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Abstract: Despite developments in sensor technology, monitoring a biological process using
regular sensor measurements is often difficult. Development of Bayesian state observers,
such as extended Kalman filter(EKF), is an attractive alternative for soft-sensing of such
complex systems. The performance of EKF is dependent on the accurate characterisation
of the uncertainties in the state dynamics and in the measurements. In this work, an
extended expectation maximisation (EM) algorithm is developed for estimation of the state and
measurement noise covariances for the EKF using irregularly sampled multi-rate measurements.
The efficacy of the proposed approach is demonstrated on a benchmark continuous fermenter
system. The simulation results reveal that the proposed approach generates fairly accurate
estimates of the noise covariances.
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1. INTRODUCTION

The stringent quality control requirements on various
products of fermentation processes make monitoring and
control a crucial activity. Monitoring is a critical activity
from an economic point of view. It facilitates in detection
of abnormal behaviour of the process and helps in pre-
venting production of off-quality products. Despite devel-
opments in sensor technology, monitoring a biological pro-
cess using regular sensor measurements is often difficult.
Concentration sensors are expensive and it is difficult to
measure the components that are dilute in the bio-reactor.
In some situations, these measurements are available after
considerable delay and/or at irregular intervals through
lab assays. Only a few of the crucial measurements such
as concentration of dissolved oxygen and pH are available
online and at regular intervals (Dochain, 2003). However,
from the viewpoint of monitoring and control it is im-
portant to generate estimates of unmeasured / irregularly
measured variables on-line at the fast rate. Dynamic model
based estimation of unmeasured states or state observer
is an attractive alternative for developing soft sensors for
such complex systems.

Unstructured mechanistic models appear to be ideal can-
didates for the development of state estimators for a bio-
reactor. These models are valid over a wide range of oper-
ating conditions and also provide a better insight into the
evolution of the plant. State observers can be designed by
using either the deterministic approach (Dochain, 2003)
or the Bayesian approach (Rawlings and Bakshi, 2006).
Deterministic approaches of observer design often exploit
special structures of the nonlinearity and are, therefore,
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applicable to only a certain class of nonlinear systems. On
the other hand, the Bayesian approaches do not depend on
the structure of the systems, and, hence, can be applied to
a wider class of nonlinear systems. Moreover, it is easier
to adapt the Bayesian approaches to deal with irregularly
sampled multi-rate measurement scenario.

A critical aspect in the development of Bayesian state
estimators is to have correct characterisation of the un-
measured disturbances. An incorrect choice of noise char-
acteristics leads to deterioration in the performance of
the state estimator and in the worst case, the estimator
may diverge. A commonly used assumption in the devel-
opment of Bayesian state estimation is that the state and
measurement disturbances are additive, zero mean and
Gaussian. Thus, the problem of noise characterisation is
reduced to estimation of the covariances of these multi-
variate Gaussian distributions.

The methods for estimating the state and measurement
noise covariances for the Kalman filter (KF) can be classi-
fied into four categories– covariance matching, correlation
techniques, Bayesian and maximum likelihood methods.
Covariance matching techniques compute the covariances
from the residuals of the system. Correlation techniques
estimate the covariance matrices by making use of the cor-
relation between the system output or innovations. Mehra
(1970) developed a recursive linear least squares algorithm,
to estimate the state and measurement noise covariances,
Q and R, respectively. This approach is restrictive as the
number of unknowns in Q should be less than n × p,
where, n is the number of states and p is the number of
outputs. Odelson et al. (2006) present an autocovariance
least-squares method to estimate Q and R for the KF. The
algorithm defines an autocovariance function between the
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outputs and develops a linear least squares formulation to
estimate Q and R.

Bayesian methods and maximum likelihood methods usu-
ally use traditional gradient-based numerical optimisation
schemes to estimate the covariance matrices. The require-
ment to compute Jacobian / Hessian at each iteration in
these methods can prove to be computationally intensive
task as the objective function (like the MLE function)
is highly nonlinear with respect to the parameters to be
identified. The expectation-maximisation (EM) algorithm,
developed by Dempster et al. (1977), on the other hand,
is a derivative free iterative method for computation of
maximum likelihood estimates of the model parameters.
In particular, this method can be applied even when mea-
surements are available at irregular intervals. Shumway
and Stoffer (2000) and Raghavan et al. (2006) provide a
framework to identify state space models along with the
state and measurement noise covariances for linear systems
using the EM algorithm and irregularly sampled data.

