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Abstract: In this paper, the methodology for complete partial control design based on a novel PCA-based 

technique incorporating the inventory and constraint control objectives is described. Brief descriptions on 

the PCA-based technique, some definitions and criteria are also presented. The application of the 

methodology is demonstrated using a case study of extractive alcoholic fermentation process. Result 

shows that good understanding of the interaction among process variables is the key principle for 

designing partial control strategy. Interestingly the proposed methodology allows the designer to 

understand this interaction and hence to exploit its benefit in partial control design. 
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1. INTRODUCTION 

An eminent approach to bioprocess control has generally 

focused on the specific control methods or algorithms used to 

control certain variables of interest. In this regard, the control 

philosophy of the overall plant (Larsson and Skogestad, 2000) 

is frequently ignored in bioprocess control design i.e. which 

variables to be controlled and which variables to be 

manipulated - control structure problem. 

One way to address this difficult problem in a theoretically-

founded manner (Stephanopoulos and Ng, 2000) is by 

adopting the partial control framework introduced by Shinnar 

(1981). Since the number of manipulated variables is 

frequently smaller than that of output variables to be 

controlled (i.e. thin plant), partial control seems to be the 

natural choice in process industries. Reported examples of its 

applications are in fluidized catalytic cracker (Arbel et al., 

1996) and Tennessee Eastman Process (Tyreus, 1999). 

The key issue to be resolved in partial control is about the 

identification of the suitable dominant variables, which 

depend on the specified operating objectives. To date, the 

predominant technique for identifying the dominant variables 

is largely based on the engineering experience and process 

knowledge. Consequently such a practice has become the key 

obstacle in applying this concept to new processes where 

substantial experience about the processes is generally 

unavailable or limited. 

In this paper, a novel PCA-based technique is briefly 

described, which can be used as a tool to design a complete 

partial control strategy incorporating inventory and constraint 

control objectives. Note that, the detail regarding the PCA-

based technique for identifying the dominant variables is 

available in (Nandong et al., 2010). Note that, the proposed 

methodology allows the engineers to design partial control 

without the need for extensive experience or process 

knowledge. Moreover, the effectiveness of the technique is 

demonstrated based on its application to a case study of 

extractive alcoholic fermentation process. 

2. PARTIAL CONTROL PROBLEM FORMULATION 

Let a performance measure/operating objective be given by: 

�� � ��,��Ω�	 
 ��,��Ψ�	 (1) 

Where Ω� and Ψ�  are the dominant and minor variable sets 

respectively. Here minor variables are the variables which 

have only small contribution to the performance measure. 

And ��,� and ��,� are functions that describe the 

contributions of dominant and minor variable sets to the 

performance measure ��  respectively. 

Assuming that the variation of the performance measure due 

to the disturbance occurrence can be written as: 

Δ�� �  Δ��,� 
 Δ��,� (2) 

Thus, for n performance measures one can write: 

ΔΦ � �Δ�� Δ��…  Δ���� (3) 

Note that, the objective of partial control is to ensure that 

ΔΦ � ΔΦ���  in the face of external disturbance occurrence 

where  ∆Φ���   is the maximum allowable variations. 

Therefore, based on (2) or (3) the dominant variables can be 

defined as: 

Definition 1 (Dominant Variables). The dominant variable 

set  ��  for a given �� is defined as the smallest subset of 

variables that can (possibly) be formed from the set of all 

variables (Σ) describing the plant, so that when they are 

controlled,  ���,� � 0 and  ��� �  ���,� �  ���,���.  

Subsequently, the key problem in partial control can now be 

stated as (P1): 

Given a set of all variables Σ and   !, identify the set of 

dominant variables (Ω!) that corresponds to   !. 
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Remark 1. The dominant variables for a given performance 

measure is not necessarily the same as the dominant variables 

for another performance measure. 

