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Abstract: In this paper we propose a novel procedure for obtaining a low order model of a
large scale, non-linear process. The method is of generic nature. The efficiency of the proposed
approach is illustrated on a benchmark example depicting industrial tubular reactor which are
often used in petrochemical industries. The results show good performance of the proposed
method. Our approach is based on the combinations of the methods of Proper Orthogonal
Decomposition (POD), and non-linear System Identification techniques. It is showed here that
the modal coefficient corresponding to the spectral decomposition of the system solutions can
be viewed as the states of the reduced model. This has paved a way to propose a novel model
reduction strategy for large scale systems. In the first step the spectral decomposition of system
solutions is used to separate the spatial and temporal patterns (time varying modal coefficients)
and in the second step a reduced model structure and it’s parameters; linear and of non-linear
tensorial (multi-variable polynomial) type are identified for approximating the temporal patterns
obtained by the spectral decomposition. The state space matrices which happens to be the
parameters of a black-box to be identified, appears linearly in the identification process. For
the same reason, Ordinary Least Square method is used to identify the model parameters. The
simplicity and reliability of proposed method gives computationally very efficient linear and
non-linear low order models for large scale processes. The novel method also allows the way to
compensate the mismatch between real plant and the reduced model outputs.

1. INTRODUCTION

Industrial processes which are characterized by more than
one independent variable, viz. space and time are often
referred to as Distributed State Variable System (DSVS)
or simply Distributed Systems (DS). Numerical solution
techniques of such a system involve separation of spatial
and temporal components. Spatial discretization of DS
is done by means of Finite Volume or Finite Element
methods (FVM or FEM) and Galerkin or Petro-Galerkin
projection techniques. Although such discretizations ap-
proximate the dynamic process behavior reasonably well,
it leads to very large order process model. It takes signif-
icant computational efforts (time, CPU requirement) to
simulate such models and therefore such process models
can not be used for online plant optimization and control
purposes. Model Order Reduction (MOR) is therefore an
important step before proceeding to control design, see
e.g. Shvartsman and Kevrekidis [1998]. The method of
Proper Orthogonal Decomposition (POD) or Principle
Component Analysis (PCA) is widely used for deriving
lower dimensional models from the First Principle rigorous
Model (FPM). The POD method searches for dominant
patterns in the given process and defines an optimal, data-
dependent basis, that is subsequently used as a projection
space to infer reduced order models through Galerkin type
of projections, see Astrid [2004] and the references therein.

? This work was supported by the European Union within the
Marie-Curie Training Network PROMATCH under the grant number
MRTN-CT-2004-512441.

POD methods are empirical (data dependent) in nature
and therefore these methods are susceptible to changes in
process inputs and process parameters. The reduced model
obtained by POD techniques with Galerkin projections are
usually very dense and one loses the original sparse model
structure. Such a dense model structure and necessary
evaluation of nonlinear function in original full dimensional
space, does not always give computational advantage over
original full scale FPM model, Nauta [2008], Astrid et al.
[2008], Agudelo [2009]. This motivates one to look for
other possible approaches which can give computationally
efficient, reliable models which can be used for online
control and optimization purpose. The other motivation
for the method proposed in this paper lies in the fact that
often it becomes impossible to get access to the discretized
form of Partial Differential Equations (PDE) in commer-
cial FPM software packages (simulators) and then one
needs to explore other possible ways to infer reduced order
models. One of such methods is explained in Wattamwar
et al. [2010], which uses POD and system identification
tools like N4SID algorithms, see e.g. Overschee and Moor
[1996], Favoreel et al. [2000]. But the method proposed
there results in local linear models which are not suffi-
cient for approximating the non-linearities of large scale
applications. Moreover in the method proposed there, the
states of the linear reduced order model have no physical
meaning. These reasons have motivated us to investigate
another model reduction strategy, which is proposed here.

The method that is proposed here combines the theo-
ries from the field of system identification and model
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reduction. Notions from the field of system identifica-
tion like input/experiment design, parameter estimation,
model structure selection etc. are used to infer reduced
models from commercial simulators (FPM). In fact, the
performance of the methods proposed here is comparable
to the classical POD with Galerkin projection technique.
The resulting reduced models do not need evaluation of
nonlinear function in original full dimensional space, and
therefore results into significant saving in computation
time. Other advantages include, better structure of re-
duced model for the analytical treatment. In its earlier
form the method presented here is applied on benchmark
example of glass furnace which is a large scale application
with significant complexity, Wattamwar et al. [2009]. The
aim of the present paper is to refine the method and
validate it on another large scale benchmark application
which is tubular reactor in this case.

