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Abstract: We consider an off-line process design problem where the response variable is
affected by several factors. We present a data-based modelling approach that iteratively allocates
new experimental points, update the model, and search for the optimal process factors. A
flexible non-linear modelling technique, the kriging (also known as Gaussian processes), forms
the cornerstone of this approach. Kriging model is capable of providing accurate predictive
mean and variance, the latter being a quantification of its prediction uncertainty. Therefore,
the iterative algorithm is devised by jointly considering two objectives: (i) to search for the
best predicted response, and (ii) to adequately explore the factor’s space so that the predictive
uncertainty is small. This method is further extended to consider dynamic processes, i.e. the
process factors are time-varying and thus the problem becomes to design a time-dependent
trajectory of these factors. The proposed approach has been demonstrated by its application to
a simulated chemical process with promising results being achieved.

Keywords: Batch Processes, design of experiments, Gaussian process model, kriging model,
process optimization, response surface methodology.

1. INTRODUCTION

Mathematical models are the foundation of the systems
approach to the design of chemical and other processes
(Klatt and Marquardt, 2009). Models can be developed
through the representation of fundamental principles that
govern the process, and thus they are termed first-
principles or mechanistic models. Alternatively, models
may be purely based on experimental data and are called
data-based or empirical. Although data-based models are
typically reliable only within the operating region where
the data are collected, they have seen wide applications
due to the simplicity of model development and implemen-
tation. This is especially true if the process is still in its
early design stage, whereby the time and resources needed
for mechanistic modelling are hardly justifiable.

This study is further restricted to batch-wise (as opposed
to time-dependent) modelling that relates the process re-
sponse (y, e.g. product yield) to the operating factors
(x = [x1, . . . , xd]

T, e.g. reaction temperature and pres-
sure), where d is the number of factors. These models
are typically used in off-line design stage to facilitate the
understanding and optimization of the process. This is
in contrast to dynamic process models which are mainly
used for on-line control and optimization purposes. Such a
data-based model is the central component of the so-called
response surface methodology (RSM) for rational process
design (Myers and Montgomery, 1995).

The traditional method in RSM is to fit a polynomial func-
tion (typically linear, quadratic or cubic polynomial) to

the experimental data, followed by identifying the process
factors that optimize the objective function. However, the
prediction accuracy of the polynomial regression is usually
unsatisfactory due to the restrictive functional form, and
consequently the model-based process understanding and
optimization may be unreliable. To address this issue,
flexible non-linear models have been applied to provide
a more accurate approximation of the process behaviour,
such as artificial neural network (ANN) (Dutta et al.,
2004; Shao et al., 2007), support vector machine (SVM)
(Hadjmohammadi and Kamel, 2008), and kriging models
(also known as Gaussian process regression) (Yuan et al.,
2008; Tang et al., 2010). Kriging is particularly attractive
since it not only attains high prediction accuracy, but also
quantifies the uncertainty of the prediction. Proper han-
dling of the prediction uncertainty is necessary to ensure
reliable optimization results.

This paper extends the previous kriging-based process
optimization (Yuan et al., 2008; Tang et al., 2010) to a
fully iterative approach. Intuitively, two objectives should
be considered when allocating new experimental points
based on the current model: (i) to search for the best
predicted response, and (ii) to adequately explore the fac-
tor’s space. Usually, a large predictive uncertainty within
certain region of the factor’s space is an indication that this
region is not well explored. We adopt a formal statistical
framework due to Jones (2001) to jointly account for these
two goals. We further extend this approach to the design of
time-varying process factors, such as temperature profile.
The proposed method is successfully applied to a simulated
batch chemical process.
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Fig. 1. The flowchart of the proposed algorithm.

2. ITERATIVE MODELLING AND OPTIMIZATION

The overall approach is illustrated in Fig. 1. Initially,
statistical design of experiments (DoE) is applied to give
the initial design points for conducting experiments. The
experimental data are used to develop a kriging model to
relate the process response to the factors. Based on the
model, we allocate new design points by maximizing the
expected improvement (to be discussed subsequently), and
new experiments will be conducted to update the model.
We discuss the various components of this algorithm in
this section.