Alternatively, the partial control problem can mathematically 

be represented as (P2): 

min
ΩCS'(

  �ΔΦ)*, +, ,-	 

Subject to the following constraints: 

.ΩCS  �  ./01   (4) 

ΔΦ �  ΔΦ���   (5)       ΔΦ �  ΔΦ���  

*�2�  � *�3  � *���  (6)    

4)*, +, ,- � 0 (7) 

Where .Ω56and ./78   are number of dominant variables 

corresponding to a vector of performance measures and 

number of manipulated variables respectively. And *�9, *, + 

and , are vectors of manipulated variables, inputs, outputs 

and process parameters. Here 4 is a set of equations 

representing the plant model. 

Remark 2. It is rather unlikely that the set of dominant 

variables obtained in P2 will be the same as that obtained in 

P1 i.e. different approach leads to different results. 

3. FRAMEWORK FOR PCA-BASED TECHNIQUE 

3.1 Concept of PCA-based Technique 

 

Fig. 1. Illustration of PCA-based technique for identifying the 

dominant variables (Nandong et al., 2010) 

 

The concept assumes that the dominant variables can be 

identified through the successive dataset reduction process 

based on the Principal Component Analysis (PCA). Fig. 1(a) 

illustrates the idea where the original dataset X is first reduced 

using PCA into two uncorrelated sub-datasets X1 and X2.  

The subscript “1” indicates the variables and performance 

measures which occupy the 1
st
 and 3

rd
 quadrants and “2” 

indicates those which occupy 2
nd

 and 4
th

 quadrants.  The 

variables and performance measures occupying similar 

quadrant are bound to be positively correlated among each 

other but negatively correlated with those occupying the 

opposite quadrant. Notice that from Fig. 1(a), the performance 

measure is in the X1 sub-dataset and which may correlate with 

7 variables. Next, another PCA is applied to this sub-dataset 

in order to identify the critical variables that have strong 

influences on the performance measure. The scores and 

loadings of the first two principal components (PC 1 and PC 

2) are plotted as in Fig. 1(b).  

From Fig. 1(b) notice that, the performance measure and 4 

variables are in the X12 sub-dataset. Note that, we have now 

reduced the number of variables from 7 to 4. Further PCA can 

be applied to the X12 sub-dataset which leads to Fig. 1(c). 

Now there are only 2 variables left which are deemed to 

correlate strongly with the performance measure. It can be 

concluded that these variables are the dominant variables for 

the given performance measure. However for this concept to 

be valid, some criteria and conditions must be fulfilled. 

3.2 Dominant Variable Criteria 

There are 3 important criteria which must be completely 

fulfilled.  The sub-dataset must contain at least: (1) one 

variable, (2) one performance measure, and (3) one outlier. 

These are called the dominant variable (DV) criteria. The 1
st
 

and 2
nd

 criteria arise naturally from the definition of dominant 

variable (Definition 1). Meanwhile, the 3
rd

 criteria are 

important to ensure that the correlation between the dominant 

variable/s and the performance measure/s of interest is 

sufficiently strong i.e. dominant relationship exists. 

Another prerequisite for the successive dataset reduction 

process to work is that at each level of dataset reduction, the 

DV criteria must be completely fulfilled. Otherwise the 

analysis is not consistent. This is termed as successive dataset 

reduction (SDR) condition. Recall the previous illustrative 

example (Fig. 1), the DV criteria is completely fulfilled 

throughout the 3 stages of dataset reduction process – thus, 

result is consistent. 

3.3 Critical Dominant Variable (CDV) Condition 

In order to determine at what level the dataset reduction 

process should be stopped, one needs to observe whether the 

CDV condition is achieved. The dataset reduction level which 

corresponds to CDV condition is called the critical dataset 

reduction level. 

Definition 2 (CDV Condition). The CDV condition is 

achieved once the sum of variances (SOV) of the principal 

components used to generate the PCA plot reaches a value 

that is at least equals to the threshold value  :;<2;  i.e. =>? @
 A;<2;. 

It is recommended that the value of  A;<2;  @ 80%. 

Significantly, the value of :;<2; indicates the strength of 

correlation or interaction among the variables and 

performance measure/s in the sub-dataset involved (Nandong 

et al., 2010). Hence, the higher the value of  :;<2;  the stronger 

is the correlation. Higher :;<2;   could also mean that smaller 

number of dominant variables exist for a given performance 

measure. 
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4. METHODOLOGY 

Fig. 2 shows the key steps that constitute the proposed PCA-

based methodology for the complete partial control design. 

