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Abstract: The problem of regulating the biomass growth rate at its maximum value in an
open-loop unstable, continuous, non-monotonic biological reactor using biomass measurement
and manipulation of substrate feed rate is considered. An Output-Feedback controller is designed
exploiting the reactor open-loop stability and inherent observability properties and the relative
degree structure to obtain robust and non-wasteful closed-loop performance. The resulting
controller has a high degree of independency with respect to the kinetic growth rate expression,
thus ensuring robustness against typical model uncertainties. A representative case example
with non-monotonic Haldane kinetics is employed to test the proposed controller, in absence
and presence of modeling and measurement errors.

Keywords: Non-monotonic Bioreactors, Output-Feedback Control, Observability.

1. INTRODUCTION

Process control plays an increasingly important role in the
biotechnology industry, and the development of output-
feedback (OF) control systems that exploit advances in on-
line measurement technology to achieve optimal produc-
tivity of continuous and fed-batch bioreactors is one of the
most important challenges in biochemical manufacturing
[Henson 2006]. With the additional requirements of low
operation costs and robust performance, the OF control
becomes a non-trivial and highly interdisciplinary engi-
neering problem. Operation costs can be reduced by en-
suring control wastefulness and simple (conventional-like)
control strategies. Control wastefulness can be avoided
by a proper open-loop motion and structural stability
analysis which allows to identify the inherent (global)
stabilizing mechanisms and to design the control exploiting
them. The importance of structural stability (bifurcation)
analysis in the biological reactor applications has already
been pointed out by several authors (see e.g. [Pavlou and
Kevrekidis 1992, Zhao and Skogestad 1997, Zhang and
Henson 2001]) and in particular it should be mentioned
that the question of what impact a close-to-bifurcation
closed-loop operation has on the reactor performance can
not be trivially answered. The robustness issue has to be
addressed with the seek of designing a controller whose
performance shows a reduced dependency on the kinetic
function model, in the understanding that due to the lack
of exact knowledge about the kinetic growth model [Bastin
and Dochain 1990], only qualitative information is at hand
for design purposes. The OF controller design becomes
even more complicated if the reactor is not observable,
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a typical situation for the case of non-monotonic growth
kinetics [Schaum and Moreno 2007], such like the Haldane
biomass growth dependency [Bastin and Dochain 1990].

According to advanced control strategies, the bioreactor
control problem can be tackled with model-based OF
control schemes which combine a nonlinear state-feedback
(SF) controller with a nonlinear state observer [Hoo and
Kantor 1986, Gouzé et al. 2000, Rapaport and Harmand
2002]. Even though these advanced control studies have
provided valuable results, understanding and insight, the
implementation of these nonlinear dynamic OF controllers
still rise reliability and development-cost concerns among
industrial practitioners, in a milieu where most of the
control loops are of the conventional type. These consid-
erations motivate the present study on the development
of conventional-like control schemes that perform similar
tasks than its advanced control counterparts. According to
the constructive control approach [Sepulchre et al. 1997,
Freeman and Kokotovic 1996], optimal nonlinear SF con-
trollers are inherently robust, passive with respect to a
certain output, non-wasteful with respect to control effort,
and can be tractably constructed via inverse optimality by
starting with a passive controller and verifying optimality
with respect to a meaningful objective function.