Most of the work reported in literature is for estimating
densities of noise in linear systems using the KF. However,
since most biochemical processes are nonlinear, it is essen-
tial to use nonlinear state estimators for state estimation.
There is very little work reported in the literature on
the density estimation for nonlinear observers. In prac-
tice, nonlinear filters are tuned using heuristic approaches
and by imposing diagonal parametrization of Q and R.
Recently, Goodwin and Agüero (2005) have presented a
modification of the EM algorithm for identification of
nonlinear systems.

In this work it is proposed to use the extended Kalman
filter (EKF), which is arguably the most widely used
Bayesian estimator for nonlinear systems. EKF can be
viewed as an approximate and computationally tractable
sub-optimal solution to the sequential Bayesian estimation
problem under the simplifying assumption that estimation
error densities can be approximated as Gaussian. Valappil
and Georgakis (2000) present a systematic method to
estimate Q as arising from uncertainty in model param-
eters. Their approach assumes a structural uncertainty
in the model that can be captured as variations in the
parameters. Q is modelled as a function of the covariance
of model parameter errors. The estimate of Q can either
be obtained through successive linearisation of the system
with respect to the model parameters or through Monte
Carlo simulations of the parameters. It is assumed that
the model parameter error covariance is known a priori
and is constant. While this approach simplifies the tuning
process, in practice the parameter error covariance matrix
may not be known.

The EM algorithm has been successfully used for parame-
ter identification of linear systems. It is possible to use the
EM approach to estimate Q and R matrices associated
with an EKF formulation, if some modifications are made
in the expectation step of the EM algorithm. In this work,
an extended EM algorithm is developed for estimation of
Q and R for the EKF, when some of the data is irregularly
sampled. The efficacy of the proposed approach is demon-
strated by simulating a benchmark continuous fermenter
system.

The organisation of the paper is as follows. In Section 2,
the model and the assumptions involved for state estima-
tion are described. The expressions for extended Kalman
filter and extended Kalman smoother for irregularly sam-
pled data are described in Section 3. The proposed ex-
tended EM-algorithm is described in Section 4. In Sec-
tion 5, the results obtained by applying the extended
EM-algorithm on a benchmark continuous fermenter are
presented.

2. PRELIMINARIES

For continuous fermenters, the general unstructured mech-
anistic model can be written as

ẋ(t) = f(x,u,w, t)

y(t) = h(x, t)
(1)

where, x ∈ R
n denotes the states, u ∈ R

m denotes the
inputs, w ∈ R

l denotes the process noise and y ∈ R
p

denotes the outputs.

For the purpose of developing a discrete state estimator,
this model is discretised under the following assumptions:
(a) the manipulated inputs are piecewise constant and (b)
sampling time is assumed to be small enough so that the
unmeasured disturbances can be treated to be piece-wise
constant functions. Thus, the true dynamics of the process
is assumed to evolve as follows

xk+1 = F (xk,uk) + Γdwk

yk = h (xk) + vk
(2)

where, F (·) is the discrete time equivalent of f(·). The
process noise, wk ∼ N (0, Q) is assumed to be an addi-
tive Gaussian white noise. If the state noise is modelled
as entering the dynamics through some inputs, such as
manipulated inputs, then, Γd = Γu = [∂F

∂u
]u=uk

, else
Γd = In and vk ∼ N (0, R) represents the measurement
noise. It is also assumed that wk and vk are independent,
identically distributed random variables and are mutually
uncorrelated. In this work it is assumed that Γd = In.

