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Abstract: The maintenance of model predictive control (MPC) systems is one of the major
problems identified by industrial process control engineers. Since performance deterioration is
usually caused by changes in process characteristics, effective re-modeling is the key to success.
Obviously, not all sub-models have to be reconstructed; thus, it is crucial to identify sub-models
that have significant model-plant mismatch. In the present work, a novel method is proposed
for significant model-plant mismatch detection from routine closed-loop operation data on the
basis of the statistical test concept. The effectiveness of the proposed method is demonstrated
through case studies. The results clearly show not only that the proposed method can detect
sub-models that have significant mismatch but it is superior to the other methods based on
multivariate analysis.
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test, Control system maintenance.

1. INTRODUCTION

Model predictive control (MPC) has been widely and suc-
cessfully applied to various processes in various industries.
The benefit of MPC is not only the improvement of the
control performance by using model-based control, but
also the realization of stable operation close to the optimal
point under disturbances through optimization. In addi-
tion, MPC makes it possible to maximize the production
rate by making the most use of the capability of the
process and to minimize cost through energy conservation
by moving the operating condition toward the control
limit. Both the energy conservation and the productive
capacity were improved by an average of 3 to 5% as the
result of advanced process control (APC) projects centered
on MPC, as reported by Kano and Ogawa (2009). The
control performance of MPC depends on the accuracy
of the process model and the appropriateness of tuning,
although MPC has outstanding robustness.

A recent questionnaire survey on chemical process con-
trol clarifies that MPC has been widely and successfully
implemented in the chemical and petroleum refining in-
dustries, but problems still remain to be solved (Kano
and Ogawa (2009)). One of major problems identified
is the maintenance of MPC. To keep sufficient control
performance and to prevent, or at least cope with, per-
formance deterioration, control engineers need to know
the cause of performance deterioration and take effective
countermeasures. Since performance deterioration is usu-
ally caused by changes in process characteristics, effective
re-modeling is the key to success in the maintenance.
Obviously, not all sub-models have to be reconstructed.

For reducing engineers’ burden of re-modeling, it is crucial
to identify sub-models that have significant model-plant
mismatch and that need to be corrected. In general, MPC
systems have tens of manipulated variables and controlled
variables, which makes detection of significant model-plant
mismatch very important in practice.

Regarding the maintenance of MPC, very recently, Badwe
et al. (2008) proposed a model-plant mismatch detection
method by using partial correlation analysis, and Huang
(2008) proposed the use of Bayesian methods.

In the present work, another novel method is proposed for
significant model-plant mismatch detection from routine
closed-loop operation data on the basis of the statistical
variable selection method. The proposed method is very
simple. It should detect significant model-plant mismatch
without plant tests so as not to impose a burden on
operators and engineers. The effectiveness of the proposed
method is demonstrated through case studies.

2. BACKGROUND: SURVEY OF MPC

In Japan, a task force was launched in 2007 to sift through
problems regarding process control and investigate solu-
tions. The task force, named ”Workshop No.27 Process
Control Technology,” consists of 32 engineers from indus-
try and 12 researchers from universities. It is supported by
the 143rd committee on process systems engineering, the
Japan Society for the Promotion of Science (JSPS).

The task force sent a questionnaire to member companies
of the JSPS 143rd committee on their process control ap-
plications including MPC. Since the results are extremely
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Table 1. Statistics of MPC applications (from
the survey JSPS143 WS27 2009)

targeted process
distillation 40 %
reaction 30 %
others 30 %

number of number of
variables applications

MV DV CV
0 0 28 0
1 40 45 24
2 57 50 33
3-5 83 103 58
6-9 47 40 59
10-19 59 27 48
20-29 12 5 25
30-39 1 3 29
40-49 1 3 16
50 or more 5 1 13

MV: manipulated variable
CV: controlled variable
DV: disturbance variable

Table 2. Key-to-success of MPC applications
(from the survey JSPS143 WS27 2009)

major key to success
careful modeling 37 %
suitability for objective 33 %
education of operators and engineers 15 %
suitability for process characteristics 11 %
hardware/software environment 4 %

useful for grasping the state of the art in MPC, a part
of the questionnaire survey results is introduced in this
section. More detailed results have been reported by Kano
and Ogawa (2009).