In the present paper we consider the problem of stabilizing
the equilibrium point of maximum production rate of a
simple two state (turbidostat-type) continuous bioreac-
tor for biomass production with non-monotonic biomass
growth-rate dependency on the substrate. Different from
previous related works where the substrate is the measured
output, and taking advantage of recent advances in on-
line measurement technology [Henson 2006] (such as spec-
trophotometry, flow injection analysis, chromatography,
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etc.), here the biomass is considered as the measured-
controlled output, with the dilution rate being the manip-
ulated control input. An important feature is that the reac-
tor is globally detectable but not observable [Schaum and
Moreno 2007]. Solutions for similar problems have been
reported based on feedback linearization control [Hoo and
Kantor 1986] using a Kalman-Filter for the reconstruction
of the unmeasured state and assuming complete knowledge
of the growth rate, while in [Gouzé et al. 2000] and [Rapa-
port and Harmand 2002] an interval observer was proposed
assuming a partial knowledge of the growth rate. Adaptive
control techniques have been applied in [Mailleret et al.
2004], [Marcos et al. 2004], and an event-driven optimal
control strategy in the context of a fed-batch reactor
e.g. in [Betancur et al. 2004]. A flatness based predictive
controller was designed in [Mahadevan et al. 2001] for a
fed-batch reactor. In the present paper, based on the char-
acterization of the open-loop reactor behavior and the re-
actor inherent relative degree and observability properties
a constructive-like interlaced controller-estimator design
[Gonzalez and Alvarez 2005, Diaz-Salgado et al. 2007] is
applied to the bioreactor case, yielding a robust PI biomass
controller that recovers the behavior of a nonlinear passive
SF controller with optimality-based robustness and control
non-wastefulness features (cp. [Alvarez and Gonzalez 2007,
Schaum et al. 2008]). A representative case example with
Haldane kinetics is considered as an application example
through simulations, including functioning tests in the
presence of measurement and optimal biomass set-point
errors.

2. CONTROL PROBLEM

Consider a bioreactor where substrate is fed and converted
into biomass, according to the following conservation-
based dynamics (see e.g. [Bailey and Ollis 1986, Bastin
and Dochain 1990])

ṡ = −αµ(s)b+ θ(se − s)

ḃ = µ(s)b − θb, y = b.
(1)

Here, s and b are the substrate and biomass concentra-
tion, respectively, µ(s) is the non-monotonic growth rate
function, µ(s)b is the biomass production by bioreaction,
θ = q/V is the dilution rate, i.e. the ratio of flow rate q
and volume V , α is the inverse yield coefficient, se is the
substrate inlet concentration, and y is the biomass mea-
surement signal. In compact vector notation the reactor
model (1) is written as

ẋ = f(x), x = [s, b]T , f = [fs, fb]
T , y = Cx,C = [0, 1]T .

(2)

The objective of the maximum-productivity closed-loop
(CL) reactor operation amounts to the regulation of the
substrate concentration s at the set-point s∗ where the
growth rate function µ(s∗) reaches its maximum. Thus, our
control problem consists in designing a biomass controller
so that (s∗, b∗) is a global attractor for the closed-loop
reactor, in the understanding that s∗ is off-line determined
from modeling (µ) and/ or experimentation and on-line
calibrated according to the substrate measurements taken
for monitoring and/ or supervisory control purposes.

Thus, our control problem consists in manipulating the
dilution rate θ in such a way that (s∗, b∗) is a global
attractor for the CL reactor.

3. REACTOR ANALYSIS

Here, the reactor dynamics, observability properties and
relative degree structure are characterized.

3.1 Open-Loop stability analysis

In this section, an open-loop dynamical characterization
is performed, yielding: (i) the equilibrium point and bifur-
cation structure of the open-loop reactor, and (ii) a feed-
forward-like component which assigns a biomass set-point
b∗ to the substrate one s∗ which maximizes the growth
rate µ(s).

The equilibrium points of the reactor (1) correspond to the
solutions of f(s, b) = 0. Correspondingly, the undesired
washout point (b∗, s∗) = (0, se) is always an equilibrium.
The existence of other steady states (SS) depends on
the relation between µ(s) and θ. In the case of a non-
monotonic growth rate µ(s), one finds a saddle-node-type
bifurcation [Guckenheimer and Holmes 1983], depending
on the dilution rate value θ according to

θ < max
s
µ(s) ⇒ ∃ 3 SSs

θ = max
s
µ(s) ⇒ ∃ 2 SSs

θ > max
s
µ(s) ⇒ ∃ 1 SS.