The controlled variables are divided into 3 categories based 

on their objectives as: (1) primary, (2) inventory, and (3) 

constraint variables. Whereas the primary variables are 

controlled to achieve the overall (implicit) operating 

objectives and which normally are subset of dominant 

variables, the inventory variables are controlled to prevent 

overflow or dry out. The constraint variables relate to the 

process constraints, e.g. maximum reactor temperature, 

maximum impurity, etc. These variables are controlled to 

ensure safe, smooth and reliable operation. 

Step 1: Specify the performance measures or overall 

operating objectives (Φ). Normally Φ  is an implicit function 

of the process variables e.g. optimum profit, maximum 

product yield, minimum cost, etc. Also, the maximum 

allowable variations ΔΦ��� in the presence of external 

disturbance occurrence should be specified. 

Fig. 2. The key steps in the complete partial control design 

methodology 

 

Step 2: The inputs and size of their perturbations are selected 

and based on the Design of Experiment (DOE) concept; a 

number of experimental runs is generated. The plant is 

perturbed according to the experimental runs and the desired 

responses are calculated. The DOE can be performed on a 

simulated plant (process model required) if the existing plant 

is not running. 

Step 3: Next, the successive dataset reduction process is then 

performed on the dataset X in order to identify the dominant 

variables. It is important that at this step, the DV criteria, SDR 

and CDV conditions are completely fulfilled to ensure 

consistency of the result as described in Section 3. 

Step 4: Then, a set of primary variables (+D�- is selected 

from the set of dominant variables identified in step 3 

(+D� E ΩD). Note that, it is not necessary to control all of the 

dominant variables because they might be tightly coupled. 

Thus, controlling one or two of the variables will indirectly 

control other closely related variables. The following Primary 

Controlled Variable (PCV) Criteria can be used as guidelines 

for the selection: 

1) Select the most dominant variable/s as controlled 

variable/s for a given performance measure/s. 

2) For the variables in series, select the most downstream 

variable/s because this implies the rejection of most of the 

disturbance effects. 

3) Select a set of variables such that the diagonal elements 

of RGA are closed to unity i.e. leads to the most 

favourable pairings.  

4) Select the variable/s that lead to dynamically fast 

disturbance rejection. 

Step 5: Identify all of the variables (i.e. +F  set) relating to the 

material balance e.g. liquid level in reactor. 

Step 6: Identify all of the variables (i.e. +G   set) relating to the 

safety, equipment limitations, environmental regulations and 

other operational issues e.g. flooding in distillation. Normally, 

this task can be carried out based on the unit operation 

knowledge and experience. 

Step 7: Note that, there is no need to control all of the 

inventory and constraint variables because they are normally 

interrelated.  Here, the PCA-based method can also be 

employed to understand the nature of interaction among these 

variables. The following criteria can be used as guidelines for 

the selection: 

1) Select the most critical variables which are closed to their 

limits or based on the importance of constraints. 

2) Select the variables which are easy to measure. 

3) Select the variables which are the most susceptible to 

anticipated disturbances. 

Step 8: Identify the available manipulated variables. Then, 

determine the manipulated-controlled variable pairings using 

the RGA analysis for the decentralized control architecture. 

More rigorous analysis can also be performed based on other 

quantitative analysis such as the conditional number, dynamic 

RGA (DRGA), performance RGA (PRGA) and Morari 

Resiliency Index (MRI). Finally, the controller tuning can be 

done based on the trial-and-error method (Lee et al., 1998). 