2.1 Initial experimental design

Initial design of experiments (DoE) is required to obtain
the data for empirical modelling. The classical fractional
factorial and central composite designs were proposed
to investigate the interactions of process factors based
on polynomial models (Myers and Montgomery, 1995).
These classical designs typically assign two or three pre-
determined levels for each process factor, and experiments
are conducted at the combination of the levels of different
factors. Using a small number of levels is especially appeal-
ing if the factors’ values are difficult to change in practice.
However, this strategy may not have an optimal coverage
of the design space due to limited levels of the factors
being studied, and thus it may result in a less reliable
empirical model (Fang et al., 2000). The recognition of
this disadvantage of classical DoE methods has motivated
the concept of “space-filling” designs that allocate design
points to be uniformly distributed within the range of each
factor (Fang et al., 2000; McKay et al., 1979; Kalagnanam
and Diwekar, 1997). Among this class of designs, the
Hammersley sequence sampling (HSS) (Kalagnanam and
Diwekar, 1997) has received wide application as a result
of its simple implementation and good performance. HSS

is adopted in this study for initial DoE, and it is briefly
introduced in this subsection.

The HSS design is based on the fact that any integer n
can be written in a radix notation of another integer R as
follows (Kalagnanam and Diwekar, 1997):

n ≡ n0n1n2 · · ·nm−1nm

= nm + nm−1R+ nm−2R
2 + · · · + n1R

m−1 + n0R
m

(1)

where m is the integral part of logR n. A function of
n, called inverse radix number, can be constructed by
reversing the order of the digits of n and concatenating
them behind a decimal point:

ψR(n) = 0.nmnm−1 · · ·n2n1n0

= nmR
−1 + nm−1R

−2 + · · · + n1R
−m + n0R

−m−1

(2)

Now we select the first d− 1 prime numbers as the integer
R in eq. (1): R1, R2, · · · , Rd−1. According to HSS, the n
design points, each being a vector of order d, are given by

xi = 1 −

[

i

n
, ψR1

(n), ψR2
(n) · · · , ψRd−1

(n)

]T

(3)

where i = 1, 2, · · · , n and 1 is a unity vector.

2.2 Overview of kriging model

Suppose that n experimental runs have been conducted
and the data are {xi, yi, i = 1, . . . , n}. Kriging is based on
a stochastic process model to approximate the response-
factor relationship:

y(x) = µ+ ǫ(x) (4)

where µ is an unknown constant. ǫ(x) is a realization
of a Gaussian process having zero mean and covariance
between the random variables ǫ(xi) and ǫ(xj) given by

cov [ǫ(xi), ǫ(xj)] = σ2R(xi,xj)

= σ2

d
∏

k=1

exp
(

−θk|xik − xjk|
2
)

(5)

where xi = [xi1, . . . , xid]
′. The parameters of this model

(µ, σ2,θ = {θ1, . . . , θd}) can be estimated by the maximiz-
ing the following likelihood function

L(µ, σ2,θ) =(2πσ2)n/2|R|1/2

· exp

[

−
(y − 1 · µ)′R−1(y − 1 · µ)

2σ2

]

(6)

where R is an n× n matrix of correlation function R(·, ·)
corresponding to pairs of data points, i.e. Rij = R(xi,xj)
as given in eq. (5). The column vector y consists of the
known output values: y = [y1, . . . , yn]′.
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Given estimated parameters (µ̂, σ̂2, θ̂), the prediction at
a new data point x∗ is also normally distributed (Sacks
et al., 1989) with mean and variance given by

ŷ∗ = µ̂+ r′R−1(y − 1 · µ) (7)

s2
∗

= σ̂2

[

1 − r′R−1r +
(1 − r′R−1r)2

1′R−11

]

(8)

where

r = [R(x∗,x1), . . . , R(x∗,xn)]
′

(9)

2.3 Iterative modelling and optimization

A kriging model forms the basis of model-based opti-
mization. A simple strategy would be to collect a certain
number of experimental data, develop a kriging model,
find the optimal process factors, and finally conduct veri-
fication experiment(s) at these factors (Yuan et al., 2008).
However, it is difficult to determine a priori the amount
of data that are sufficient to build a reliable model. Hence,
an iterative approach, as given in Fig. 1, is more desirable.