(3)

All the steady-states (SSs) are located on the curve

b∗(s) = θ(se − s)/[αµ(s)], (4)

which will always be of finite value as long as se > 0,
because in this case there exists a minimum concentration
smin > 0 such that ṡ > 0 for all s ≥ smin. Furthermore,
for all values of b larger than the corresponding value
b∗, the function fs attains negative values (and thus the
substrate concentration will decrease), while for biomass
values less than b∗, the function fs is positive (and s
will grow). Consequently, the set defined by s = b∗−1(b)
represents a family of global attractors for the substrate
concentration. The biomass flow direction is determined
by the relation between µ(s) and θ. Figure 1 shows the
corresponding bifurcation and Fig. 2 the associated phase
plane (flow) diagrams. This analysis shows that the
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Fig. 1. Bifurcation diagram over the dilution rate θ.

point of maximum biomass production corresponds to a
structurally unstable equilibrium and is semi-stable, in the
sense that the corresponding Taylor linearization has a
zero eigenvalue corresponding to the biomass dynamics.
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Fig. 2. Phase plane diagrams for the three possible cases:
(A) θ < µ(s∗), (B) θ = µ(s∗) and (C) θ > µ(s∗).

Thus, the substrate dynamics naturally converges to a
manifold which contains the desired equilibrium point,
and, in an open-loop application, for slight perturbations
the reactor trajectories will tend to the undesired washout
SS.

3.2 Observability Properties

The next analysis enables the delimitation of output-
feedback performance possibilities on the basis of the
underlying observability property. Global nonlinear ob-
servability is defined as the absence of indistinguishable
trajectories [Hermann and Krener 1977] which correspond
to different initial values but generate identical measure-
ments. Accordingly, the reactor observability property can
be characterized as follows:

(A) The substrate concentration s is not globally observ-
able and not locally observable around the steady state of
maximum reaction rate s∗, but is globally detectable (cp.
[Schaum and Moreno 2007]).

The lack of observability implies that the reconstruction
of the substrate concentration can not be speeded up
for arbitrary trajectories, in the understanding that for
indistinguishable trajectories the convergence time is fixed
by the dilution rate.

(B) Based on the notion of instantaneous observability
[Hermann and Krener 1977], which underlies the geometric
observer design [Alvarez and Fernandez 2009], in a way
that is similar to the calorimetric determination of poly-
merization rates [Alvarez and Gonzalez 2007], we have
that the value m of µ(s) is uniquely determined by the
measurement y and its time derivative, meaning that it can
be quickly reconstructed with a reduced order observer.

Recalling the fact that, actually, the growth rate is an
uncertain function, only approximate reconstruction is
possible using any kind of observer which requires the
functional dependence on the substrate concentration. On
the other hand, the actual value of the growth rate can
be arbitrarily fast reconstructed for substrate estimation
with an open-loop-type observer with speed fixed by the
dilution rate [Bastin and Dochain 1990].

3.3 Relative-Degree Structure

Denoting the relative degree rd(u, z) between a regulated
output z and the corresponding input u by the number
of times z has to be derived to yield an explicit and
well-defined relation of the type z(rd(z,u)−1) = ϕ(x) +

g(x)u, g(x) 6= 0, the reactor has the following relative
degree structure

rd(θ, b) = 1 ⇔ b 6= 0 and rd(θ, s) = 1 ⇔ se 6= s, (5)

meaning that either the biomass dynamics or the substrate
dynamics can be linearized by state feedback and con-
sequently either of each dynamics can be controlled via
passive state-feedback, if the corresponding zero dynamics
is asymptotically stable [Isidori 1999].

4. NONLINEAR PASSIVE SF CONTROL

According to the reactor properties discussed above, it
follows that for the regulation of the substrate to its
nominal value s∗, which corresponds to maximal biomass
production rate, one can manipulate the dilution rate
either based on a substrate estimate to implement a SF
controller which linearizes the substrate dynamics (see
e.g. Hoo and Kantor [1986]), or based on the biomass
measurement to implement a SF controller to linearize
the biomass dynamics using an estimate of the (quickly
reconstructible) growth rate. Taking into account that the
set b∗−1(s) is globally attractive for all s, here a biomass
concentration controller is designed to ensure that the SS
(b∗, s∗) is a global attractor for the CL system. From a
feed-forward (FF) point of view, the point b = b∗(s∗) of
maximum biomass production is an equilibrium b̄, if the
following FF control is applied

θ∗ = µ(s∗). (6)

Hence, the relation (4) becomes b∗(s∗) = b̄ = (se − s∗)/α.
On the other hand, the enforcement of the linear output
error dynamics

ḃ = −k(b− b∗) (7)

yields the globally stabilizing nonlinear passive SF

θ = k(b− b̄)/b+ µ(s). (8)

The corresponding zero dynamics (i.e. the substrate dy-
namics on the invariant b = b̄) are given by

ṡ = −αµ(s)b̄ + µ(s)(se − s)
= −µ(s) [s− s∗] .