3. THE EXTENDED KALMAN FILTER AND
SMOOTHER

The EKF algorithm is made of two step namely, prediction
and measurement update. The nonlinear equations of the
plant model are linearised at every instant for update
of estimation error covariance matrices. For the discrete
time EKF, with initial conditions x̂0 ∼ N (µ0, P0), the
prediction step is given by

x̂k+1|k = F
(
x̂k|k,uk

)

Pk+1|k = ΦkPk|kΦT
k + Q

(3)

where, Φk =
[

∂F
∂x

]
x=x̂k|k

. The measurement update or the

correction step is given by

ek = yk − h
(
x̂k|k−1

)

Kk = Pk|k−1C
T
k

[
CkPk|k−1C

T
k + R

]−1

xk|k = xk|k−1 + Kkek

Pk|k = [I − KkCk] Pk|k−1

(4)

where, Ck =
[

∂h
∂x

]
x=x̂k|k−1

, Kk denotes the Kalman gain

and yk is the measurement.
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The extended Kalman smoother calculates the smoothed
estimates based on the entire set of measurements avail-
able. With initial conditions as x̂N |N and PN |N , the ex-
pressions for the smoother ∀ k = N − 1, N − 2, . . . , 1 are
written as

Jk−1 = Pk−1|k−1Φ
T
k−1

(
Pk|k−1

)−1

x̂k−1|N = x̂k−1|k−1 + Jk−1

(
x̂k|N − x̂k|k−1

)

Pk−1|N = Pk−1|k−1

+ Jk−1

(
Pk|N − Pk|k−1

)
JT

k−1

(5)

The matrices Q and R are the covariances of wk and vk

respectively. The following assumptions about probability
densities are implicit to the EKF algorithm

p (xk|y1:k−1) ≈ N
(
x̂k|k−1, Pk|k−1

)

p (xk|y1:k) ≈ N
(
x̂k|k, Pk|k

) (6)

Similarly, the extended Kalman smoother(EKS) implicitly
assumes

p (xk|y1:N ) ≈ N
(
x̂k|N , Pk,N

)
(7)

3.1 Modified EKF for multi-rate data

The EKF expressions have to be suitably modified to
handle multi-rate data. Let yobs ∈ Rp1 (p1 ≤ p) be the
set of measurements available at the kth instant. Define
a permutation matrix Dk, of dimensions p1 × p, that
takes into consideration only the predictions for yobs. For
example, if out of three measurements, the first and third
are available at the kth instant,

Dk =

[
1 0 0
0 0 1

]

Let Hk = DkCk. The measurement update step in the
EKF given by (4) is modified as follows

ek = yobs − Dkh
(
x̂k|k−1

)

Kk = Pk|k−1H
T
k

[
HkPk|k−1H

T
k + DkRDT

k

]−1

xk|k = xk|k−1 + Kkek

Pk|k = [I − KkHk] Pk|k−1

(8)

If, at a particular sampling instant, none of the measure-
ments are available, the correction step in (8) is not applied
and only the predictions from the EKF are used.

The extended Kalman smoother is used with the predicted
and filtered state estimates and covariances obtained from
the EKF expressions modified for the multi-rate data case.

4. EM-BASED COVARIANCE ESTIMATION

To generate reliable estimates using EKF, it is important
to know parameters (µ0, P0) and the covariances (Q, R)
with a reasonable accuracy. However, in practice, Q is
generally unknown and R may be known partially or fully.
In such a scenario, these parameters can be estimated from
the operating data. In the present work, it is assumed that
the system under consideration is perturbed deliberately
by introducing perturbations in the manipulated inputs in
the control relevant frequency range. Let ZN = {YN , UN}
denote the data collected during this exercise where YN =
{y1, . . . ,yN} and UN = {u1, . . . ,uN} represent the output
and the input data sets, respectively, and N represents
the number of data points. In this work, it is proposed

to use a modified version of the expectation maximisa-
tion algorithm to arrive at estimates of these unknown
parameters using ZN . To begin with, the conventional EM
algorithm is briefly reviewed. The modifications necessary
in the context of EKF are presented next.