A straightforward method is to find an optimum xnew

based on model predictions, and then conduct new ex-
periment at xnew. However, this is not the best approach,
since it ignored the predictive uncertainty that is available
in kriging model to quantify the mismatch between the
model and real process. For example, a data point that is
predicted to give inferior response with very high variance
may actually result in optimal process. A large predictive
variance typically suggests that the experimental data
around this point are not sufficient to give a reliable
prediction. Therefore, both predictive mean and variance
must be jointly considered in the optimization algorithm.

Previously, it was suggested (Apley et al., 2006) to max-
imize the lower-bound of the response predicted by the
model (suppose the objective is maximization):

xnew = arg max
x∗

(ŷ∗ − αs∗) (10)

where α is a user-set term. For example, setting α = 1.645
corresponds to a 95% lower bound, since the prediction
is Gaussian distributed. However, this approach does not
properly utilize the predictive uncertainty. For example,
if s∗ is very large due to the lack of experimental data
around its neighbourhood, then this point x∗ will not be
selected for experimentation. Should it be selected and the
uncertainty be reduced, this point could turn out to be
highly desired. We later modified the criterion in eq. (10)
to partially address this issue using an ad hoc solution
(Tang et al., 2010).

In the present study, we adopt the concept of “expected
improvement” (EI) (Jones, 2001) that has been intro-
duced to quantify the improvement that is expected to ob-
tain from conducting addition experiments at any design
points. Formally for maximization problem, the predicted
improvement at x∗ is I(x∗) = y(x∗)− fbest, where fbest is
the largest response value obtained through experiments
so far, and y(x∗) is the prediction from the kriging model.

Since y(x∗) is Gaussian distributed with mean ŷ∗ and
variance s2

∗
(eqs. (7)(8)), the improvement is also Gaussian

distributed with mean ŷ∗ − fbest and the same variance.
Therefore, the expected improvement at x∗ is given by

EI(x∗) = E [max{0, I(x∗)}] =

∫

∞

0

Ip(I)dI

= s∗ [uΦ(u) + φ(u)] (11)

where u = (ŷ∗ − fbest)/s∗. Φ(·) and φ(·) denote the
cumulative distribution function and density function of
standard normal distribution, respectively. EI will increase
if the predicted response is greater than fbest and/or the
predictive variance is large, and thus further experiments
should be conducted at this region.

Therefore, instead of optimizing the mean prediction of the
response, we search for process factors x that maximize EI
using, for example, sequential quadratic programming or
genetic algorithms. If maximal EI becomes close to zero,
then the entire optimization procedure can be terminated
since we expect no further improvement by conducting
additional experiments.

2.4 Design of dynamic processes

Operating a batch process by following a time-varying
profile of, e.g. temperature, is not uncommon. For many
processes, the non-isothermal operation can achieve better
performance in terms of higher yield or shorter batch
duration. Another example of time-varying profile is from
fed-batch fermentation processes, whereby the changing
flow rate of substrate is desired (Georgakis, 2009).

In the literature, two approaches have been suggested
for optimizing time-varying process factors. Georgakis
(2009) recommended to use basis functions to represent
a dynamic profile u(t):

u(t) =
m

∑

j=1

βjψj(t) (12)

where t denotes time, {ψj(t), j = 1, · · · ,m} is a set of
pre-selected basis functions (e.g. orthogonal polynomials
or wavelets), and βj ’s are the coefficients. Hence the design
of an optimal u(t) is equivalent to determining the optimal
coefficients βj ’s. It was demonstrated in (Georgakis, 2009)
that for practical situations, orthogonal polynomials up to
the second order would have sufficient freedom for design
purpose. However, the major difficulty with this approach
is the handling of process constraints. Even for simple
interval constraints (e.g. temperature profile is between
20 and 50 ◦C), some ad hoc adjustment has to be made to
rule out infeasible solutions.

