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Abstract: This paper addresses the problem of dynamic optimization of ethanol production. This process 

is described by a nonlinear model. A Model Predictive Control (MPC) has been implemented in order to 

optimize the bioprocess dynamically. Two algorithms were used together with a MPC: the Pattern Search 

(PS) and the Iterative Ant Colony Algorithm (IACA). They were compared with an open-loop control 

experimentally implemented. The MPC with the PS algorithm showed a better performance than the 

MPC with IACA and than the open-loop control. 
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1. INTRODUCTION 
 

This new century presents crucial environmental challenges 

such as water supply, global warming and new energy 

sources for substitution of fossil fuels. These two last are 

closely dependent. Actually, the carbon dioxide CO2 

emissions with greenhouse effects are mainly connected with 

the use of fossil fuels for transport. Currently, ethanol is the 

main biofuel used in Europe. Its use reduces CO2 emissions 

from 50 to 80 % compared to fossil fuels (Perréon-Delamette 

2004). Ethanol production is now based on old technology 

with performance that requires innovative culture strategies 

to optimize productivity, ethanol concentration and 

conversion yield. 

In order to overcome this challenge, an original bioprocess 

has been studied by several authors (Aldiguier 2006; Ben 

Chaabane 2006; Ben Chaabane et al. 2006). A two-stage 

continuous bioreactor with a cell recycling loop allowed a 

productivity of 41 g/(L.h) to be reached with an ethanol titer 

of 8.3°GL in the second bioreactor (Ben Chaabane et al. 

2006). Cell viability was low, at around 42 % in the steady-

state. Increasing cell viability would increase ethanol 

productivity up to 98 g/(L.h). The key parameter for 

improving ethanol production would thus be a better 

management of cell viability. 

In this work, it is proposed a Model Predictive Control 

(MPC) framework. A “good” model and an optimization 

algorithm are necessary in order to apply a MPC. Usually, 

MPC problems are solved with Sequential Quadratic 

Programming (SQP) algorithms (Morari and Lee 1999). 

Unfortunately, these algorithms cannot guarantee a global 

convergence (Chen et al. 1996). Two algorithms, that can 

guarantee a global convergence, are compared: a pattern 

search algorithm and an Iterative Ant Continuous Algorithm 

in order to find the optimal trajectory for the MPC. The 

model used for the process is presented in a companion paper 

(Aceves-Lara et al. 2010). 
 

2. THE TWO STAGE-BIOREACTOR PROCESS 
 

The two-stage bioreactor configuration developed in the 

LISBP Laboratory (see figure 1) was deduced from the 

microbial physiology of Saccharomyces cerevisiae and 

differs from those described in the literature (Groot et al. 

1992; Nishiwaki and Dunn 1999). Following several authors 

(Aldiguier 2006; Ben Chaabane 2006; Ben Chaabane et al. 

2006), the selected configuration consists of: 

• A bioreactor (R1) dedicated to cell growth without oxygen 

limitation. The operating conditions with a low ethanol 

concentration (< 84 g/L), enabling assimilation of 

vitamins such as biotin (Winter 1988) give yeasts under 

oxido-reductive metabolism favorable to ethanol 

production in the second bioreactor. 

• A micro-aerated bioreactor (R2), is dedicated to ethanol 

production, and is coupled to an external ultrafiltration 

module. This configuration yields high biomass 

concentration to achieve high ethanol productivity. 

In this bioprocess five concentrations appear: total biomass 

concentration (Xt), viable biomass concentration (Xv), glucose 

concentration (S), ethanol concentration (P) and the glycerol 

concentration (G). As it is illustrated in Figure 1 the feed 

flow rate (Qalim) to the first reactor contains the mineral 

medium flow rate (Qm), the substrate feed flow rate (QS1), the 

water flow rate (Qw) and the vitamins flow rate (Qv). For this 

process vwSmlima QQQQQ +++= 1 , mlima QQ 10=  and 

10mv QQ =  then Qm is expressed as 89)(10 1 wS QQ + . First 
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reactor has two others flow rates; the outlet flow rate from R1 

to R2 (Q12) and the inlet flow rate from R2 to R1 (Q21). Reactor 

2 has five flow rates: a substrate feed flow rate (QS2), a purge 

flow rate (Qpg2), a permeate flow rate (Qp), the inlet flow rate 

from R1 to R2 (Q12) and an outlet flow rate from R2 to R1 

(Q21). The concentrations of glucose that feed the two 

reactors are respectively Sf1 and Sf2. V1 and V2 represent the 

volume of each reactor. Salim is the diluted substrate 

concentration and is equal to mSf QQS 1011 , what allows to 

write 11 )110089( slimafw QSSQ −= . 