(9)

These zero dynamics are asymptotically stable, the sub-
strate concentration converges to the steady state s̄ = s∗

with convergence rate fixed by the growth rate µ(s), and
the reactor system is passive. Thus, the controller (8) is a
nonlinear passive controller, meaning that it is inherently
robust due to the relative degree one feature [Sepulchre
et al. 1997, Freeman and Kokotovic 1996].

5. OUTPUT FEEDBACK CONTROLLER

The aim of the OF controller is the recovery of the
behavior with the nonlinear passive SF controller (8), in
a robust (with least possible model dependency), simple,
and conventional-like (PI) control framework. For this
purpose, the above characterized observability properties
are exploited for OF control design purposes.

5.1 Model for Control

Following the constructive control idea that the model is
an important design degree of freedom (cp. [Alvarez and
Gonzalez 2007]), depending on the relative degree and
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observability structures, an adequate model is tailored for
the design, with the least possible model dependency, of
an OF controller which recovers sufficiently well the the-
oretically achievable performance of the nonlinear passive
SF controller (8).

Note that, according to the preceding characterization, the
substrate can be regulated to the concentration s∗ with
maximum biomass growth rate, without having explicit
knowledge about the actual substrate concentration s,
because the reactor inherent stabilizing mechanisms take
the substrate automatically to the value s = b∗−1(b) (4).
On the other hand, the growth rate value m = µ(s) can
be reconstructed arbitrarily fast. Having in mind that the
kinetic growth expression is uncertain, the following model
(in deviation form, referred to the nominal SS) with min-
imal dependence on the particular kinetic approximation
is chosen for OF control [Alvarez and Gonzalez 2007]:

ės = −αµ(s)b + θ(se − s)

ėb = aθ + δ, δ̇ ≈ 0, y = b,
eb := b− b∗, es := s− s∗,

(10)

where the load input δ, which (theoretically) corresponds
to the combined biomass growth and dilution action

δ = µ(s)b − [b+ a] θ := γ(b, s, θ), (11)

is viewed as an unknown input, and a is given according
to

a ≈ ∂fb/∂θ
∣

∣

∣

(b̄,s̄)=(b∗,s∗)
= −b̄ = −b∗(s∗). (12)

According to the observability property of the reactor
(1), the estimation model (10) is strongly observable
with respect to the unknown input δ, meaning that it
can be arbitrarily fast reconstructed from the biomass
measurement.

In terms of the reconstructible load δ, the nonlinear,
passive, globally stabilizing SF controller is written as
follows

θ = −
[

k(b− b̄) + δ
]

/a, δ = γ(b, s, θ), (13)

where b is measured and δ is quickly reconstructible.

5.2 Reduced Order load observer

For the estimation of the unknown load input δ a reduced
order observer [Luenberger 1971] is designed, following the
ideas of [Alvarez and Gonzalez 2007]. For this purpose
consider as measurement

ψ = ėy, ey = y − b∗. (14)

According to the slow-varying regime assumption with
respect to the system dynamics (i.e. δ̇ ≈ 0 (10)), the
following observer is set

˙̂
δ = ω(ψ − ψ̂), (15)

where ψ̂ is given by the estimated value ψ̂ = aθ+ δ̂ and ω
is the observer gain. Introducing the variable

χ , δ̂ − ωey, (16)

one obtains the following dynamics which does not depend
on the unknown value of ψ = ėy

χ̇ = −ωχ− aωθ − ω2ey, (17)

and can be implemented on-line. In the absence of mea-
surement errors, this observer reconstructs δ arbitrarily
fast.