The statistics of 305 MPC applications are summarized
in Table 1. Distillation and reaction processes cover about
70% of the applications. In addition, there are a variety of
sizes of MPC systems.

Table 2 clarifies key-to-success of MPC. Process control
engineers have identified the following major keys to
success: 1) a process model should be developed with care,
2) MPC should be suitable for objectives, 3) operators
and engineers should be adequately educated, and 4) MPC
should be suitable for process characteristics.

Although MPC has been widely and successfully applied in
the chemical and petroleum refining industries, problems
still remain to be solved as summarized in Table 3. The
major problem can be described as follows. To achieve
desirable performance, it is necessary to build an accu-
rate model and to tune control parameters appropriately.
However, both of them are difficult in practice due to
process nonlinearity and changes in process characteristics.
To keep sufficient control performance and to prevent or
at least cope with performance deterioration, the mainte-
nance of MPC is crucial. Control engineers need to know
the reason for performance deterioration and the effective
countermeasure. In addition, they would like to know
the relationship between model accuracy and achievable
control performance. Modeling of a multivariable process
is an exceedingly laborious engineering task; thus it needs
to be clarified how accurate a model should be to achieve

Table 3. Problems of MPC applications (from
the survey JSPS143 WS27 2009)

problem: general
low robustness against model error 26 %
difficulty in tuning 23 %
inability to cope with specific objective 15 %
difficulty in modeling 12 %
others 24 %

problem: maintenance
transfer of engineering technology 44 %
response to performance deterioration 33 %
education of operators 7 %
difficulty in tuning 7 %
others 9 %

need for improvement: general
to improve modeling technology 28 %
to clarify method of estimating effect 25 %
to simplify implementation 22 %
to increase process control engineers 14 %
others 11 %

need for improvement: theory
to cope with changes in process characteristics 26 %
to clarify relations between model accuracy 24 %

and control performance
to cope with unsteady operation (SU/SD) 16 %
to incorporate know-how in control system 16 %
to cope with nonlinearity 13 %
others 5 %

the goal. As a matter of course, not only clarifying the rela-
tionship but also improving modeling and tuning methods
is necessary. Moreover, the implementation of MPC should
be easier. Another problem is how to transfer engineering
technology from skilled engineers to others. Unfortunately,
a shortage of process control engineers aggravates the sit-
uation. It is also crucial in practice to answer the question:
how can we estimate the economical benefit of installing
MPC to justify the project? Most APC suppliers and users
are required to report the benefit to management. Bauer
and Craig (2008) reported that benefit estimation methods
based on variance reduction are still carried out, but they
are sometimes rudimentary and based on experience.

3. MISMATCH DETECTION METHOD

As shown in Table 1, there are tens of controlled variables
(CV), manipulated variables (MV), and disturbance vari-
ables (DV) in an ordinary MPC system. To reduce control
engineers’ burden of re-modeling or system identification,
it is crucial to identify sub-models that have significant
model-plant mismatch. If such sub-models can be detected
from routine operation data without plant tests, the main-
tenance of MPC will be accomplished very effectively. In
this section, our proposed method is explained.

In a model-based control system shown in Fig. 1, model
residuals are given by

e = y − ym (1)

where y and ym are the plant and model outputs, respec-
tively. The outputs can be written as

y =Pu+ d (2)

ym =Pmu (3)
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Fig. 1. A part of model-based control system

where P and Pm are the plant and the model, respectively,
and u and d denote the plant inputs and disturbances,
respectively. Here, model-plant mismatch is defined as

M =P − Pm (4)

The mismatch Mij from the jth input to the ith output
can be generally written as an impulse response model of
the form:

Mij =

∞∑
k=1

aij,kq
−k (5)

where aij,k is an impulse response coefficient and q−1 is
a backward shift operator. Model residuals can then be
expressed as linear combinations of past plant inputs and
disturbances.

e=Mu+ d (6)

The relationship between the ith model residual and the
jth input variable is described by

ei(t) =Mijuj(t) + di(t) (7)

=

∞∑
k=1

aij,kuj(t− k) + di(t) (8)