The originality of this process (Sanchez-Gonzalez 2008; 

Sanchez-Gonzalez et al. 2009) consists in the recirculation 

loop (Q12 and Q21) between the second bioreactor and the 

first, to enhance cell viability. 
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Fig. 1. Schematic diagram of a two-stage bioreactor with a 

cell separator for continuous ethanol production. 
 

An initial model of this process proposed by Ben Chaabane 

(2006) was used in static optimization for determine the 

constant flow rates to apply in order to reach optimal steady-

state. In this manner an industrial yield of 0.44 g of ethanol 

per g of glucose with a productivity of 41 g/(L.h) (Ben 

Chaabane et al. 2006) was obtained in our laboratory by 

mantained constant flow throughout the experiment. The new 

detailed model of this process will be presented in a 

companion paper (Aceves-Lara et al. 2010) submitted to 

another conference. The aim of this paper is to improve the 

ethanol production and to obtain more quickly the optimal 

steady-state by controlling the various flow rates during the 

experiment. 

In the following section, the dynamic optimization procedure 

and the results obtained from simulations model are 

presented. A quantification of the profit obtained compared to 

the preceding results is given. 
 

3. MODEL PREDICTIVE CONTROL FOR THE 

ETHANOL PRODUCTION 
 

The Model Predictive Control has been successfully 

employed for solving constrained and unconstrained, linear 

and nonlinear problems (Cervantes et al. 2003; Costa et al. 

2005; Kameswaran et al. 2005; Kameswaran and Biegler 

2006; Van Hessem and Bosgra 2006; Kawathekar and Riggs 

2007), which are often encountered in the process industries. 

Currently there are over two thousand online applications of 

MPC in the chemical process industries (Tran et al. 2005), 

mainly in the refining, petrochemical, and chemical industries 

as well as in pulp, paper and food processing (Qin and 

Badgwell 2003). In biological processes, it was mainly 

applied to continuous bioreactors (Zhu et al. 2000) and 

fedbatch bioreactors (Mahadevan et al. 2001). 
 

In the present study, the formulation of the closed loop 

optimization problem is expressed as a MPC using the 

dynamic model previously described in (Aceves-Lara et al. 

2010) and rewritten as: 

),,( utf
dt

d
ξ

ξ
=  (1) 

where ξ  are the system states variables, (i.e. Xt1, Xv1, S1, P1, 

G1, Xt2, Xv2, S2, P2 and G2) and u is the vector of the control 

variables, (i.e. QS1, QS2, Q12, Q21, Qp, Qpg2, Sf1 and Sf2). This 
nonlinear model is used in a MPC framework to choose the 

control action. The MPC controller chooses the future control 

value i.e., the four flow rates and the two feed concentrations 

that minimizes the following objective function: 
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where z = [ 1S  1P  2tX  2S  1SQ  12Q  pQ  2pgQ  2SQ  mQ  

wQ  vQ ]. 

Furthermore we define 
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is the prediction horizon, cH  is the control horizon and 5I  is 

the identity matrix. The *
l

r  variable represents a reference 

trajectory which enable to reach the set point *s . This 

variable is defined as the output of a first order system: 
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The parameters value are: 98.0=β  (the term β  signified 

that the system have reached a β  percent of set point *s ), 

htc 10=  (the term ct  represent the converge time to reach 

the value *sβ ) and sT  is a sampling time. 

The optimization is subject to the following equalities 

constraints for vector h(z): 

0)(
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 (4) 

to respect mass balance. 
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And four inequalities constraints for vector )(zg : 

120

120

2

1

≤

≤

S

S
 (5) 

2002 ≤tX  (6) 

841 ≤P  (7) 

according to previous works reported by Winter (1988). 

When the optimum future value of input flow rate is 

determined, it is applied. In the following control cycle, the 

next optimum control value of input flow rate is determined 

again. To apply a MPC requires solving simultaneously an 

optimization problem and the system model equations. A 

sampling time of hTs 5.0=  was chosen, with a prediction 

horizon pH  of 10 hours and a control horizon cH  of 1 hour. 

The optimization algorithms used will be explained in a next 

section. MPC optimization needs to use an algorithm which 

assures global convergence in a shortly time. Pattern search is 

one possibility, another is Ant Colony Algorithms. 
 