In this work, we adopt the method of orthogonal col-
location to handle time-varying factors (Villadsen and
Michelsen, 1978). Specifically, we assign collocation points
at several pre-selected time instances throughout the batch
duration, and then a Lagrangian interpolation polynomial
will pass through the desired values of these collocation
points. Effectively, the design problem becomes to find
the optimal values of these collocation points, and this
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Table 1. Parameters for the batch reversible
reaction.

Parameter Value Parameter Value Page

k10 (1/h) 1.32 × 107 k20 (1/h) 5.24 × 1013

E1 (cal/mol) 1 × 104 E2 (cal/mol) 2 × 104

CA0 (mol/l) 1 CB0 (mol/l) 0
T (◦C) 20 − 50

problem can be solved by using the proposed kriging-based
framework.

3. CASE STUDY

We consider the optimization of the operation of a batch
reactor in which a reversible reaction between A and B
takes place:

A
k1⇀↽
k2

B (13)

It is assumed that both reactions are first-order, The
component mass balances are

dCA

dt
= −k1CA + k2CB , CA(0) = CA0 (14)

dCB

dt
= k1CA − k2CB , CB(0) = CB0 (15)

where the reaction kinetics are given by

k1 = k10 exp

(

−E1

RT

)

, k2 = k20 exp

(

−E2

RT

)

(16)

The process is simulated by solving above differential
equations with the parameters given in Table 1.

3.1 Maximize the process conversion at a given time

We consider the first scenario to maximize the conversion
rate of reactant A at the end of the reaction. For illustra-
tion purpose, we set the nominal batch duration to be 2.5
h.

We first consider a isothermal operation to search for the
fixed temperature that gives the highest conversion. To
initialize, the HSS was used to give three design points, and
the process model was solved to obtain the corresponding
conversion rates. (In practice, real experiments would
be conducted at the designed temperature to get this
information.) Then, the proposed algorithm is followed to
optimize the conversion iteratively.

Fig. 2 illustrates the kriging model prediction and the
corresponding EI at the first three iterations. At the first
iteration (Fig. 2(a)), the prediction uncertainty is clearly
observed (the shaded area). If we only wish to reduce the
uncertainty, we would have allocated the new experimental
point around 50 ◦C. However, by considering the joint
effect of uncertainty reduction and process optimization,
the criterion of EI allocates the new experimental point
at 32.9 ◦C. By conducting this new experiment, the
prediction uncertainty between 20 and 40 ◦C has been
dramatically reduced (Fig. 2(b)), and the new experiment
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Fig. 2. Kriging model prediction and its 95% confidence
interval (shaded area) at the first three iterations.
The expected improvement (EI) used for allocating
new experiments is also illustrated.

is assigned to 50 ◦C at the second iteration. Up to this
point, a total of five experiments have been tried, and
the prediction as given in Fig. 2(c) has small uncertainty
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Fig. 3. Optimal temperature profiles.

Table 2. Maximal conversion obtained through
optimization.

Method No. Experiments Conversion

Isothermal 7 74.2%
Dynamic 12 77.5%

left. In real practice, the experimenter may choose to
terminate the algorithm here. To gain more confidence,
we have selected a relatively small threshold for EI, and
thus the algorithm proceeded with two more iterations.
The optimal temperature is identified to be 32.0 ◦C,
corresponding to a conversion of 74.2%.