If a sub-model has significant mismatch, that is, if it is sig-
nificantly different from the corresponding sub-plant, past
inputs of such a sub-model contribute greatly to model
residuals. In other words, past inputs and model residu-
als have a significant cause-and-effect relationship when
the corresponding sub-model has significant mismatch. It
seems possible to find significant mismatch by checking
impulse response coefficients from past inputs uj(t − k)
to model residuals ei(t). In general, however, both auto-
correlation and cross-correlation exist among input vari-
ables due to multivariable feedback control; the collinearity
problem occurs. Thus, it is impossible to identify impulse
response models and detect significant mismatch correctly
from routine operation data. In other words, routine opera-
tion data do not satisfy the persistently exciting condition.

In the present work, a novel approach is proposed. Instead
of building impulse response models, important explana-
tory variables, i.e., past inputs which contribute greatly
to each model residual, are selected by using the stepwise
method, which is a well-known variable selection method
based on the statistical test. If a large number of past
inputs are selected, it can be concluded that the corre-
sponding sub-model has significant model-plant mismatch.
This is the basic concept of the proposed method for
model-plant mismatch detection.

A problem of using the stepwise method is that it se-
lects variables regardless of their importance. That is,

the method might select input variables that have very
small mismatch and make judgment difficult, because the
stepwise method checks the statistical significance instead
of the importance. To avoid this problem, white noise is
artificially added to model residuals before the stepwise
method is executed. This operation is very effective for
mismatch detection as shown in the next section.

The detection procedure is as follows:

[Step 1] Get the routine operation data of plant inputs,
plant outputs, and model outputs. Then calculate
model residuals by (1).

[Step 2] Normalize the model residuals by the standard
deviation of plant output variables.

[Step 3] Add white noise to the model residuals. This
operation is effective to avoid the selection of unim-
portant input variables.

[Step 4] For every model residual ei(t), select explanatory
variables by using the stepwise method, in which ex-
planatory variables are the past input variables uj(t−
k). Then, notate the number of selected variables.

[Step 5] Repeat steps 3 and 4 with changing the variance
of white noise added at step 3.

[Step 6] Find combinations of plant inputs and plant
outputs, at which one or more explanatory variables
are selected even when large white noise is added to
model residuals. The method concludes that signifi-
cant mismatch exists at such combinations, i.e., sub-
models.

It is useful to introduce a measure of significance of
mismatch so as to make the judgment easy. In the present
work, the following ”mismatch score” is introduced.

score =

K∑
k=1

v(k)(n(k) − n(k + 1)) (9)

where K is the number of levels of the variance of white
noise v, n is the number of selected variables, and v(0) = 0.
The variance of white noise v is changed at regular inter-
vals. The score becomes larger when more variables are
selected in spite of large white noise. On the other hand,
the score cannot be large even though many variables are
selected at v(0) = 0.

4. CASE STUDIES

The proposed mismatch detection method is validated
through case studies, where a distillation process and a
continuous-stirred-tank-reactor (CSTR) are controlled by
multivariable MPC.

4.1 Distillation Process

In the first case study, the proposed mismatch detection
method is applied to operation data obtained from a
linearized distillation process model, expressed by

[
xD

xB

]
=

⎡
⎢⎣
12.8e−s

16.7s+1

−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1

−19.4e−3s

14.4s+1

⎤
⎥⎦
[
R
S

]
+

⎡
⎢⎣
3.8e−8.1s

14.9s+1
4.9e−3.4s

13.2s+1

⎤
⎥⎦F

(10)

This model was developed by Wood and Berry (1973) to
investigate control system design for a pilot-scale binary
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Table 4. Basic steady state of pilot-scale distil-
lation process

symbol variable steady-state value

xD distillate composition CV 96.0 wt%
xB bottoms composition CV 0.500 wt%
R reflux flow rate MV 1.95 lb/min
S steam flow rate MV 1.71 lb/min
F feed flow rate DV 2.45 lb/min
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Fig. 2. Control responses in the gain mismatch case

distillation column. Later, this model was used to illustrate
the effects of the MPC design parameters by Seborg et al.
(2004). In this case study, (10) is used as a process.

