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Abstract: The current issues concerning soft-sensors are how to cope with changes in process
characteristics and how to cope with parallelized, slightly different, multiple processes. To make
soft-sensors adaptive and flexible, the development of practical design techniques, instead of
impracticable ideas, is crucial; this is the motivation of the present research. In practice, it is
difficult to successfully apply a single soft-sensor to parallelized production devices due to their
individual difference. Since the individual difference is expressed as difference of the correlation
among variables, it is useful to classify samples into multiple clusters according to the correlation
in order to adopt a multi-model approach. In the present work, a new correlation-based clustering
method, referred to as NC-spectral clustering, is proposed by integrating the nearest correlation
(NC) method and spectral clustering. The NC method can detect samples that are similar to the
query from the viewpoint of the correlation. In the proposed method, the NC method is used
for constructing the weighted graph that expresses the correlation-based similarities between
samples and the constructed graph is partitioned by using spectral clustering. In addition, a
new soft-sensor design method is proposed on the basis of the proposed NC-spectral clustering.
The superiority of the proposed method over conventional methods is demonstrated through a
numerical example and a case study of parallelized batch processes.

Keywords: Software sensing, Spectral clustering, Graph theory, Pattern recognition,
Classification, Estimation, Principal component analysis, Partial least squares

1. INTRODUCTION

Soft-sensors or virtual sensors have been widely used for
estimating product quality or other key variables in various
industries. However, there is a gap between academic re-
search and industrial practice. For example, artificial neu-
ral network (ANN) has been actively investigated in the
literature even after the year 2000 (Kano and Nakagawa
(2008)), but the number of its industrial applications is
far fewer than that of linear regression (Kano and Ogawa,
2009). Moreover, ANN has lost popularity and has been
replaced by linear regression at least in the Japanese
chemical and petroleum refining industries. Among linear
regression, multiple regression analysis is the most popular
and partial least squares (PLS) is the second. Application
of PLS to distillation processes has long history (Mejdell
and Skogestad (1991) and Kano et al. (2000)), and more
recently PLS is integrated with another method to solve
practical problems (Kamohara et al. (2004) and Kaneko
et al. (2009)). In addition, various extension has been
reported in the literature. For example, Amirthalingam
and Lee (1999) and Kano et al. (2008) have proposed to
apply subspace identification to soft-sensor design.

Even if an accurate soft-sensor is developed successfully, its
estimation performance deteriorates as process character-
istics change. In chemical processes, process characteristics
are changed by catalyst deactivation, scale adhesion and
so on. In semiconductor manufacturing processes, periodic
cleaning of equipment changes the process characteris-

tics dramatically. Therefore, maintenance of soft-sensors is
very important to keep their estimation performance. On
the basis of questionnaire survey results, Ogawa and Kano
(2009) conclude that soft-sensors should be updated as
process characteristics change, and also manual, repeated
construction of them should be avoided due to its heavy
workload.

To cope with changes in process characteristics and to up-
date statistical models automatically, recursive PLS (Qin
(1998)) and Just-In-Time (JIT) modeling (Bontempi et al.
(1999) and Cheng and Chiu (2004)) have been proposed.
Recursive PLS updates a PLS model recursively, and JIT
modeling builds a local model from neighbor samples
around the query only when an estimate is requested.
Shigemori et al. (2009) reported a successful application
of locally weighted regression, which is a kind of JIT
modeling, in the steel industry. Although these methods
can adapt models to new operating conditions, they can-
not always achieve high estimation performance. Recently,
Fujiwara et al. (2009a) has proposed a new JIT modeling
method, referred to as Correlation-based JIT (CoJIT)
modeling. Since difference of process characteristics is ex-
pressed as difference of the correlation among variables,
CoJIT modeling builds a local model from samples whose
correlation can properly describe the query. An industrial
application shows the usefulness of the CoJIT modeling.