4. PATTERN SEARCH ALGORITHMS 
 

Pattern search (PS) methods are direct methods characterized 

by a series of exploratory moves that consider the behavior of 

the objective function at a pattern of points, all of which lie 

on a rational lattice. These algorithms were used by Fermi 

(Lewis et al. 2000) in parameters estimation. Recently, it was 

used for building energy optimization (Wetter and Wright 

2003). Basically, pattern search methods can be explained as 

follows: There is an iterate n
kx ℜ∈  at an iteration point k 

and a step-length parameter 0>∆k . Then, the optimum is 

successively searched at the points 

ikk exx ∆±=+ { }ni ,,1 K∈ , until a +x  is found for which 

)()( kxfxf <+ . If )()( kxfxf >+ , then k∆  is reduced by 

half; otherwise, the step-length parameter is left alone, setting 

kk ∆=∆ +1  and ++ = xxk 1 . In the latter case, the step-length 

parameter can also increase, by a 3 factor. The iteration is 

done again until k∆  is deemed sufficiently small. One 

important feature of pattern search that plays a significant 

role in the global convergence analysis is that it does not 

need to have an estimate of the derivative of f  at kx . 

Optimization was made with a generalized pattern search 

(GPS) algorithm of the Matlab function “patternsearch” 

(Genetic Algorithm and Direct Search Toolbox, Mathworks) 

and differential model equations were solved with ode113. 

The parameters used for the optimization were: a mesh 

contraction of 0.0001 and a mesh expansion of 3. 
 

5. ANT COLONY ALGORITHMS 
 

The optimization based on natural systems, like ants 

algorithms, dates from the beginning of the 90’s. Ant Colony 

Optimization (ACO) is a paradigm for designing 

metaheuristic algorithms for combinatorial optimization 

problems. The first Ant Algorithm was presented in 1991 

(Colorni et al. 1991; Dorigo et al. 1991) and, since then, 

many variants of the basic principle were reported in the 

literature. ACO algorithms are based on the behavior of ant’s 

colony (Dorigo et al. 1996) in order to find an optimal 

solution. This method is based on the deposit and evaporation 

of pheromones. This algorithm can be explained in a 

simplified way: Ants start moving randomly. Then, when 

they find their food, they come back towards their colony, 

marking their way with pheromones. The role of pheromone 

is to guide other ants towards the food. If other ants find the 

same way, they stop their random displacements and follow 

the same one reinforcing pheromone concentration on their 

return. This process is a positive feedback, because a way 

with more pheromone becomes more and more attractive. At 

the same time, the pheromone evaporates and the least 

reinforced ways end up disappearing, which leads all the ants 

to follow the shortest way. 

At the beginning, ant colony algorithms were mainly used to 

produce quasi-optimal solutions for the travelling sales 

problem (TSP). After, these algorithms have been modified 

in order to solve dynamic problems. One of these algorithms 

is known as CACA (Continuous Ant Colony Algorithm) that 

takes up some ideas from genetic algorithms (GA) 

(Jayaraman et al. 2000; Rajesh et al. 2001). Nevertheless 

searching optimum in continuous regions using either GA or 

CACA is troublesome (Zhang et al. 2005). Another 

interesting ant algorithm is IACA (Interactive Ant Colony 

Algorithm) (Zhang et al. 2005). IACA is based on the idea to 

discretize the time and the control variables, but without 

discretizing the state variables. IACA evaluated the complete 

trajectories traversed by the ants and after that updated the 

pheromone concentration of each node. The great advantage 

of this algorithm is that it does not require discretizing states 

variable and it is easy to implement and is more efficient than 

GA and CACA since searching optimum among finite 

candidates is easier and simpler than in continuous region 

(Zhang et al. 2005). Unfortunately, IACA algorithms were 

used in order to find only one trajectory for simple problems 

without nonlinear constraints. 

In this work, a Model Predictive Control is proposed with an 

IACA variation algorithm for nonlinear constraints. 
 

6. IACA APPLIED TO MPC 
 

The algorithms proposed in order to apply IACA for MPC 

can be described by the nine following steps. At the 

beginning it is necessary to initialize the two vectors maxu  

and minu  as follows: 

][
maxmaxmaxmaxmaxmax 212211max ffSPS SSQQQQu =

][
minminminminminmin 212211min ffSPS SSQQQQu =  

1. Divide the time ][ pHtt +  into N segments. 

2. Choose an area of initial order, 
)(

)(
k
jiw  (i=1,…,6 quantity 

of control variables; j=1,…,N the prediction horizon 

sp NTH = ; k, iteration of optimization procedure). For each 

variable the search range is given by: 