The basic steady-state operating condition is summarized
in Table 4. This distillation process is controlled by using
MPC. For each simulation, the sampling and control pe-
riod is 1 min, the prediction horizon is 10 min, and the
control horizon is 5 min. In addition, the disturbance F
and the set-points are changed step-wise at times sepa-
rately, and measurement noise is added to all measured
variables.

The effectiveness of the proposed method is tested in two
types of mismatch: gain mismatch, and time constant and
time delay mismatch. In the case of gain mismatch, it
is assumed that the model from R to xD has -50% of
gain mismatch, the model from F to xB has -20% of
gain mismatch, and all other models have ±5% of gain
mismatch. That is, the model is expressed as:

[
xD

xB

]
=

⎡
⎢⎣

6.4e−s

16.7s+1

−18.7e−3s

21.0s+1
6.5e−7s

10.9s+1

−19.3e−3s

14.4s+1

⎤
⎥⎦
[
R
S

]
+

⎡
⎢⎣

3.9e−8.1s

14.9s+1
3.92e−3.4s

13.2s+1

⎤
⎥⎦F

(11)

The control responses are shown in Fig. 2. The operation
data of 700 sampling points are used for mismatch detec-
tion in the gain mismatch case. In this control result, R
is wildly oscillating because the sub-model from R to xD

has -50% of gain mismatch.

The orders of impulse response models are set at 40; input
variables measured at 1–40 minutes before are used for
mismatch detection. The significance levels for adding and
removing input variables in the stepwise method are set
at 0.5% and 1%, respectively. The results of mismatch

Table 5. Results of mismatch detection for
MPC of distillation process: the gain mismatch

case

output xD xB

input R S F R S F

variance the number of selected variables

0 26 4 2 7 6 23
0.01 15 0 1 0 0 3
0.05 10 0 0 0 0 1
0.50 4 0 0 0 0 1
0.90 3 0 0 0 0 1
score 5.15 0.02 0.03 0.00 0.00 0.93

method the notm of coefficients

MRA 0.22 0.06 0.31 0.04 0.02 0.25
PLS 0.19 0.03 0.03 0.03 0.02 0.18
CA 5.45 2.28 3.87 3.28 1.99 6.18

impulse 1.10 0.03 0.02 0.02 0.02 0.19

detection are shown in Table 5. To detect model-plant
mismatch, the variance of white noise is changed from
zero to one at intervals of 0.01; only a part of the results
are summarized in this table. Two sub-models that had
significant mismatch, i.e., R → xD and F → xB , were
correctly detected by the proposed method. In fact, the
numbers of selected variables for R → xD and F → xB

are significantly larger than the others regardless of the
variance of white noise. In addition, scores for R → xD

and F → xB are significantly larger than the others.

To demonstrate the superiority of the proposed method,
the results of other methods are also summarized in
Table 5. MRA, PLS, and CA means multiple regression
analysis, partial least squares, and correlation analysis,
respectively. In MRA and PLS, the norms of regression
coefficients derived by MRA and PLS are shown. The
regression coefficients are estimates of impulse response
coefficients from input variables to model residuals. In
CA, correlation coefficients are used instead of regression
coefficients to calculate the norm. The norms are defined
by

norm≡
√√√√ S∑

k=1

c2ij,k (12)

where c denotes regression coefficients in MRA and PLS
and correlation coefficients in CA. In these methods, the
mismatch is judged to be significant when the norm is
large.

The result of MRA is not good; the norm for F → xD

is larger than the norms for R → xD and F → xB . The
situation can be improved by applying statistical methods
that can cope with the collinearity problem. In fact, the
results of PLS and CA are better than that of MRA.
These two methods seem to successfully detect significant
mismatches. However, the norms of PLS and CA are not
identical or even proportional to the norms of true impulse
response coefficients from inputs to residuals, which are
labeled as ”impulse” in the table. Therefore, the results
of PLS and CA will be misleading and not desirable in
practice. This point is investigated in more detail below.

