results obtained by coupling all the mechanisms based
on the multi-scale approach (Figure 4) is discussed in this
section. In Figure 5, we compare the numerical results with the
analytical and the experimental results. As per the experiments
conducted at REC Inc., the agglomeration of particles within
the system does exist and the proposed model does capture
the agglomeration phenomenon. The analytical expressions are
obtained from White (2007). The relationship between process
flow rates and average particle size is given by

1 +
W

S
=
np
ns

(
Dap

Das
)3 (19)

Fig. 5. Model Validation.

Fig. 6. Total yield and the percentage recovery of silicon.

where W is the product flow rate and S is the seed flow rate.
Dap is the average particle diameter of product and Das is the
average particle diameter of seed. np is the number of particles
withdrawn and ns is the number of particles added.

ln (1 + P/S) = 3 ln (Dap/Das), then it is likely that np/ns =
1, which means no nucleation, agglomeration, or breakage is
present. If data indicate that np/ns < 1, particle agglomeration
takes place in the reactor.Here P is the product withdraw flow
rate and S is the seed inlet flow rate. Dap is the average particle
diameter of product and Das is the average particle diameter
of seed. The detail of derivation process is described explicitly
in White et al. (2006) From the results obtained, the numerical
results agree satisfactorily with the analytical and experimental
results and hence the proposed multi-scale model can be used
for further studies.

Figure 6 shows the total yield of silicon obtained from the
reactor and the corresponding recovery. In the model equations,
the amount of silicon particles to be removed from the system
to maintain the void fraction and the extent of reaction in the
reactor is unknown. Hence, the simulations are carried out
at unsteady state since the product withdrawal rate is smaller
than the seed flow rate. This study shows the effect of void
fraction and the mass hold up on the average diameter of the
silicon particles. From this Figure, we can see void fraction
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Fig. 7. Effect of mass hold up or the product flow rate.

Fig. 8. Closed loop simulation results.

decreases as silicon mass hold up is increasing such that yield is
decreasing along reaction taking place. Figure 7 shows that the
as mass hold up increases, the void fraction slowly decreases
leading to a decrease in the overall yield and recovery (Figure
6). However, there is an increase in the average diameter of the
silicon particles. Thus, the mass hold up and in turn the product
flow rate should be maintained in such a way that the desired
particle size can be obtained.

4.4 Inventory Control

In this section, we apply the inventory control technique to
a previously validated discrete population balance model for
silicon production in a fluidized bed reactor. Simplifying the
size interval mass balance of the model produces

dMi

dt
= gi +

∑
γ

qi,γ , (20)

where gi represents production and internal flow terms (be-
tween size intervals), and qi represents external particle flow
terms. Summing (20) over specified size intervals allows def-
inition of process inventories as defined in Farschman et al.
(1998). The inventory balance equation then has the general
form

dMk

dt
=
∑
i∈Ωk

(
gi +

∑
γ

qi,γ

)
, (21)

where Ωk represents the set of specified size intervals. These
intervals may, for example, represent the amount of feed par-
ticles or the total mass of the system. In a continuous CVD
process such as fluidized bed production of silicon, particles
continuously increase in size. To operate at relatively constant
conditions, it is necessary to maintain a constant particle hold-
up and size distribution. The total hold up of particles can be
held constant by withdrawing product particles at a rate equiva-
lent to that of particle addition and growth. The particle size
distribution can be held constant by regenerating the system
with seed particles. To mimic this operation, we assume seed
particles correspond to the smallest sized intervals, i = 1, ..., Is,
where Is is the largest seed size interval. This results in the
definition of seed hold-up

Mseed =
Is∑
i=1

Mi.

The total mass is simply the sum over all intervals so this gives

Mtotal =
N∑
i=1

Mi.

To ensure the process inventories are kept at a desired level
(M∗), we choose control parameters to obtain

dMk

dt
= −C

(∑
i∈Ωk

Mi −M∗
)
. (22)

where C is an arbitrary strictly input passive operator. The
inventory balance of (21) then requires us to choose controls
so that ∑

i

qi = −
∑
i∈Ωk

gi −K

(∑
i∈Ωk

Mi −M∗
)
. (23)

Here, the external particle flow rates, qi are manipulated input
that cause the system to track given set points,M∗. This control
law is guaranteed to be stable and obtain convergence of the
particle size distribution if the zero dynamics are stable.

To briefly illustrate this control technique, we use the silicon
example. Equation (23) allows us to design flow rates to achieve
the required control of particle hold-up. The summation shown
in (21) is performed over all size intervals (1 toN ) to derive the
product flow rate (P ) required to maintain a constant hold-up
in the reactor (M∗total).

P = −
N∑
i=1

gi −Kt

(
N∑
i=1

Mi −M∗total

)
(24)

Here we used proportional control to illustrate. Another sum-
mation of (21) is performed over the seed size intervals, 1 to
Is, to determine the seed flow rate (S) required to maintain a
constant mass of seed particles in the reactor (M∗seed).

S = −
Is∑
i=1

gi −Ks

(
Is∑
i=1

Mi −M∗seed

)
(25)

Simulation of controlling the total and seed particle hold-up
is shown in Figures 9 and 10. The hold-up of particles in
the system is shown in Figure 9. The product and seed flow
rates required to achieve the control are also shown. The first
steady state (SS1) represents operation when M∗total = 75 and
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Fig. 9. Control total and seed hold up in CVD system

Fig. 10. Particle size achieved during seed control of CVD

M∗seed = 15. The subsequent steady states are achieved when
M∗seed is increased to 20 and 25.

The average particle size and size distribution achieved during
each steady state are shown in Figure 10. This simulation shows
we can control the average product size as well as the product
distribution. As the hold up of seed particles increases relative
to the total hold up, the average size decreases. The interval
representation of the size distribution supports this result. In
this simulation, we assumed that the largest seed size interval,
Is, was interval 10 out of 20 and that the distribution of seed
particles flowing into the system was constant.

5. CONCLUSION

In this paper, a comprehensive multi-scale model is imple-
mented to describe the growth of silicon particles in a flu-
idized bed reactor. Population balance is used to represent the
growth and aggregation of silicon particles. The simulations are
successfully carried out and validated against the experimental
and analytical results. Stability analysis is achieved in order to
determine the control configuration for the particulate process.
In addition an inventory based control is implemented to control
the particle size distribution.
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