In addition, the individual difference of production devices
should be taken into account. In semiconductor processes,
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for example, tens of parallelized production devices are
used, and they have different characteristics even if their
catalog specifications are the same. In such a case, a soft-
sensor developed for one particular device is not always
applicable to another device, and it is very laborious
to construct soft-sensors for each device. Therefore, a
practical soft-sensor design method that can cope with
such individual difference should be developed.

When there are some devices whose characteristics are
similar to each other, a common soft-sensor may be appli-
cable to them. That is, to construct soft-sensors that can
cope with the individual difference of production devices,
it is useful to classify operation data of parallelized devices
into fewer classes according to their characteristics and to
construct models for each class.

The k-means method has been widely used for sample clas-
sification. Although it can cluster samples on the basis of
the distance, it does not take into account the correlation
among variables. Recently, self-organizing map (SOM) has
been proposed (Kohonen (2001)). SOM is a machine learn-
ing process that imitates the brain learning process, and it
can visualize high dimensional data as a map on the basis
of similarities between samples. However, SOM does not
always give clear boundaries between clusters on the map.
In addition, it requires high computational load, and its
parameter tuning and data preprocessing are complicated.

In the present work, a new clustering method, referred
to as NC-spectral clustering, is proposed. In the proposed
method, the nearest correlation (NC) method, propose by
Fujiwara et al. (2009b), that can detect samples whose cor-
relation is similar to the query and spectral clustering, pro-
posed by Ding et al. (2001) and Ng et al. (2001), that can
partition a weighted graph are integrated. The proposed
NC-spectral clustering can classify samples according to
their correlation among variables without teacher signals.
In addition, a new soft-sensor design method based on the
NC-spectral clustering is developed. The usefulness of the
proposed method is demonstrated through a case study of
parallelized batch processes.

2. SPECTRAL CLUSTERING

Spectral clustering is a clustering method based on the
graph theory. It can partition a weighted graph, whose
weights express affinities between nodes, into subgraphs
through cutting some of their arcs.

Although several spectral clustering algorithms have been
proposed, the Max-Min Cut (Mcut) method proposed by
Ding et al. (2001) is described in this section.

Given a weighted graph G and its adjacency matrix
(affinity matrix) W , G is partitioned into two subgraphs
A and B. The affinity between A and B is defined as

cut(A,B)≡W (A,B) (1)

W (A,B) =
∑

u∈A,v∈B

Wu,v (2)

W (A)≡W (A,A). (3)

where u and v denote nodes of subgraphs A and B,
respectively. The affinity between subgraphs cut(A,B) is
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Fig. 1. An illustrative example of the NC method

the sum of the weights of the arcs between subgraphs.
The Mcut method searches subgraphs A and B that
can minimize cut(A,B) and maximize W (A) and W (B)
simultaneously. The optimization problem of the Mcut
method is as follows:

min J =
cut(A,B)

W (A)
+

cut(A,B)
W (B)

(4)

This minimization problem results in the eigenvalue prob-
lem (Ding et al. (2001)).

In spectral clustering, the definition of an affinity is ar-
bitrary and affects results. Ng et al. (2001) defined the
affinity between samples si and sj by using the Gaussian
kernel:

(W )i,j = exp
(−d2(si, sj)

2σ2

)
(5)

where d(·, ·) is a distance function and σ is a tuning
parameter.

3. NC-SPECTRAL CLUSTERING

In the present work, a new clustering method based
on the correlation among variables is proposed. In the
proposed method, the correlation-based affinities between
samples are calculated by using the nearest correlation
(NC) method to construct a weighted graph, and the
constructed weighted graph is partitioned by spectral
clustering. This method is referred to as NC-spectral
clustering.

3.1 Nearest correlation method

The NC method can detect samples whose correlation is
similar to the query without any teacher signals (Fujiwara
et al. (2009b)).

The concept of the NC method is as follows. Suppose that
the affine subspace P in Fig. 1 (left) shows the correlation
among variables and all the samples on P have the
same correlation. Although x1,x2, · · · ,x5 have the same
correlation, x6 and x7 have a different correlation from
the others. The NC method aims to detect samples whose
correlation is similar to the query x1. In this example,
x2,x3, · · · ,x5 on P should be detected.