5. CASE STUDY 

5.1 Process Description – Extractive Fermentation 

Figure 3 shows the flowchart of two-stage continuous 

extractive (TSCE) alcoholic fermentation process design 

which is adopted as a case study in this work. There are five 

interlinked units: (1) 2 bioreactors, (2) 1 centrifuge for 

separating cells from fermentation liquid, (3) 1 vacuum flash 

vessel to partially remove the ethanol from the fermentation 

liquid, and (4) 1 treatment tank in which the cells are treated 

with sulphuric acid solution before they are recycled back to 

the first bioreactor. Only the dynamics of bioreactors are 

considered in this study i.e. other units are assumed to be in 

pseudo steady-state. More details regarding this system can be 

found in Nandong et al. (2006). 
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Fig. 3. Flowchart of the two-stage continuous extractive 

alcoholic fermentation process 

 

Table 1. Set of manipulated variables (HIJ) 

Fresh substrate flow Fo Cell recycle stream FR 

Flash liquid recycle Fr Flash vapor flow Fv 

Flow from bioreactor 1 F1 Flow from bioreactor 2 F2 

 

There are 6 potential input variables that can be used for 

manipulations as shown in Table 1. The potential output 

variables to be controlled are 16 which are shown in Table 2. 

Note that, the subscript “1” indicates the first bioreactor and 

“2” the second bioreactor. In view of the limited number of 

manipulated variables, we can control only 6 of these outputs. 

Table 2. Set of output variables 

Viable cell conc. {Xv1, Xv2} Substrate conc. {S1, S2} 

Bioreactor T {T1, T2}  Ethanol conc. {Et1, Et2} 

Bioreactor level {L1, L2} Growth rate {rx1, rx2} 

Consumption rate {rs1, rs2} Formation rate {rp1, rp2} 

 

Important overall performance measures for this process are 

the ethanol yield (+KLMN), substrate conversion (OPQA- and 

ethanol volumetric productivity (RSPN). Interestingly, the 

trends of +KLMN and OPQA are opposite to that of RSPN. In 

other words, the operating conditions that leads to the increase 

in +KLMN and OPQA tends to decrease the  RSPN (Costa et al., 

2001).  

For the TSCE alcoholic fermentation design the optimal trade-

off values for +KLMN, OPQA and RSPN are 81%, 90% and 21 

kg/m
3
.hr respectively (Nandong et al., 2006). This trade-off 

corresponds to 100 m
3
/hr of fresh substrate flow (Fo), 120 

kg/m
3
 of fresh substrate concentration (So), 0.225 cell recycle 

ratio (R) and 0.270 flash liquid recycle ratio (r). 

5.2 Complete Partial Control Design 

The proposed methodology is applied to this case study.  

Step 1: Let specify the performance measures as  T�� �
+KLMN, �� � OPQA, �U � RSPNV. Let the maximum allowable 

variation equals to 1.0% of their optimal trade-off value i.e. 

ΔΦ��� � 1.0%. 

Step 2: The inputs for DOE and their size of perturbations are 

shown in Table 3. Here, the selection of inputs is based on the 

process knowledge i.e. inputs which have strong influences on 

the process. There are 16 experimental runs corresponding to 

the perturbed operating levels and 1 experimental run at the 

nominal operating level. At every run, the outputs are 

recorded (16 outputs) and the performance measures are 

calculated. Thus, the dataset X consists of 17 rows 

(observations) and 23 columns (i.e. 4 inputs, 16 outputs and 3 

performance measures). 

Table 3. Real and coded values for factorial design 

Input Level (-1) Level (0) Level (+1) 

�Y (m
3/hr) 80 100 120 

=Y (kg/m3) 96 120 144 

Z (-) 0.180 0.225 0.270 

S (-) 0.216 0.270 0.324 

 

Step 3: Let set the A;<2; � 85% as the critical condition for 

the successive dataset reduction process. Application of PCA 

to the dataset X produces two sub-datasets X1 and X2. Due to 

space limitation, the PCA plot corresponds to this 1
st
 level of 

dataset reduction is not shown here. The variables and 

performance measures that belong to X1 and X2 are shown in 

Table 4.  

Table 4. Variables in X1 and X2 

X1 φ1,  φ2, φ3, So, Xv1, Xv2, S1, S2, rs2, rp2, rx2, R 

X2 Et1, Et2, T1, T2, L1, L2, rx1, rs1, rp1, r, Fo 

Fig. 4. PCA plot corresponding to X1 sub-dataset  
 

Notice that, all of the performance measures belong to the X1 

sub-dataset. The sum of variances of the first two principal 

components is 80%, which is a very high for the 1
st
 level of 

dataset reduction process. Hence, this shows that the variables 

in each sub-dataset are strongly interrelated. 