4.1 Review of EM Algorithm

Consider the problem of estimating parameters Θ ≡
(µ0, P0, Q, R) from ZN for a linear perturbation state
space model of the form

xk+1 = Akxk + Bkuk + Γdwk

yk = Ckxk + vk
(9)

where the system matrices (Ak, Bk, Γd, Ck) are known a
priori. It has been shown that the innovation sequence (ek)
generated by the Kalman filter developed for this system is
a zero mean Gaussian white noise sequence with covariance

Σk = CkPk|k−1C
T
k + R (10)

Thus, as suggested by Schweppe (1965), the parameter
estimation problem can be formulated as an optimisation
problem that maximises the likelihood function

L(Θ|ZN) =

N∏

k=1

1

2πp/2|Σk|1/2
exp

[
−

eT
k Σ−1

k ek

2

]
(11)

subject to constraint that (P0, Q, R) are symmetric and
positive definite. One possible way to solve this optimisa-
tion problem is Newton type method, which requires com-
putations and gradients and Hessian of the log likelihood
function, [log L(Θ|ZN)], with respect to Θ. The require-
ment to estimate these derivatives makes this approach
computationally complex.

Shumway and Stoffer (2000) have proposed an alternate
derivative free iterative approach, called expectation max-
imisation (EM), to solve this problem. This approach
starts with the objective of maximising the joint proba-
bility density function of the complete data (XN , ZN ) set,
which can be represented as follows

fΘ (XN , ZN ) =
1

2π|P0|1/2
exp

[
−

(x0 − µ0)
T

P−1
0 (x0 − µ0)

2

]

×
N∏

k=1

1

(2π)n/2|Q|1/2
exp

[
−

wT
k Q−1wk

2

]

×
N∏

k=1

1

(2π)p/2|R|1/2
exp

[
−

vT
k R−1vk

2

]

(12)

where, XN = {x0,x1, . . . ,xN} represents the true states.
In practice, however, the set XN is not available. The
problem of maximising fΘ(XN , ZN ) with respect to Θ is
solved iteratively in the following step

• Expectation (E-step): This step involves finding the
expected value of the complete data log likelihood
function, given the observed data set, ZN and the
previously estimated parameter vector, Θ(k−1). This
conditional expectation is obtained using estimates
generated from the Kalman smoother.

• Maximisation (M-step): This step involves maximis-

ing the log likelihood function, fΘ

[
X̂N (Θ(k−1), ZN), ZN

]
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with respect to the parameter vector Θ, to generate
Θ(k) . The parameters estimated in each iteration
depend on the observed data and the smoothed state
estimates and covariances obtained in the E-step.

The iterations are terminated when the condition that[
log L(Θ(k)|ZN ) − log L(Θ(k−1)|ZN

]
≤ ε is satisfied, where

ε is the specified tolerance and L(Θ|ZN) is defined by (11).
The details of the derivation and proof for convergence
can be found in the work by Raghavan et al. (2006). The
algorithm guarantees increase in the likelihood function
with successive EM steps and is guaranteed to converge to
a local or global optimum depending on the shape of the
objective function (Shumway and Stoffer, 2000).

4.2 Extended EM Algorithm

If it is desired to estimate (µ0, P0, Q, R) in the context
of EKF, then it becomes necessary to modify the conven-
tional EM algorithm. To begin with, it is assumed that
the innovation sequence

[
ek = yk − h

(
x̂k|k−1

)]
generated

by the Kalman filter is a Gaussian white noise with den-
sity function (0, Σk). For linear systems, it is possible to
obtain closed form expressions for log fΘ (XN , ZN) in the
E-step. However, for nonlinear systems, it is not possible
to obtain such closed form expressions. This difficulty
arises from calculating the conditional expectations of the
terms involving wk and vk. In the present work, it is pro-
posed to use approximate expressions for wk and vk using
Taylor series approximation in the neighbourhood of the
smoothed estimates. Thus w(k) and v(k) are estimated as
follows
wk = xk − F (xk−1,uk−1)

≈ xk −

[
F (x̂k−1|N ,uk−1) +

∂F

∂x
|x=x̂k−1|N

(xk−1 − x̂k−1|N )

]

(13)

vk = yk − h(xk)

≈ yk −

[
h(x̂k|N ) +

∂h

∂x
|x=x̂k|N

(xk − x̂k|N )