)(
min

)(
max

)(
)()()(

k
j

k
j

k
j iuiuiw −=  (8) 

3. Divide the control variables )(iu  into p segments. Figure 2 

shows an example of the area formed by the time 

discretization and the control variables. 
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4. Place m ants (m = N x p) in each node. The algorithm 

proposed here follows the method of Zhang et al. (2005) 

which placed the ants in each node at the difference of Asgari 

and Pishvaie (2008) which placed them in the nodes of the 

first column of time. 

p

minu

cHt + pHt +t

0u

1 2 N3

maxu

1

p

minu

cHt + pHt +t

0u

1 2 N3

maxu

1

 
Fig. 2. Area formed by the discretization of time in N interval 

and the control variable in p segment. 
 

Repeat: 

5. Move randomly the ants from the left to the right. A turn 

is finished when an ant arrives at time pHt + . 

1

)()1(
)()(

)(

)(
min

−

−
+=

p

iwroute
iuiu

k
jjk

jj  (9) 

where jroute  is obtain by concatenation of the previous 

nodes until the node at instant j. 

6. When the m turns are completed, it is necessary to update 

the objective adjustment of cost function: 
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where ))((maxmax lJJ =  and ))((minmin lJJ = . The value 

of the pheromone is thus: 

10,10,)()()( 1 ≤≤≤≤∑+= − qlfitqii ljj ϖτϖτ  (11) 

7. The ants turns that did not respect the nonlinear 

constraints will disappear. 

It is necessary to update the pheromone density until the 

pheromone density will be equal to one or which cycles 

exceeds the limit used. Pheromone density is updated as: 

pl
i

i
iP

p
l j

j
jl ,...,2,1;

)(

)(
)(

1

=
∑

=

=
τ

τ
 (12) 

8. The best profile found 
*

)( jiu  will be taken as a new base 

line for the next iteration. 

,...3,2,1;,...,2,1)()( *)(
0 === kNjiuiu j

k
j  (13) 

9. The new search area )1(
)(

+k
jiw  will be reduced with the 

constant coefficient ϖ : 

)()1(
)()(

k
j

k
j iwiw ϖ=+  (14) 

and the new bounds )1(
max )(

+k
jiu  and )1(

min )(
+k

jiu  can be 

updated as: 
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The algorithm finishes when the difference between the two 

best iterations will be lower than a bound ε . On the opposite 

case, the procedure will be started again. 
 

7. RESULTS AND DISCUSSION 
 

Simulations for continuous mode have been made using the 

operating conditions reported by Ben Chaabane (2006). The 

optimization objective is twice: until LgP /642 ≤  the 

objective is to maximized 2P , when LgP /642 >  the 

objective is to maximized the industrial yield. MPC 

framework has started after fifteen minutes of simulation and 

has been applied with a white noise of 5%. The simulation 

results of the two optimization algorithms were compared 

with experimental results (Ben Chaabane 2006) obtain with 

an open-loop control. 

Figure 3 shows the state variables in the bioreactor R1 (total 

Xt1 and viable Xv1 biomass, substrate S1 and ethanol P1 

concentrations). It can be noticed that MPC with a PS gives 

the best results: higher biomass and ethanol concentrations 

with a null residual substrate. It can also observe that MPC 

with IACA have a good result in the first 17 hours, but after 

17 hours the trajectory for the state variables was not 

advisable. It can be due to a convergence problem with the 

second optimization objective 5.0
/

=ind
SP

Y . 
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Fig. 3. State variables in bioreactor R1: total biomass (Xt1), 

viable biomass (Xv1), substrate concentration (S1), ethanol 

concentration (P1); experimental data ( ), model simulation 

(0), MPC with pattern search algorithm  and MPC 

with IACA algorithm  
 

Figure 4 shows the concentrations of total Xt2 and viable Xv2 

biomass, substrate S2 and ethanol P2 concentrations in the 

second bioreactor R2. The MPC with PS algorithm gives here 

also better results than an open-loop control. An optimal 

ethanol concentrations was obtained in a smaller time than 

the others methods. Furthermore, IACA could not found a 
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good trajectory and is less robust than MPC with PS 

algorithm. In this figure it is shows clearly that MPC with 

IACA could converged to the first optimization objective 

LgP /642 = , but unfortunately the search of the second 

optimization objective 5.0
/

=ind
SP

Y  failed and was not stable. 
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Fig. 4. State variables in bioreactor R2: total biomass (Xt2), 

viable biomass (Xv2), substrate concentration (S2), ethanol 

concentration (P2); experimental data ( ), model simulation 

(0), MPC with pattern search algorithm  and MPC 

with IACA algorithm  
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Fig. 5. Performance variables: ethanol flow rate (P2Qp), 