Next we consider a time-varying temperature profile by
using the orthogonal collocation method. Three colloca-
tion points are allocated at three time steps: 0, 1.5 and
2.5 h. Hence the process factors to be desired are three
temperature values, [T (0), T (1.5), T (2.5)], at these time
steps. Initially HSS is used to give nine design points. Then
by following the proposed method, only three more iter-
ations are needed and the identified optimal temperature
values at the three collocation points are [50, 29.3, 21.9],
corresponding to a conversion rate of 77.5%. The opti-
mal temperature profile is illustrated in Fig. 3 as dash-
dotted line. The optimal profile is a decreasing one, which
is consistent with the theoretical analysis in (Georgakis,
2009). Table 2 compares the maximal conversion obtained
through optimization. At the expense of several more
experiments, the dynamic temperature profile can achieve
higher conversion of the reactant.

3.2 Minimize the reaction time at a given conversion

The other common goal in batch process optimization is to
minimize the reaction time at a given conversion, which is
usually set to be less than the maximally achievable value.
This strategy is well justified if the benefit from reduced
processing time exceeds the loss in yield. In this work,
the objective is to obtain the minimal reaction time when
conversion reaches 75%. To account for the possibility
that some poor choice of temperature would never reach
the conversion rate of 75%, we artificially set the longest
reaction time to be 5.5 h. This is in analogous to the real
practice, whereby if the conversion rate does not achieve

Table 3. Minimal batch duration obtained
through optimization.

Method No. Experiments Duration (h)

Isothermal 7 2.65
Dynamic 16 2.08
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Fig. 4. The trajectory of conversion at different operating
conditions. The two profiles of dynamic operations are
almost non-discernible.

a desired value for a long time, then the experiment will
simply be terminated.

Similar to the previous case, we first consider isothermal
operation, using the same three design points for tempera-
ture between 20 and 50 ◦C for developing the initial kriging
model. The iterative optimization strategy terminates af-
ter four iterations, resulting in an optimal temperature of
30.7 ◦C with reaction time 2.65 h.

The time-varying temperature profile is implemented by
allocating three orthogonal points at 0, 1.5 and 5.5 h
(the last corresponding to the specified longest reaction
time). Similar to maximizing conversion, initially nine data
points were obtained. At the convergence, a total of 16
runs of the simulation were needed to obtain the minimal
time of 2.08 h, which is remarkably better than isothermal
operation (see Table 3).

The optimal temperature profile is also given in Fig. 3. The
two temperature profiles, corresponding to different opti-
mization objectives, are initially very similar and slightly
different after about 1 h. Fig. 4 illustrates the conversion
profiles for isothermal and dynamic operations. A “base-
line” profile, corresponding to using a fixed temperature
of 20 ◦C (the lower bound of the range), is also depicted.
Again, this figure confirmed the better performance of dy-
namic operations. More interestingly, for both isothermal
and dynamic cases, it appears that maximizing conversion
and minimizing reaction time gave almost the same con-
version profiles. In other words, should we conduct multi-
objective optimization by considering the two objectives
simultaneously, we would achieve largely similar results
by two single-objective optimizations. Certainly, this con-
clusion cannot be directly generalized to other processes.
Data-based modelling and multi-objective optimization,
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where the model uncertainty is considered, is currently
under investigation.

4. CONCLUSION

In this work, we have demonstrated an iterative approach
to data-based process modelling and optimization. We
adopted the kriging model (Gaussian process) that is
capable of providing both accurate mean prediction and
reliable prediction variance. For data-based modelling, the
prediction variance can be effectively reduced by conduct-
ing more experiments. We suggested to use a combined
criterion, the expected improvement, in an attempt to
allocate new experiments to under-explored region (with
high prediction variance) as well as to search the best
process performance. We further extended the method to
handle time-varying process factors. The case study has
indicated the effectiveness of the proposed method. In
principle, the proposed method is equally applicable to
general processes, where a response variable is affected by
several factors, be they static or dynamic.

Currently, we are working on the application of this
method to the design of catalysts for several energy-related
processes, including dry reforming of methane and Fischer-
Tropsch synthesis.
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