5.3 Dynamic Output Feedback Controller

The combination of the nonlinear passive SF controller
(13) with the reduced order observer (15), yields the OF
dynamic controller

χ̇ = −ωχ− aωθ − ω2ey

δ̂ = χ+ ωey

θ = −
[

k(b− b∗) + δ̂
]

/a.
(18)

This controller depends in a reduced way on the particular
approximation of µ(s). Actually, the only dependence on
this uncertain value appears in the value of b̄ = b∗(s∗)
(4). Due to the strong observability property of the model
for control (10) with respect to δ (11), the nonlinear pas-
sive SF controller performance with inherent robustness
features against model uncertainties and bounded distur-
bances in the sense of practical stability [Sepulchre et al.
1997, Freeman and Kokotovic 1996], can be arbitrarily well
recovered.

In PI form, the preceding controller is written as follows

θ = κ

[

eb +
1

τ

∫ t

0

eb(τ)dτ

]

, eb = b − b∗,

κ = −(k + ω)/a, τ = (k + ω)/(kω).
(19)

This feature enables an easy implementation of the pro-
posed controller design in an industrial-like framework
using standard control elements. The tuning of the PI con-
troller gains κ, τ can be carried out based on the original
OF gains kb, ω in accordance to simple guidelines based on
the closed-loop stability criterion presented next.

6. CLOSED-LOOP STABILITY AND TUNING

Introducing the load estimation error ǫδ := δ̂ − δ, one
obtains, by combining the approximation error stemming
from the assumption δ̇ ≈ 0 in (10), the dynamic controller
(18) and the system dynamics (1), and after some algebraic
manipulations, the following error dynamics

ėb = −keb − ǫδ

ės = −µ(s)es +

(

k
se − s

b
− αµ(s)

)

eb +
(se − s)

b
ǫδ

ǫ̇δ = −

(

ω + µ′(s)(se − s) +
keb

b
+
ǫδ
b

+
ω − k

a

)

ǫδ+

+

(

αµ(s)b − k

[

keb + ǫδ
b

+ se − s

]

+ (a+ b)
k2

a

)

eb

+µ′(s)µ(s)bes.
(20)

Notice that each one of the three error states is input-
to-state stable [Sontag 2000] with respect to the other two
ones, if the biomass does not vanish (cp. the relative degree
one condition (5)). Accordingly the following convergence
result is obtained.

Theorem 1. (Proof in Appendix A)
For all initial conditions with b(0) 6= 0, the reactor state
(b, s) converges asymptotically to the prescribed maximum
rate SS (b̄, s̄) = (b∗(s∗), s∗) if the estimator-controller gain
pair (ω, k) is chosen such that

(i)λδ(ω, k) − Lδ
δ > 0, (ii)λs − Ls

s > 0
(iii)k(λδ(ω, k) − Lδ

δ) > Lδ
b(k)

(iv)λc(ω, k) min
s∈[smin,se]

µ(s) > Lc
sL

s
c(k),

(21)
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with La
ξ being the Lipschitz constant of the a-dynamics

with respect to the state ξ, λξ the effective (smallest)
eigenvalue of the ξ dynamics, and c representing the cou-
pled (eb, ǫδ)-dynamics. All constants are given in Appendix
A. In the presence of parameter and measurement errors,
practical convergence is ensured.

This result ensures practical convergence to a neighbor-
hood of the prescribed optimal operation point (s∗, b∗).
The radius of this neighborhood can be further improved
by off-line calibration according to periodic product qual-
ity analysis.

The qualitative conditions (i) to (iv) of Theorem 1, show
that the biomass can be rapidly driven to its nominal
value, if the estimator-controller gain pair (ω, k) is chosen
adequately. According to the tuning guidelines adapted
from [Gonzalez and Alvarez 2005], set k, ω conservatively,
increase ω until there is oscillatory behavior, back-off ω
and increase k until there is oscillatory behavior, back-off
k and, if necessary, repeat these steps.