]
(14)

With these modifications, the steps in the extended EM
algorithm can be summarised as follows: At the jth it-
eration (j = 1, 2, . . .), taking the expectation of l(Θ) =
log fΘ (XN , ZN) conditioned to ZN and Θ(j−1),

E
[
l
(
Θ|ZN , Θ(j−1)

)]
= log |P0| + N log |Q| + N log |R|

+ tr
[
P−1

0

(
P0|N + (x0|N − µ0)(x0|N − µ0)

T
)]

+ tr
[
Q−1

(
β1 − β2 − βT

2 + β3

)]

+ tr
[
R−1

(
β4 − β5 − βT

5 + β6

)]

(15)

where β1, β2, β3, β4, β5 and β6 are functions of the observed
data and the smoothed state and covariance estimates

β1 =

N∑

k=1

[
Pk|N + x̂k|N x̂T

k|N

]

β2 =

N∑

k=1

[
Pk,k−1|NΦT

k−1 + x̂k|NFT (x̂k−1|N ,uk−1)
]

β3 =
N∑

k=1

F (x̂k−1|N ,uk−1)F
T (x̂k−1|N ,uk−1)

+ Φk−1|NPk−1|NΦT
k−1|N

(16)

β4 =

N∑

k=1

[
yky

T
k

]
β5 =

N∑

k=1

[
ykhT (x̂k|N )

]

β6 =

N∑

k=1

Ck

[
Pk|N + x̂k|N x̂T

k|N

]
CT

k + h(x̂k|N )hT (x̂k|N )

(17)

The term Pk,k−1|N is called the lag-one covariance
smoother and is given by

PN,N−1|N = {I − KNCN}ΦN−1PN−1|N−1

∀k = N

Pk,k−1|N = Pk|kJT
k−1

+ Jk

{
Pk+1,k|N − ΦkPk|k

}
JT

k−1

∀ k = (N − 1, N − 2, . . . , 1)

(18)

The expressions for βi , i = 1, 2, 3 are obtained from the
expression for wk in (13) and those for βj , j = 4, 5, 6 from
the expression for vk in (14).

Minimising E
[
l
(
Θ|ZN , Θ(j−1)

)]
with respect to the pa-

rameters, in this case Q and R, at every iteration is called
the maximisation step. Since the mean and covariance of
the initial state cannot be identified simultaneously, they
are conventionally fixed as follows (Shumway and Stoffer,
2000)

µ0 = x̂0|N P0 = P0|N (19)

Taking the partial derivative of E
[
l
(
Θ|ZN , Θ(j−1)

)]
with

respect to Q and R, and setting it to zero yields the
following relation

Q =
1

N

(
β1 − β2 − βT

2 + β3

)
(20)

R =
1

N

(
β4 − β5 − βT

5 + β6

)
(21)

4.3 Extended EM algorithm for multi-rate data

The EM-algorithm was essentially developed for efficient
handling multi-rate data. Let N0 be the instances when
none of the measurements are available, N1 the instances
when atleast one measurement is available and Na = N −
(N0 + N1) instances when all measurements are available.
In the M-step of the extended EM algorithm, the smoothed
estimates of the states and covariances obtained from the
modified EKF and EKS are used. The expressions for
E

(
vkv

T
k |ZN

)
change as follows

N∑

k=1

E
(
vkv

T
k |ZN

)
=

N∑

k=1

E
[
(yk − h(xk))(yk − h(xk))T |ZN

]

=
∑

Na

[
(yk − h(x̂k|N ))(yk − h(x̂k|N ))T + CkPk|NCT

k

]

+
∑

N0

R(j−1) +
∑

N1

R1

(22)

where, R(j−1) refers to the measurement noise covari-
ance matrix obtained in the previous iteration (Raghavan
et al., 2006). R1 is a matrix such that R1(i, i) = (yi,k −
hi(x̂k|N ))(yi,k −hi(x̂k|N ))T +Ci,kPk|NCT

i,k, if the ith value

of the measurement vector is available and R1(i, i) =
R(j−1)(i, i) if it is not available.
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4.4 Implementing the extended EM-algorithm

The extended EM-algorithm can be implemented as fol-
lows

(1) Initialise the algorithm by selecting the values of
Θ(0) = [µ0, Q0, R0] and fix P0. Ensure that P0, Q0

and R0 are positive definite.
(2) Compute the incomplete-data likelihood function

−2 logL
(
Θ(j−1)|ZN

)
from (11).