This paper is organized as follows. The overall method-
ology involving necessary tools from system theory like
POD, a black-box type of system identification for linear
and non-linear tensorial model is explained in section 2.
The classical method of POD is explained first, which is
subsequently correlated to the novel approach of identi-
fication based model reduction. The benchmark example
of tubular reactor is explained in section 3. Some results
of the proposed method on the motivation problem are
presented in section 4 which is followed by future work
and references.

2. THEORY BACKGROUND AND METHODOLOGY

One of the most promising and significant techniques
for an efficient reduction of large-scale nonlinear systems
characterized by existence of coherent patterns is the
method of Proper Orthogonal Decompositions (POD) also
known as the Karhunen-Loève method. Fluid dynamics
is one of the first application of this technology, Holmes
et al. [1996]. The method is based on the observation
that evolution of dynamic process variables reveal coherent
structures or patterns in many processes. This has led
to the idea that the solutions of the model equations
may be approximated by considering a small number of
dominant coherent structures (called modes or basis) that
are inferred in an empirical manner from measurements
or simulated data. Given an ensemble of K measurements
Tk(·), k = 1, . . . ,K with each measurement defined on
some spatial domain Ω, the POD method amounts to
assuming that each observation Tk belongs to a Hilbert
space H of functions defined on Ω. With the inner product
defined on H, it then makes sense to call a collection
{ϕj}∞j=1 an orthonormal basis of H if any element, say
T ∈ H, admits a representation

T(z) =
∞∑
j=1

ajϕj(z), z ∈ Ω (1)

Here, the aj ’s are referred to as the modal coefficients(MC )
and the ϕj ’s are the modes or basis of the expansion. The
truncated expansion

Tn(z) =
n∑
j=1

ajϕj(z), z ∈ Ω (2)

causes an approximation error ‖T − Tn‖ in the norm of
the Hilbert space. We will call {ϕj}∞j=1 a POD basis of H

whenever it is an orthonormal basis of H for which the
total approximation error in some norm over the complete
ensemble is

K∑
k=1

‖Tk −Tk
n‖ (3)

is minimal for all truncation levels n. This is an empirical
basis in the sense that every POD basis depends on the
data ensemble. Using variational calculus, the solution to
this optimization problem amounts to finding the nor-
malized eigenfunctions ϕj ∈ H of a positive semi-definite
operator R : H → H that is defined as

〈ψ1, Rψ2〉 :=
1
K

K∑
k=1

〈ψ1,Tk〉 · 〈ψ2,Tk〉 (4)

with ψ1, ψ2 ∈ H. R is well defined in this manner and
corresponds to a positive semi-definite matrix whenever H
is finite dimensional. In that case, a POD basis is obtained
from the normalized eigenvectors of R, see e.g. Astrid
[2004].

The POD modal coefficients are then obtained by the
projection of the ensemble on the span of dominant POD
modal coefficients as given by:

aj(t) = 〈ϕj(z),Tn(t, z)〉 (5)

Subsequently, a Galerkin projection is used to obtain the
reduced order model as follows. Suppose that the system
is governed by a PDE of the form

∂Tn
∂t

= A(Tn) + B(u) + F(Tn, u, d) (6)

and let Hn denote an n dimensional subspace of H
and let Pn : H → Hn and In : Hn → H denote
the canonical projection and canonical injection maps or
operators respectively. The injection map brings back the
system from reduced space to the full scale form of PDEs.
The reduced model is then given by

Pn
∂Tn
∂t

= PnA(Tn) + PnB(u) + PnF(Tn, u, d) (7)

where Tn(·, t) = Tn(t) belongs to Hn = PnH for all t, A
is the spatial operator for convection and diffusion, and is
of linear nature B defines input matrix and F is nonlinear
source term. In the specific case of a POD basis, the finite
dimensional subspace Hn = span(ϕ1, . . . , ϕn) where the
ϕj ’s denote POD basis functions. In that case, (7) becomes
an ordinary differential equation in the coefficients aj(t) in
the expansion of Tn as
∂〈Pn, Tn〉

∂t
= A〈Pn, Tn〉+ B〈Pn, u〉+ PnF(Tn, u, d) (8)

or equivalently,
dan
dt

= Aan + B〈Pn, u〉+ PnF(P−1
n an, u, d) (9)