At first, the whole space is translated so that the query
becomes the origin as shown in Fig. 1 (right). That is, x1 is
subtracted from all the other samples xi (i = 2, 3, · · · , 7).
Since the translated affine subspace contains the origin, it
becomes the linear subspace V .
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Next, a line connecting each sample and the origin is
drawn. Suppose another sample is found on this line. In
this case, x2-x5 and x3-x4 satisfy such a relationship as
shown in Fig. 1 (right). The correlation coefficients of these
pairs must be 1 or −1. On the other hand, x6 and x7

that are not the elements of V cannot make such pairs.
Therefore, the pairs whose correlation coefficients are ±1
are thought to have the same correlation as x1.

In practice, the threshold of the correlation coefficient
γ (0 < γ ≤ 1) has to be used, since there are no pairs
whose correlation coefficient is strictly ±1. Therefore, the
pairs should be selected when the absolute values of their
correlation coefficients are larger than γ.

Using the above procedure, the pairs whose correlation is
similar to the query can be detected.

3.2 NC-spectral clustering

The correlation-based affinity matrix for spectral cluster-
ing can be constructed by using the NC method. Assume
that samples xn ∈ �M (n = 1, 2, · · · , N) are stored in
the database. The procedure of the proposed NC-spectral
clustering is as follows:

(1) Set the zero matrix S ∈ �N×N , γ (0 < γ ≤ 1), and
L = 1.

(2) Set the zero matrix SL ∈ �N×N .
(3) x′

n = xn − xL for n = 1, 2, · · · , N (n �= L).
(4) Calculate the correlation coefficients Ck,l between all

possible pairs of x′
k and x′

l (k �= l).
(5) Select all the pairs of k̃ and l̃ satisfying |Ck,l| ≥ γ.
(6) (SL)k̃,l̃ = (SL)l̃,k̃ = 1.
(7) S = S + SL.
(8) If L = N , output S as the affinity matrix. Otherwise,

L = L + 1 and return to 2.
(9) Partition the graph expressed by S through spectral

clustering.

In the above procedure, steps 3∼5 correspond to the NC
method.

3.3 Illustrative example

The detailed function of the proposed method is illustrated
through a simple example. An objective data set consists
of nine samples x1,x2, · · · ,x9 ∈ �2; x1,x2, · · · ,x4 and
x5,x6, · · · ,x8 are on the lines l and k, respectively, as
shown in Fig. 2. On the other hand, x9 is an outlier. That
is, the data set consists of three classes {x1,x2, · · · ,x4},
{x5,x6, · · · ,x8} and {x9}. In addition, samples x2, x7,
and x9 are arranged in line by chance.

First, the zero matrix S ∈ �9×9 is defined, and the
correlations of all possible pairs of samples are checked
by the NC method. For example, when x1 is the query,
x2-x3, x2-x4, and x3-x4 are detected as pairs whose
correlation is similar to x1, and (S)2,3 = (S)3,2 = 1,
(S)2,4 = (S)4,2 = 1, and (S)3,4 = (S)4,3 = 1.

In the same way, since x1-x3, x1-x4, x3-x4, and x7-x9

are detected when x2 is the query, one is added to the
elements of S corresponding to these pairs. As a result,
(S)3,4 = (S)4,3 = 2 because the pair x3-x4 is detected
again. This procedure is repeated so that all samples
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Fig. 2. An objective data set
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Fig. 3. A weighted graph expressing the affinity matrix S

become the query. Finally, the affinity matrix S becomes
as follows:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 2 0 0 0 0 0
2 0 2 2 0 0 1 0 1
2 2 0 2 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 0 0 2 2 2 0
0 0 0 0 2 0 2 2 0
0 1 0 0 2 2 0 2 1
0 0 0 0 2 2 2 0 0
0 1 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

In S, (S)2,7 = (S)7,2 = 1, (S)2,9 = (S)9,2 = 1, and
(S)7,9 = (S)9,7 = 1 since samples x2, x7, and x9 are
arranged in line by chance and the pairs of these samples
are detected by the NC method. However, the weights of
these pairs in S are smaller than those of the pairs that
have the true correlation.