In the case of time constant and time delay mismatch, it
is assumed that the model from R to xD has large time
delay mismatch, the model from S to xD has large time
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Table 6. Results of mismatch detection for
MPC of distillation process: the time constant

and time delay mismatch case

output xD xB

input R S F R S F

variance the number of selected variables

0 4 16 1 14 9 11
0.025 4 9 1 0 0 0
0.50 2 2 0 0 0 0
0.80 1 2 0 0 0 0
2.50 1 1 0 0 0 0
score 3.48 4.18 0.18 0.00 0.00 0.00

method the norm of coefficients

MRA 0.85 0.34 0.61 0.19 0.07 0.33
PLS 0.69 0.37 0.26 0.10 0.03 0.14
CA 2.53 2.55 2.72 2.39 1.01 6.10

impulse 1.05 1.07 0.02 0.02 0.02 0.02

constant mismatch, and all other models have ±5% of gain
mismatch. That is, the model is expressed as:

[
xD

xB

]
=

⎡
⎢⎣
12.8e−3s

16.7s+1

−18.7e−3s

40.0s+1
6.5e−7s

10.9s+1

−19.3e−3s

14.4s+1

⎤
⎥⎦
[
R
S

]
+

⎡
⎢⎣
3.9e−8.1s

14.9s+1
5.0e−3.4s

13.2s+1

⎤
⎥⎦F

(13)

Similarly to the gain mismatch case, the operation data
of 700 sampling points are used for mismatch detection,
the order of impulse response model is set at 40. The
results of mismatch detection are shown in Table 6. To
detect model-plant mismatch, the variance of white noise
is changed from zero to 2.5 at intervals of 0.025. Two sub-
models that had significant mismatch, i.e., R → xD and
S → xD, were correctly detected by the proposed method.
Moreover, in this case, it has been clarified that adding
white noise with various variance is effective to correctly
detect significant mismatch. In fact, when the variance
of white noise is zero, i.e., no white noise is added, the
numbers of selected variables for R → xB, S → xB , and
F → xB are significantly larger than that for R → xD.
Thus, the significant mismatch cannot be detected without
adding white noise. In the proposed method, however, the
significance of input variables related to minor mismatch
decreases as the variance of white noise increases, and
only truly important input variables can be selected. As a
result, the proposed method can correctly detect the sub-
models that have significant mismatch. A desirable feature
of the proposed method is that only routine closed-loop
operation data are necessary. The white noise is added to
the model residual off-line; this operation does not affect
plant operation at all.

The results of other methods are also summarized in
Table 6. The results of CA as well as MRA are not
good; they cannot detect significant mismatch correctly.
Although PLS functions better than MRA and CA, it
is difficult to conclude the sub-model of S → xD has
significant mismatch. As a matter of course, the norms of
MRA, PLS, and CA are different from the norms of true
impulse response coefficients. This case study clarifies that
the proposed method is superior to the other methods.

In this case study, the maximum variance of white noise
was determined beforehand and the interval was set at
its 1/100. In real applications, the interval can be pre-

Table 8. Important variables of nonisothermal
CSTR process

V holdup CV
Tout product temperature CV
Fout product flow rate MV
Fcin coolant flow rate MV
Fin feed flow rate DV
Tin feed temperature DV
Tcin coolant temperature DV
CAin feed concentration -

Table 9. Linear model of CSTR for MPC

V Tout

Fout −1

s

−216.2s2 − 6162s− 5946

s4 + 31.81s3 + 104.9s2 + 710.2s

Fcin 0
−344.8s− 3478

s3 + 31.81s2 + 104.9s+ 710.2

Fin
1

s

−50.69s3 − 275.6s2 + 46130s + 5946

s4 + 31.81s3 + 104.9s2 + 710.2s

Tin 0
s2 + 37.59s+ 277.4

s3 + 31.81s2 + 104.9s+ 710.2

Tcin 0
75s+ 756.5

s3 + 31.81s2 + 104.9s+ 710.2

determined, e.g. 0.01, and the variance of white noise
can be increased till no input variables are selected in
all sub-models. In the proposed method, model residuals
are normalized by the standard deviation of plant output
variables. Thus, the variance of white noise will not become
excessively large. If the variance need to be excessively
large, it is obvious that the corresponding sub-model has
significant mismatch.

4.2 Reaction Process

In the second case study, the proposed mismatch detection
method is applied to operation data obtained from a
nonisothermal CSTR process.