The POD modal coefficients (MC ) aj(t) can also be
viewed as the dominant temporal patterns along which
the system evolves. The optimization problem to obtain
POD basis as mentioned above in eq. (4) equivalently
can also be solved for the ensemble Tn as a ‘Singular
Value Decomposition’ SVD which then gives POD basis
function (spatial patterns) in the form of left singular
vectors and POD modal coefficients (temporal patterns or
temporal dynamics) as singular values multiplied by the
right singular vectors. Modal coefficients are the states of
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reduced order model. From the property of SVD these
patterns are arranged as per their importance, i.e. the
first POD basis corresponds to the direction of maximum
energy and so will be the subsequent order. Usually a
tolerance criterion based on amount of energy captured
in the reduced model is applied to decide the truncation
level or the span of POD basis as defined above in Hn. The
criterion is usually called projection energy and is given as
below:

Ptol =
∑n
k=1 λk∑∞
k=1 λk

(10)

where λk is the ‘kth’ eigenvalue of the correlation operator
as defined in eq. (4).

The first two terms of eq. (9) on RHS are linear and
the third non-linear term do not appear for the systems
defined by linear PDEs. For the system governed by linear
PDEs the differential equation eq. (9) can be transformed
in equivalent discrete time form as:

an(k + 1) = Adan(k) +Bdu(k) (11)

At this point one can observe that given the ensemble Tn

one can obtain the POD basis ϕj(z) and the corresponding
MCs aj(t). From the knowledge of MCs and system inputs
‘u’ the system parameters ‘Ad’ and ‘Bd’ in (11) can be
easily estimated by least square estimation techniques.
That is, equivalent reduced model can be obtained from
the knowledge of states and inputs without invoking the
model equations. This approach is very promising espe-
cially for many practical situations when the discretized
version of governing PDEs used in commercial simulator
are not easily accessible.

If one now think of the possible approach to identify the
model parameters when the governing equations are of
nonlinear form, as in eq. (9), one needs then some approx-
imation for non-linear terms in the reduced space. There
are many possible ways to describe the non-linearities
like black-box, neural net, fuzzy logic, grey box as in
see Romijn et al. [2008] and many other input-output
based fit of Weiner-Hammerstein type. It is well known
as well that the Taylor series expansion of a nonlinear
function can be a good approximation of the non-linear
function. If the aim is to approximate the linear system
behavior then consideration of terms corresponding to the
first derivative from the Taylor series alone is sufficient.
But if the linear system is not sufficient enough then
one must consider the higher terms in Taylor series that
correspond to second derivatives and so on. Therefore
the approximation of a non-linear function by linear and
higher order terms from Taylor series will give a polyno-
mial model form. But replacing the non-linear part by
an equivalent polynomial expression for a multi-variable
system is cumbersome due to the involvement of the tensor
algebra (Hessian computation). For this reason we will
briefly explain what does a Taylor series expansion for
a scalar valued function means and then we will explain
it for a vector valued function, and its implementation
for computation purpose. Another reason for proposing
a reduced dimensional polynomial type of a model to
approximate the non-linear part of a full order model is
that the polynomial systems have structure better suited
for analytical treatment in the view of stability, controller
and observer design requirements e.g. see Ebenbauer et al.

[2005]. For a scalar valued function,
ẋ = f (x) , where f : R → R & f(x∗) = 0 (12)

Taylor series expansion in x as a nominal variable and x̃
as a deviation variable, x̃ = x− x∗

˙̃x = f (x∗) + f
′
(x∗) x̃+ (1/2!) f

′′
(x∗) x̃2 + ... (13)

where, f
′
(x) = J (x) : R → R, the jacobian operator

f
′′
(x) = H(x) : R → R, the Hessian operator.

For a vector valued function f : Rn → Rn, the first
derivative is defined as a map: f

′
: Rn → L(Rn,Rn),

and when the first derivative is evaluated at x∗ ∈ Rn then
f

′
(x∗) ∈ L(Rn,Rn), i.e. f

′
(x∗) is a linear operator, and

when it acts on the ‘n’ dimensional vector ‘x’ then its image
is ∈ Rn, i.e. f ′(x∗)(x) ∈ Rn. This lets us to understand
first derivative as a map, f ′ : Rn ∗ Rn → Rn. As f ′(x∗)
is constant term (fixed operator), we better write it as
[f ′(x∗)](x) ∈ Rn. The Jacobian operator is represented
as, [f ′(x∗)] := J (x∗).