Figure 3 shows an example of the graph expression of
the calculated affinity matrix S. In Fig. 3, the length
of each arc is inversely proportional to their weights. By
partitioning this graph using NWJ algorithm that is a
revised spectral clustering algorithm proposed by Ng et
al. (2001), the nodes are classified into {x1,x2, · · · ,x4},
{x5,x6, · · · ,x8}, and {x9}. This example clearly shows
that the proposed NC-spectral clustering can classify sam-
ples according to the correlation among variables.

3.4 Numerical examples

The discrimination performance of the proposed NC-
spectral clustering is compared with that of the k-means
method and spectral clustering through numerical exam-
ples.

Two-dimensional case. The discrimination performances
are compared through a two-dimensional example. The ob-
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Fig. 4. Classification results of the 2-dimensional sam-
ples: true classes (top-left), the k-means method
(top-right), spectral clustering (bottom-left), and NC-
spectral clustering (bottom-right)

jective data set consists of three classes that have different
correlation. 100 samples are generated in each class by

x = sai + n (i = 1, 2, 3) (7)
where s ∼ N(0, 10), n = [n1 n2]T , ni ∼ N(0, 0.1),
and N(m,σ) is a random number following the normal
distribution whose mean is m and standard deviation is
σ. The coefficient matrices ai ∈ �2 are a1 = [ 1 2 ]T ,
a2 = [ 2 2 ]T , and a3 = [ 2 1 ]T .

In the conventional spectral clustering, the affinities be-
tween samples are defined by using the Gaussian kernel in
(5), the Euclidean distance is used as a distance function
d(·, ·), and σ = 1. In the proposed method, the parameter
of the NC method is γ = 0.999.

The generated samples and the clustering results of the
k-means method, spectral clustering, and the NC-spectral
clustering are shown in Fig. 4. The conventional methods
cannot classify samples correctly. On the other hand, the
proposed method can classify samples accurately in most
regions except around the origin.

Five-dimensional case. The discrimination performances
are compared through a five-dimensional example. The ob-
jective data set consists of three classes that have different
correlation. 100 samples are generated in each class by

x = Ais + n (i = 1, 2, 3) (8)
where s = [s1 s2]T , si ∼ N(0, 10), and n = [n1 n2]T，
ni ∼ N(0, 0.1). The coefficient matrices Ai ∈ �5×2 are as
follows:

A1 =

⎡
⎢⎢⎢⎣

1 2
1 4
1 1
2 3
1 3

⎤
⎥⎥⎥⎦ A2 =

⎡
⎢⎢⎢⎣

3 3
2 1
3 1
3 2
2 0

⎤
⎥⎥⎥⎦ A3 =

⎡
⎢⎢⎢⎣

2 1
3 4
1 3
0 4
3 1

⎤
⎥⎥⎥⎦ (9)

The discrimination rate is defined as

Table 1. Discrimination performances in the 5-
dimentional example

Discrimination rate [%]
Class 1 Class 2 Class 3

The k-means method 43 19 75
Spectral clustering 40 35 31
NC-spectral clustering 85 84 93

Discrimination rate[%] =
L

K
× 100 (10)

where K is the number of detected samples and K = 100
in this example. L (L ≤ K) is the number of samples that
belong to the true class, out of K detected samples. The
settings of spectral clustering and NC-spectral clustering
are the same as the previous example.

Table 1 shows the discrimination performances of the k-
means method, spectral clustering, and NC-spectral clus-
tering. The proposed NC-spectral clustering can achieve
the higher discrimination performance than the other
methods. These results clearly show that NC-spectral clus-
tering can discriminate the correlation among variables.