(3) Perform the E-step. Use (3)-(4), (5) and (18) to ob-
tain the smoothed values of x̂k|N , Pk|N and Pk,k−1|N

for k = 1, 2, . . . , N , using parameters Θ(j−1).
(4) Perform the M-step, using (20) and (21), to obtain

the new estimates of Θ(j) = [µ0, P0, Q, R].
(5) For multirate data, use appropriate expressions of the

extended EM-algorithm.
(6) Repeat steps 2-4 till the objective function converges.

5. APPLICATION: CONTINUOUS FERMENTER

Production of ethanol by fermentation of glucose using
saccharomyces cerevisiae yeast is a widely used fermenta-
tion process. A simplified version for such a continuous
fermenter system can be described by the generalised
model proposed by Henson and Seborg (1992). The model
equations are described as follows

Ẋ = −DX + µX

Ṡ = D(Sf − S) −
1

YX|S
µX

Ṗ = −DP + (αµ + β)X

(23)

where, X is the yeast(cell-mass) concentration, S is
the glucose(substrate) concentration and P is the alco-
hol(product) concentration. The dilution rate, D, and feed
substrate concentration, Sf , are available as manipulated
inputs. µ is the specific growth rate, YX|S is the cell-
biomass yield, α and β are yield parameters for the prod-
uct. The specific growth rate model is assumed to exhibit
both substrate and product inhibition:

µ =
µm

(
1 − P

Pm

)
S

Km + S + S2

Ki

(24)

where, µm is the maximum specific growth rate, Pm is the
product saturation constant, Km is the substrate satura-
tion constant and Ki is the substrate inhibition constant.
The substrate concentration, S and product concentration
P are assumed to be available as measurements. The
nominal parameters and operating conditions are given in
Henson and Seborg (1992).

To simulate the process dynamics, the sampling time (T )
was chosen as 0.25 h. Input-output data was generated
by subjecting the manipulated inputs to a pseudo-random
binary signal(PRBS). The amplitude of perturbation in D
is 0.015 h−1 and in Sf it is 2 g/l. White noise was added
to the states and measurements to simulate the process
and measurement noise respectively. The true values of
the noise covariance matrices are shown in Table 1. It was
assumed that the measurements of product concentration,
P , are available at every sampling instant, while the
measurements of substrate concentration, S, are available
at irregular sampling intervals, which are integer multiples

of T . The maximum delay between any two successive
samples of S is three. The case when the measurements
of the substrate (glucose) concentration is available at
every sampling instant is also investigated to serve as a
benchmark.

The initial guess of the parameters used to start the EM
algorithm are reported in Table 1. It may be noted that
the initial estimates of Q are significantly different from
the true values. The estimated optimum values of Q and
R matrices, generated using the proposed extended EM
algorithm on multi-rate and single rate measurements are
compared in Table 2. The estimates of the initial state
and its covariance are reported in Table 3. Fig. 1 reports
the change in log likelihood function as a function of the
iteration count in the E-step. This figure also plots the
value of log likelihood function obtained when the true
values of Θ are used in EKF formulations in each case. It
may be noted that the estimates [− log L(Θ|ZN)] gener-
ated by EM monotonically converge to [− logL(Θ)]true for
the regularly sampled fast rate data. The performance of
EM deteriorates for the multi-rate data case. A possible
remedy to this problem is to increase data length. It may
be noted that the measurement noise covariance, R, is
estimated with fair accuracy in both the cases. This can
be attributed to the fact that the measurements are linear
function of states and the measurement noise is additive.
The estimates of the state noise covariance, Q, are within
an acceptable range. However, the error in the estimates
is relatively higher. The observed discrepancy can be at-
tributed to errors in approximating the estimation error
densities through local linearisation. The performance of
the EKF was also evaluated on a separate validation data
set, using the sum of squared values of the estimation
errors(SSE) as a metric for comparison. The SSE values
of the single-rate and multi-rate EKF using the estimated
Q and R, were compared with the corresponding values
obtained using the true parameters of the EKF. These
values are shown in Table 4. For the multi-rate case, a
comparison of the estimation errors in X and S, for the
estimates obtained using the initial guess of parameters,
Θ = (x̂0, P0, Q, R), and the estimated values of Θ, are
shown in Fig. 2. The SSE values and the graphical compar-
ison presented in Fig. 2 indicate that the performance of
the EKF implemented with estimated parameters, is close
to that of the EKF implemented using true parameters.
When the estimated optimum values of Θ are used in the
EKF, the state estimation errors are significantly smaller,
compared to the case when Θ is set equal to the initial
guess. The improvements obtained using the estimated
optimum values are more pronounced in the case of the
unmeasured state, i.e. biomass concentration (X). A slight
deterioration that is observed in the multi-rate case, can
be attributed to the absence of regular measurements.