The operator defined in the last expression can be written
in terms of partial derivatives as,

[f
′
(x∗)](x) =


n∑
k=1

∂f1(x∗)
∂xk

xk

.
n∑
k=1

∂fn(x∗)
∂xk

xk

 (14)

The same procedure is repeated for computing the second
derivative of the function, i.e. f ′′ : Rn ∗ Rn ∗ Rn → Rn,
i.e. [f ′′(x∗)] := H(x∗), the Hessian operator. The Hessian
operator is a tensor with argument from two domains
while its codomain remains the same that of the Jacobian
operator. The linearity of Hessian operator allows us to
compute it like the Jacobian operator as in (14), but now
with one more argument as:

[f
′′

(x∗)](x, x) =



n∑
k=1

n∑
j=1

∂2f1(x∗)
∂xk∂xj

xkxj

.
n∑
k=1

n∑
j=1

∂2fn(x∗)
∂xk∂xj

xkxj

 (15)

the above expression can be written as:

[f
′′

(x∗)](x, x) = A1(x⊗ x) (16)
where, (x⊗ x) is the Kroneckar product.

The complete simplification procedure mentioned above
is aimed to express, f ′′ : Rn → L(Rn,L(Rn,Rn)) as,
f ′′ : Rn → L(Rn2

,Rn). This is possible due to the notion
of the linearity of tensor operator.

From the discussion above, a nonlinear equation of the
form ẋ = f(x, u) can be expanded in Taylor series as
in (13) which can be approximated by a polynomial of
the form,

ẋ =Ax(t) +Bu(t) +A1(x(t)⊗ x(t))
+B1(u(t)⊗ u(t)) +Q(x(t)⊗ u(t)) (17)

Where, A1, B1, Q are equivalent Hessian operators and
x ∈ Rn, u ∈ Rl, A ∈ Rn×n, B ∈ Rn×l, A1 ∈ Rn×n

2
,

B1 ∈ Rl×l
2
, Q ∈ Rn×(n∗l) and x(t) ⊗ x(t), x(t) ⊗ u(t),

u(t)⊗ u(t) are the Kronecker products.
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These methodological developments are based on full
order simulator as the plant model, therefore we are not
considering the output equations here.

Equivalent discrete form of Eq. (17) can be written as:
x(k + 1) =Adx(k) +Bdu(k) +A1d(x(k)⊗ x(k))

+B1d(u(k)⊗ u(t)) +Qd(x(k)⊗ u(k)) (18)
As we are considering the discrete identification problem
here, for the convenience in remaining part of the paper we
have dropped the superscript ‘d’ form eq. (18) and from
it’s corresponding terms.

Note that the model equation (18) is non-linear in states
and inputs but it is linear in all the system parameters
(equivalent Jacobian and Hessian terms). The model in
equation (18) is in fact tensorial model which is imple-
mented in multi-variable polynomial form. The Kronecker
product distinguishes the tensorial model from usual poly-
nomial model. This is a big advantage. Because if the states
and inputs are known then by fixing the above polynomial
model structure we can estimate the system parameters
by Least Square parameter Estimation (LSE) techniques.

Coming back to the problem of the reduced model iden-
tification, the states in (17) can be seen as POD modal
coefficients (MC) and then linear and non-linear part in (9)
can be approximated by (17).

Another interesting feature of the proposed framework is
the ability to approximate the time-dependent variations
of physical parameters of the process. To do so, the un-
certain parameter should be treated similar to the process
input and the corresponding process snapshots due to the
parameter excitation need to be included while computing
the POD basis functions and MCs. As per the knowledge
of the author, this approach of model reduction for very
large scale process under process parameter uncertainty is
not thoroughly studied in the past.

Once the MC and POD basis are obtained from the full
scale FPM (simulator) as mentioned earlier, then by using
the tensors decomposition as in eq.(15) for eq.(17), the
problem of polynomial model parameter identification is a
least square estimation( LSE ) problem and if we define,
ξk := col (x(k), u(k), x(k)⊗ x(k), x(k)⊗ u(k), u(k)⊗ u(k))

(19)
then from (18), xk+1 ' Θ ξk Where, Θ = [ABA1B1Q]
and define the parameter estimation error at each time
instance as

ek+1 = xk+1 −Θ ξk (20)
similarly the estimation error that is minimized by LSE
method over the complete simulation horizon is