Industrial yield ( ind
SP

Y
/

) and control variables: substrate feed 

flow rate (QS1), permeate flow rate (Qp); experimental data 

( ), model simulation (0), MPC with pattern search 

algorithm  and MPC with IACA algorithm  
 

Figure 5 shows the ethanol production P2Qp, the industrial 

yield ind
SP

Y
/

, the substrate feed flow rate QS1 and the permeate 

flow rate Qp obtained with an open-loop control and MPC 
with a PS algorithm and IACA. MPC with PS algorithm 

gives a better trajectory with a gain of 10 hours. This method 

applied only two control actions for QS1 and a constant value 

for the permeate flow rate Qp. Concerning the industrial yield 
ind

SP
Y

/
, the open-loop control and MPC with PS algorithm are 

near to optimal. Therefore, MPC with PS algorithm shows 

that it is a robust controller. On contrary, IACA algorithm 

was not stable, for the second optimization objective 

5.0
/

=ind
SP

Y . This could be due by the number of cycles (20) 

that was used in order to reduce the estimation time or to the 

values of the matrix uW , since it was constant for the two 

optimization objectives. It can be observed that after 17 h the 

control variables values for the substrate feed flow rate QS1 

and the permeate flow rate Qp have high variations. 

Figure 6 shows others operating conditions which were 

applied experimentally or estimated by the MPC controllers. 

The worst results were obtained for the MPC with IACA 

algorithm. PS algorithm was very constant for the 

recirculation flow rate Q21, the purge flow rate Qpg2 and the 

diluted substrate concentration Salim. On contrary, these two 

flow rates have a high variation for the MPC with IACA, 

may be due to values used in matrices Wu and Wx. In figure 

6c it can be noticed that open-loop control used a high 

substrate concentration in order to obtain a good ethanol 

concentration whereas with the MPC with a PS algorithm, 

since it is not necessary to vary the concentration all time 

when the correctly operational conditions are changed. Figure 

6d shows substrate feed flow rate QS2 for the second 

bioreactor. In Figure 6d can be seen the same two changes in 

the operational conditions found by the PS algorithm that 

reach the best trajectory. Furthermore, PS algorithm was 

more stable that IACA algorithm. In general IACA was not 

very stable for all control variables after it was estimated the 

second optimization objective. It should be noted that during 

the first 17 hours the optimization algorithm maximizes the 

first objective (the ethanol concentration) and that during the 

last 13 hours it maximizes the second objective (the industrial 

yield). 
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Fig. 6. Control variables: recirculation flow rate Q21, purge 

flow rate Qpg2, diluted substrate concentration Salim, substrate 
feed flow rate QS2; model simulation (0), MPC with pattern 

search algorithm  and MPC with IACA algorithm  
 

Finally, the results are summarized in Table 1. In this table, it 

can be noticed clearly the advantage of to use a MPC with a 

gain of 16 % in the ethanol flow and 14 % in the ethanol 

concentration. 
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Table 1. Comparison between experimental data obtain in 

open loop case (Ben Chaabane 2006) and closed loop 

simulation results from MPC controller with PS algorithm 

Maximum 2t
X  

2vX  
2S  2P  ind

SP
Y

2/2
 pQP2  

Experimental 46.1 31.4 4.2 69.5 0.45 236 

MPC with PS 51 44 1 80 0.45 275 
 

8. CONCLUSIONS 
 

This paper presented an approach of dynamic optimization of 

ethanol production by using an optimal closed loop control. 

Two algorithms were proposed for applied a model predictive 

control (MPC); a Pattern Search algorithm (PS) and an 

Interactive Ant Colony Algorithm (IACA). The design and 

performance of the proposed method were applied in a two-

stage bioreactor with cellular recycling process during 30 

hours. MPC with PS algorithm compared to open loop (i.e., 

uncontrolled) situations, led to gain 10 hours of time to arrive 

to the best ethanol concentration. Ethanol flow and ethanol 

concentration obtained with the PS algorithm were stables by 

applying only two changes within operational conditions. PS 

algorithm was most robust than IACA; convergence time 

need for PS was two hundred times faster than IACA. 

The final objective of this work is to validate online the 

method proposed in an experimental laboratory pilot. The 

lack of sensors of this kind of bioprocess imposes to develop 

a nonlinear observer (software sensor) in order to reconstruct 

the non measured state variables. 
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