7. APPLICATION EXAMPLE

In order to illustrate the performance of the designed OF
controller, a representative non-monotonic case example is
considered using the (re-parametrized) Haldane law (see
e.g. [Bastin and Dochain 1990])

µ(s) =
κs

(1 + σs)2
, (22)

where κ =, σ =, The parameters used for the simulation
are given by κ = 10s−1, σ = 3, α = 2/3, se = 1. For
these parameters the desired point of maximum biomass
production is given by (s̄, b̄) = (1/3, 1), and the undesired
washout equilibrium point is given by (s, b) = (1, 0). The
controller and estimator gains have been tuned according
to the qualitative condition of Theorem 1 considering
two cases: (I) nominal behavior, without modeling and
measurement errors, and (II) robust behavior, with mod-
eling errors (σest, κest) = (2, 12), periodic feed substrate
concentration, and measurement errors of 4% amplitude
and noise-like oscillations with frequency about 13-times
the natural frequency are considered. The afore stated
tuning procedure led to ω = 35, and k = 3. Figures 3
and 4 show the respective closed-loop behavior. As it can
be seen, in OL operation, the reactor does not reach the
desired maximum production steady state but reaches the
undesired washout point in a time around 40 residence
times tR = 1/θ∗ = 1.2, while in CL operation, the
growth rate converges to the desired maximum production
steady state in about 2-3 residence times. The growth
rate estimation (the dash-dotted line in each first plot
respectively) of the CL system is very fast, and that the
control action is coordinated. The same basic functioning
is obtained for the robust behavior test with an asymptotic
production rate offset (here µ(s∗) = 1.5) of about 4%.
As mentioned above this offset can be made smaller by
adjusting the rate function kinetic parameters according to
periodic substrate measurements used for product quality
controls.
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Fig. 3. Comparison of OL and OF responses with k =
3, ω = 35. Solid line: OF response, dashed line: OL
response, dash-dotted line: reaction rate estimate.
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8. CONCLUSION

The problem of regulating the biomass growth rate to its
maximal production rate for an open-loop unstable, con-
tinuous, non-monotonic biological reactor using biomass
measurement and manipulation of substrate exchange rate
was considered. An Output-Feedback linear PI controller
was designed exploiting the reactors open-loop stability
and inherent observability and the relative degree one
structure, to obtain a robust and non-wasteful closed-
loop performance. The designed controller is rather inde-
pendent of the kinetic growth model, meaning robustness
with respect to modeling errors, and quickly recovers the
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behavior of a nonlinear passive SF controller. The model
dependency of the biomass set-point has been transferred
to the a priori and/ or off-line model calibration stage. A
bioreactor example with Haldane kinetics was employed to
illustrate the closed-loop performance.
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Appendix A. PROOF OF THEOREM 1

Proof : Write the error dynamics (20) as follows

ė = − diag
i=b,δ,s

(λi)e+ ϕ(e), e = [eb, ǫδ, es]
T , (A.1)

with λb = k, λδ = ω+µ′(s)(se − s
∗)+ ω−k

a
, λs = µ(s), and

ϕ chosen accordingly. The errors are bounded in norm by
positive scalars σi, i = b, δ, s such that

σ̇i = −(λi − Li
i)σi +

∑

j 6=i

Li
jσj , i = b, δ, s, (A.2)

with Lb
i = 0, i = b, s and Lb

δ = 1. Accordingly eb is
individually stable and conditions (i) and (ii) of Theorem
1 ensure individual stability of ǫδ and es. Following the
small-gain theorem as stated in [Gonzalez and Alvarez
2005], the error pair (eb, ǫδ) is stable if condition (iii)
holds. Let correspondingly λc be the effective, dominant
eigenvalue of the (Hurwitz) matrix

Ac =

[

−k 1
Lδ

b −(λδ − Lδ
δ)

]

, (A.3)

so that one can find a positive scalar function σc ≥
||[eb, ǫδ]

T || such that

σ̇c = −λcσc + Lc
sσs, σ̇s = −µ(s)σs + Ls

cσc, (A.4)

with Lc
s = Lδ

s and Lδ
c = max{Ls

b, L
s
δ}. Correspondingly,

if in addition to conditions (i) to (iii), condition (iv)
holds, then the CL error dynamics is stable. According to
[Freeman and Kokotovic 1996] practical stability follows is
obtained for bounded errors and disturbances. 2
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