E := [x1 . . . xN ]−Θ[ξ0 . . . ξN−1] (21)
equivalently, E := X −ΘΞ
where, N is the number of samples and ,
X ∈ Rn×(N−1), Ξ ∈ Rn×(N−1) and Θ ∈ Rn×(n+l+n2+l2+n∗l)

The least square solution will be
Θ = X ΞT (Ξ ΞT )−1 (22)

The complete CFD spatio-temporal information can be
reconstructed by projecting back the solution of reduced
model (18) on the span of dominant POD basis Hn. The
reconstructed states of full order model will be given by,

T̃n(k) = In an(k) = P−1
n an(k), or equivalently (23)

T̃n(k) =
n∑
j=1

φ−1
j aj(k) (24)

As this study is based on software simulations, the outputs
can be chosen as per the user choice. For our research pur-
pose, we have chosen them close to the real life situation.
The constructed output equations can be approximated
as:

ỹ(k) = C T̃n(k) (25)
The error involved here will be the sum of projection
error and the statistical fit in the identification step to
the few selected POD modal coefficients corresponding
to the maximum energy content as per eq. (10). As
T̃n(k) is computed, and if the plant output information is
available as well then parameter C in (25) can be estimated
by least square estimation techniques to compensate the
(reduced) model mismatch and the real plant. One of
the problem with the reduced order tensorial (multi-
variable polynomial) models is its spurious instability,
which sometimes arises due to the polynomial nature of
the underlying model. We have not investigated this issue
in this paper.

3. BENCHMARK EXAMPLE: TUBULAR REACTOR

Tubular reactors are often used in chemical and petro-
chemical industries, especially for exothermic reactions.
The large ratio of surface area to volume of tubular reac-
tors offer fast heat exchange with cooling jacket. Moreover
they can be easily operated due to the absence of any
moving parts. These features makes tubular reactors an
integral part of many chemical processes.

A dynamical model of a tubular reactor is depicted in
Figure 1. The model represents a reactor with both dif-
fusion and convection phenomena and a nonlinear heat
generation term. The model is governed by coupled par-
tial differential equations. The system of equations can
be classified as a system of non self-adjoint, parabolic
PDE’s. This is a 1D benchmark problem and it might not
exactly represent the real life situation characterized by 3D
flow patterns, multiple reactions and different parameter
values. The benchmark tubular reactor model used here
assumes first order reaction.
∂T

∂t
=

1
Peh

∂2T

∂z2
− 1
Le

∂T

∂z
+ νCeγ(1−

1
T ) + µ(Twall − T )

(26a)
∂C

∂t
=

1
Pem

∂2C

∂z2
− ∂C

∂z
−DaCe

γ(1− 1
T ) (26b)

which are subject to the mixed boundary conditions

left side:


∂T

∂z
= Peh(T − Ti)

∂C

∂z
= Pem(C − Ci)

right side:


∂T

∂z
= 0

∂C

∂z
= 0

Many tubular reactor models that occur in the litera-
ture can be adequately represented by this dimensionless
model that describes material and energy balances in the
reactor. The model with its parameter values are taken
from Hoo and Zheng [2002]. T (z, t) and C(z, t) are dimen-
sionless temperature and concentration state variables,
respectively, which are functions of time t and position
z. Here, t ∈ R+ is the temporal independent variable
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Fig. 1. Tubular reactor

and z ∈ Ω := [0, 1] is the spatial independent variable.
Inputs to the model are u(t) = col(Twall(t), Ti, Ci) which
are the wall temperature influenced by a heating/cooling
jacket divided into three parts, the inflow temperature and
the inflow concentration, respectively. Initial conditions at
time instant t = 0 are set to T0(z) = Tss and C0(z) = Css,
where Tss, Css are steady states profiles. The physical
parameters of the system are given in the table below.

Peclet number (energy) Peh 5
Peclet number (mass) Pem 5
Lewis number Le 1.0
Damkohler number Da 0.875
Activation energy γ 15.0
Heat of reaction ν 0.8375
Heat transfer coefficient µ 13.0

4. RESULTS AND DISCUSSION

The simulation results that are presented here are based
on the CPU with configuration - Intel Core 2 CPU, T7200
@ 2.00 GHz, 2.00 GB of RAM, Microsoft Windows XP
operating system.

Fig. 2. Identification: Modal coefficients (MC), Tubular
reactor, zoomed. ‘Red-Lin’ stands for ‘Reduced Order
Linear model’, ‘Red-poly’ stands for ‘Reduced Order
Polynomial model’, ‘Full M’ stands for ‘Full Order
Non-linear model’, ‘nr.’ stands for ‘number’.