6. CONCLUSIONS

In this work, an extended EM-algorithm has been pre-
sented for the estimation of the state and measurement
noise covariances for state estimation of nonlinear multi-
rate sampled data systems using the EKF. The algorithm
gives reasonably accurate estimates of the covariances,
even in the case of multi-rate data. Simulation studies
revealed that the algorithm converges even for signifi-
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Fig. 1. Log-likelihood function vs. iteration. (a): multi-rate
data. (b): single rate data

0 5 10 15 20 25

−0.5

0

0.5

ε
X

0 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

time (h)

ε
S

estimation error using initial guess of Q & R

estimation error using estimated values of Q & R

sampling instants at which measurement
of S is available

Fig. 2. Comparison of estimation errors obtained using the
initial guess and the estimated parameters

cantly large errors in the initial estimates of the state
noise covariance. The EKF approximates the transition
densities, p(xk|y1:k−1), to be Gaussian and obtains them

Table 1. True and Initial guess of parameters

True Initial Guess

Q 10−3
×

[
11.1 0 0

0 0.7 0

0 0 139.2

] [
1.5 0 0

0 0.2 0

0 0 15

]

R 10−3
×

[
5.6 0

0 15.6

] [
0.01 0

0 0.03

]

x0

[
7.5306

2.5723

26.6109

] [
7.7417

2.6444

27.3570

]

P0 10−3
×

[
0.495 0 0

0 0.577 0

0 0 0.386

] [
0.5 0 0

0 0.5 0

0 0 0.5

]

Table 2. Estimated values of Q and R

Single-rate Multi-rate

Q 10−3
×

[
11.2 −0.4 0.9

−0.4 0.6 −1.4

0.9 −1.4 151.0

]
10−3

×

[
10.7 −0.2 0.6

−0.2 0.7 −1.2

0.6 −1.2 150.6

]

R 10−3
×

[
5.6 0

0 15.2

]
10−3

×

[
5.5 0

0 15.4

]

Table 3. Estimated initial conditions

Case x0 − x̂0 P̂0

Single Rate

[
0.43800

0.00380

−0.0142

]
10−3

×

[
0.1281 0.0128 0.0005

0.0128 0.0065 −0.0008

0.0005 −0.0008 0.0344

]

Multi rate

[
0.44030

−0.0100

−0.0165

]
10−3

×

[
0.1663 0.0145 0.0005

0.0145 0.0080 −0.0009

0.0005 −0.0009 0.0432

]

Table 4. SSE values of the estimation errors

Parameters εX εS εP

Multi Rate Case

Initial Guess 37.3598 3.2571 7.3037

True 30.0700 1.7953 6.4479

Estimated 31.3182 1.7631 6.4546

Single Rate Case

Initial Guess 47.6591 2.5509 7.3036

True 28.6048 1.2641 6.4485

Estimated 29.9715 1.2427 6.4593

using linearised system matrices. It may be possible to
obtain improved estimates of the noise covariances if better
approximations are obtained for the transition densities.
This direction of research is currently under investigation.
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