Next, another PCA is applied to the X1 sub-dataset in order to 

reveal the dominant variables corresponding to the 

performance measures. Figure 4 shows the PCA plot that 

corresponds to this 2
nd

 level of dataset reduction on X1. Note 
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that, the sum of PC-1 and PC-2 is 85%, which is equal to the 

specified  A;<2; . Thus, the critical level of dataset reduction 

has been reached and the dominant variables can now be 

identified. 

Both Yield and Conv occupy the 2
nd

 quadrant and Prod 

occupies the 4
th

 quadrant i.e. they are negatively correlated. 

The set of dominant variables is {R, S1, S2, rx2}. Note that, the 

observation #6 is an outlier implying that the DV criteria are 

completely fulfilled. Because both stages fulfil the DV 

criteria, thus the SDR condition is also fulfilled which 

indicates that the analysis is consistent. 

 

Fig. 5. PCA plot corresponding to X2 sub-dataset 

 

Step 4: The set of dominant variables consists of only 3 

outputs. Because the variables are strongly related, that means 

we do not need to control all of the 3 variables. It is important 

to note that, if S1 is chosen as one of the controlled variable, 

then one has the advantage of fast dynamic response to 

disturbance So. But in this case however, we select S2 and rx2 

as the primary controlled variables because they fulfil the first 

3 PCV criteria (see Methodology, step 4). 

Step 5: Next, the inventory variables are identified. In this 

case, only 2 inventory variables are considered i.e. +F �
T\�, \�V. Liquid levels in treatment tank and vacuum flash 

vessel are not considered because the dynamics of these two 

units are negligible. Our goal for inventory control is to keep 

the variations in L1 and L2 small so that we can operate closed 

to the maximum bioreactor volume. 

Step 6: Two important constraint control objectives are to 

ensure that: (1) bioreactor temperatures do not exceed 33
o
C, 

and (2) ethanol concentrations do not drift too high above 40 

kg/m
3
, otherwise the growth and product formation rate will 

be significantly retarded. The set of variables corresponding 

to these constraints is +G � T]�, ]�, ^_�, ^_�V. 

Step 7: There are 6 outputs (2 inventory and 4 constraint 

variables) which should be considered as controlled variables 

to achieve the inventory and constraint control objectives. 

Since we already use two manipulated variables for primary 

control objectives, thus we can afford to control maximum 4 

of the variables. Because these 6 variables are closely 

interrelated, we can afford to control only a few of them. To 

understand the nature of interaction among these 6 variables, 

we can also apply the PCA-based method to the sub-dataset 

containing the variables (i.e. to X2). Application of PCA to the 

X2 sub-dataset reduces it into two smaller sub-datasets X21 

and X22. 

Figure 5 shows the PCA plot corresponding to the dataset 

reduction on X2. The sum of variances of PC-1 and PC-2 is 

90% implying very strong correlations among the variables in 

each sub-dataset. Fortunately, 5 out of 6 of the variables are 

strongly correlated in the X21 sub-dataset. Table 5 shows the 

nominal steady-state values of the inventory and constraint 

variables. 

Table 5. Nominal values of inventory-constraint variables 

Et1 (kg/m3) 30.6 Et2 (kg/m3) 41.2 

T1 (
oC) 29.9 T2 (

oC) 31.0 

L1 (m) 5.2 L2 (m) 4.2 

 

Notice that, it is not likely that Et1 value will drift too high 

above 40 kg/m
3
 (i.e. its value is quite low). Thus, we can 

leave this variable out – no need to control it directly. In 

fermentation process, the temperature plays a very important 

role in biological activities. Thus, we give higher priority to 

temperature over the ethanol concentration.  The temperature 

in bioreactor 2 is higher than that in bioreactor 1 i.e. only 2
o
C 

from the maximum allowable limit. Hence, we decide to 

choose T2 as a constraint controlled variable. Furthermore, 

because T2 is strongly coupled with T1 and Et2, we decide to 

control only T2 to achieve the constraint control objectives 

overall. We could choose Et2 as a controlled variable but it is 

harder to measure the ethanol concentration than the liquid 

temperature i.e. temperature sensor is also cheap. 