The spatial discretization of the 1-dimensional tubular
reactor has been carried out with 100 grid cells. Since there
are two states variables, temperature T and concentration
C, the full scale model is of order n = 200. All variables in
the equation (26) are represented in dimensionless form.
The reaction kinetics is of first order. The full order model

Fig. 3. Identification: Outputs, Tubular reac. zoomed

Fig. 4. Validation: Tubular reac.

has been simulated on a time horizon that corresponds to
50 times the residence time of the reactants in the reactor.
The reaction was sampled for 20000 time samples. The
time samples have been collected in a snapshot matrix and
the POD basis functions have been computed. The results
presented here are of the multi-variable case which means
that the temperature and concentration state variables are
stacked over each other in the snapshot matrix before
computing the POD basis and modal coefficients. This
ensures the coupling of the two state variables. We iden-
tified a linear model and a nonlinear second order tensor
expansion model that maps inputs to modal coefficients.

Obviously, the quality of the identified model depends
on the quality of the data. Therefore the data should be
generated by input signals which excite the full scale model
in the frequency range which is of the interest from a
control point of view. The full model was excited with
a Pseudo Random Binary Signal (PRBS) on Ti. PRBS
fulfills the condition of persistence of excitation, which is
necessary for getting a good identified model. The average
switching time of such an identification signal should
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usually be equivalent to the process time constant. But as
all the variables are dimensionless, the time constant of the
tubular reactor is small with respect to time constant of a
real-life tubular reactor. Therefore, the average switching
of PRBS signal was adjusted to 1/20 of the total simulation
horizon. The initial condition was the steady state profile
of temperature and concentration. As in real life situations,
changes in input are implemented in the form of steps,
the validation signal was a step input on Ti. The physical
parameters of the full scale model are very close to an
unstable operating condition. This is evidenced when a
3% amplitude change of inputs is taken from their nominal
value. For the same reason, input signals for validation of
the identified models are limited to 2% amplitude changes
from their nominal value.

The fit of the reduced linear and the reduced tensor model
to the first 4 modal coefficients, is shown in Figure 2.
The full blue line represents the reduced linear model, the
dash green line is reduced tensor model and the dash-dot
green line is the full scale model. The reduced tensor model
can fit 12 modal coefficients without becoming unstable.
But this increases the computation time of the reduced
model and therefore we fit the tensor expansion model to
only 8 modal coefficients which captures > 99% of the
projection energy. The plot shows that the linear reduced
model does not fit as good as the reduced tensor model.
The identification results for the real outputs are shown in
Figure 3, while validation results are shown in Figure 4.
The result presented here are based on software simulation
alone and we assume that both, the temperature and the
concentration can be measured at any location in the
reactor. In all the figures the top plots show temperatures
and the lower plots show concentrations in the reactor.
Sensors 2nd and 7th are located at 10% of the reactor
length from the left entrance while the sensors 5th and
11th are located at 20% from the reactor end i.e. right
hand side end in Figure 1. Each identification plot shows
the response of the three models viz. linear, tensor and full
scale model. Although both the reduced order models show
good performance, the reduced order tensor model fits the
full scale model perfectly. The validation plot confirms the
same conclusion. The reduced tensor model also captures
the oscillations very well.

As explained in the last paragraph, depending on the num-
ber of modal coefficients fitted by the tensorial model, the
computation time of the reduced order tensorial model can
vary. For the tubular reactor, when 8 modal coefficients are
fitted, the simulation time is approximately 30% that of
the full order model.

5. CONCLUSION AND FUTURE RESEARCH

In this paper we have proposed a new model reduction
method and its application on large scale industrial ap-
plication. The proposed method is promising and suited
especially for the very large scale processes where com-
plexity reduction by using merely physical insight is not
possible. Some other benefits of the proposed method
include - method independent of model equations, better
model structure, significant reduction in computation time
etc.

We want to explore following topics in near future which
has never/rarely been explored in literature like:

1. To investigate the possibility of imposing the stability
in the identification process for the polynomial systems.
2. Exploitation of ’linear in parameter’ model structure for
the synthesis of controller and observers.
3. Implementation of the proposed method on industrial
tubular reactors involving complicated physics and three
spatial dimensions.
4. Studying the performance of the model in closed loop
can be interesting as well.
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