The important variables are summarized in Table 8. The
nonlinear, nonisothermal CSTR process is controlled by
using MPC. The MPC controller has two controlled vari-
ables, two manipulated variables, and three disturbance
variables. The feed concentration is an unmeasured distur-
bance. The linearized process model is shown in Table 9.
For each simulation, the sampling and control period is
0.2 min, the prediction horizon is 4 min, and the control
horizon is 1 min. Weight coefficients in the cost func-
tion are Fout : Fcin = 1 : 1 for manipulated variables
and V : Tout = 13 : 1 for controlled variables. There
is no constraints on the manipulated variables and the
controlled variables. In addition, the disturbances and the
set-points are changed independently, and measurement
noise is added to all measured variables.

In this case study, the transfer function model from Fcin

to Tout is modified intentionally so that it has significant
mismatch; its steady-state gain is 1.2 times as large as the
identified value shown in Table 9. It is obvious that all sub-
models have mismatch because the process is nonlinear
and linear MPC is adopted. The control responses are
shown in Fig. 3. This operation data is used for mismatch
detection.

The results of mismatch detection are shown in Table 7.
The sub-model Fcin → Tout was correctly detected by the
proposed method. Although it is not clear whether the
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Table 7. Results of mismatch detection for MPC of CSTR process

output V Tout

input Fout Fcin Fin Tin Tcin Fout Fcin Fin Tin Tcin

variance the number of selected variables

0 7 2 0 2 3 9 2 0 1 3
0.8 1 1 0 1 2 1 2 0 0 1
9.2 0 0 0 0 1 0 1 0 0 1
12.8 0 0 0 0 0 0 1 0 0 0
20.0 0 0 0 0 0 0 1 0 0 0
score 0.8 4.0 0.0 3.6 14.0 2.0 23.2 0.0 0.0 11.6

method the norm of coefficients

MRA 0.27 0.60 0.07 10.66 77.82 0.26 1.29 0.05 9.21 65.60
PLS 0.27 0.51 0.05 0.09 1.00 0.25 0.94 0.04 0.08 0.70
CA 0.26 1.91 0.12 1.60 1.09 0.24 3.23 0.11 0.05 2.26
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Fig. 3. Control response of CSTR process

sub-model Tcin → Tout has significant mismatch or not,
the sub-model seems to be detected due to the strong
correlation between Fcin and Tcin; the maximum cross-
correlation coefficient is 0.97, while those of the other
combinations are less than 0.11.

In addition, in this case, it has been clarified that adding
white noise with various variance is effective to correctly
detect significant mismatch. In fact, when the variance of
white noise is zero, i.e., no white noise is added, the number
of selected variables for Fout → Tout is larger than that
for Fcin → Tout. In the proposed method, however, the
significance of input variables related to minor mismatch
decreases as the variance of white noise increases.

The results of other methods are also summarized in
Table 7. The results of MRA and PLS are not good.
They cannot detect significant mismatch correctly; both
MRA and PLS identify the sub-model Tcin → V instead
of Fcin → Tout. On the other hand, CA functions better
than MRA and PLS in this case study. The largest norm is
related to the sub-model Fcin → Tout. These case studies
results have clearly shown the superiority of the proposed
mismatch detection method over the other methods.

5. CONCLUSIONS

The maintenance of model predictive control (MPC) sys-
tems is one of the major problems identified by industrial
process control engineers. In the present work, a novel
method was proposed for significant model-plant mis-
match detection from routine closed-loop operation data.
Instead of building process models, important explanatory
variables, i.e., past inputs which contribute greatly to

each model residual, are selected by using the stepwise
method. In addition, white noise is artificially added to
model residuals before the stepwise method is executed.
This operation is very effective for the improvement of the
mismatch detection performance. If a large number of past
inputs are selected and consequently the mismatch score
is large, it is concluded that the corresponding sub-model
has significant model-plant mismatch. The effectiveness
of the proposed method was demonstrated through case
studies of the distillation process and the CSTR process.
The results have clearly shown that not only can the
proposed method detect sub-models that have significant
mismatch but it is superior to the other methods based on
multivariate analysis.

The proposed method is now being applied to several
industrial MPC systems to check its practicability; encour-
aging results have been obtained so far.
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