As in the case of constraint variables, the inventory variables 

are also strongly correlated with each other. Hence, we need 

to control either one of them. From Table 5, we notice that L1 

is higher than L2. Hence, assuming that both bioreactors have 

similar size, this means that L1 is closer to the maximum limit 

than L2. Consequently, it is more critical to directly control L1 

than L2. 

In summary our choice of controlled variables to meet the 

constraint and inventory control objectives are T2 and L1 

respectively. As L1 is also correlated with Et2 and T1, thus the 

inventory and constraint controls enhance each other.  

 Step 8: In total we have 4 controlled variables which are {S2, 

rx2, T2, L1}. Out of the 6 inputs which are available for 

manipulations, we choose (1) fresh substrate flow Fo, (2) cell 

recycle ratio R, vapor flow Fv, and (4) flow from bioreactor 1 

F1 as the manipulated variables. In this paper, for simplicity 

the pairings are determined based on the RGA analysis which 

gives the following loops: (1) R-S2, (2) F1-rx2, (3) Fo-L1, and 

(4) Fv-T2. The PI controllers are used for R-S2 and F1-rx2 and 

P-only controllers for Fo-L1 and Fv-T2 control-loops. 

The controller tuning is based on the trial-and-error approach 

initially with the Ziegler-Nichols tuning formula and followed 

by detuning to achieve the desired dynamic responses. Lastly, 
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the performance of the partial control design is tested against 

step changes in So with magnitude of 30 kg/m
3
 or 25% of its 

nominal value. 

Fig. 6. Dynamic responses to step changes in So by ±30kg/m
3
 

 

5.3 Results and Discussion 

Table 6. Summary of results of controlled variable (CV) 

and φφφφ with step changes in So by ±30 kg/m3 

CV T2 T1 Et2 Et1 L2 L1 

Peak 31.5 30.7 43 33 6.5 5.5 

φ Yield Conv Prod    

∆φ (%) 0.01 0.01 0.35    

 

Figure 6 shows the dynamic responses of the controlled 

variables, Yield and Prod to step changes in fresh substrate 

concentration (So) by ±30 kg/m
3
. Table 6 summarizes the 

constraint and inventory control results. 

Notice that the peak value (i.e. during transient response) of 

the most critical constraint variable T2 is less than 33
o
C. Also, 

the peak value for the Et2 is about 43 kg/m
3
 which is still 

acceptable. Note that the threshold value of ethanol 

concentration is 12 %(v/v) or about 94 kg/m
3
 beyond which 

the growth and product formation rates become very low 

(Minier and Goma, 1982). Thus, the partial control design 

meets the constraint control objectives. Meanwhile, the peak 

values of L1 and L2 are also acceptable (no snowball) which 

means that the inventory control objective is also achieved. 

For the performance measures, their variations (offsets) are all 

less than the maximum allowable limit of 1.0%. Hence, the 

control strategy achieves the overall operating objective, 

which is to maintain the performance measures around their 

optimal trade-off values. 

6. CONCLUSION 

It is important to note that, while the limited number of 

manipulated variables necessitates the use of partial control, it 

is the interaction among the variables that allows such 

strategy to work in real practice. Without the strong 

interaction among the variables, it becomes necessary to 

control more variables in order to achieve the same objectives. 

Consequently, it is important to understand the nature of 

interaction among the variables in order to exploit its benefit 

in partial control design. Luyben (1988) claimed that the 

approach to minimize the interaction among loops is flawed. 

What is more important is the structure that can minimize the 

impact of external disturbance where he proposed 

eigenstructure concept to address this problem. Essentially the 

key to identifying this structure lies in the understanding of 

variable interaction which is the missing link in the concept of 

eigenstructure. In this manner, the PCA-based method 

described in this paper serves as a valuable tool not only to 

understand the variable interaction but also to identify the 

dominant variables for the overall operating objectives, which 

are normally implicit in nature. 
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