4. SOFT-SENSOR DESIGN BASED ON
NC-SPECTRAL CLUSTERING

The operation data are clustered according to their char-
acteristics to construct soft-sensors that can cope with
the individual difference of production devices. Since the
individual difference affects the correlation among vari-
ables, the proposed NC-spectral clustering can classify the
operation data according to their characteristics.

In the present work, a new soft-sensor design method based
on NC-spectral clustering is proposed. In the proposed
method, the operation data are clustered by using NC-
spectral clustering and models are constructed for each
class.

Assume that the input samples xn ∈ �M (n = 1, 2, · · · , N)
and output samples yn ∈ �L are stored in the database.
The proposed soft-sensor design procedure is as follows:

(1) Classify the input samples xn to P classes using NC-
spectral clustering, and Ωj = {n | xn ∈ Kj}, (j =
1, 2, · · · , P ).

(2) Construct models fj : X −→ Y from xi and yi (i ∈
Ωj) for Kj , where X is the set of input and Y is that
of output.

(3) Classify a new sample x̃ to class Kj̃ = h(x̃) when x̃
is measured, where h : X −→ K is a classifier and K
is the set of class.

(4) Calculate an estimate ŷ = fj̃(x̃).

In the above algorithm, any modeling method can be used
for building a local model f . In the present work, PLS is
used to cope with the collinearity problem.

The Q statistic (Jackson and Mudholkar (1979)) can be
used as the evaluation function of a classifier h. The
Q statistic is derived from principal component analysis
(PCA), and it is the distance between the sample and
the subspace spanned by principal components. In other
words, the Q statistic is a measure of dissimilarity between
the sample and the modeling data from the viewpoint of
the correlation among variables.
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Fig. 5. Schematic diagram of the batch reactor with
multivariable control system

The class that minimizes the Q statistic of sample x should
be selected as its class. The classifier h is described as

h(x) = arg min
Kj

Qj (11)

Qj = xT (I − V
{j}

R V
{j}T

R )x (12)

where V
{j}

R is the loading matrix of PCA derived from the
matrix X{j} whose rows are samples belonging to class Kj .

5. CASE STUDY

In this section, the proposed NC-spectral clustering is
compared with the k-means method through their applica-
tions to operation data of parallelized batch processes. In
addition, soft-sensors for product composition are designed
on the basis of their clustering results. The detailed batch
process model used in this case study is described in Cott
et al. (1989).

5.1 Problem setting

A schematic diagram of the batch reactor is shown in
Fig. 5. In this process, a well-mixed, liquid-phase reaction
system is considered, and two reactions take place:

reaction 1 : A + B −→ C
reaction 2 : A + C −→ D (13)

The component C is the desired product while D is the
byproduct. The objective is to achieve a good conversion
of product C. The initial reactor temperature is 20 ◦C, and
the initial amount of the row materials A and B changes
as the random numbers following N(20, 0.1).

Since reaction 1 proceeds at 90 ◦C or higher, the reactor
temperature should be raised as fast as possible after
operation starts. As reaction 1 proceeds, the reactor tem-
perature increases due to reaction heat. However, reaction
2 proceeds at the reactor temperature exceeding 100 ◦C,
and product C is converted to byproduct D. Therefore, a
rise in the reaction temperature has to be controlled after
it reaches around 90 ◦C. In this process, the reactor tem-
perature Tr and the jacket temperature Tj are measured
every one minute and controlled through the multivariable
control system. The termination time of operation is 120
minutes.

In this case study, five reactors R1, R2, · · · , R5 are op-
erated in parallel. In addition, their heat transfer coeffi-
cients are unchanged during the batch operation, and they
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Clustering result by the k-means method Clustering result by NC-spectral clustering

Fig. 6. Classfication results: the k-means method (left) and
NC-spectral clustering (right)

change every batch operation as the random number. The
heat transfer coefficients Ui (i = 1, 2, · · · , 5) are

Ui =

⎧⎨
⎩

U(40.60, 40.62), i = 1, 2
U(40.57, 40.59), i = 3, 4
U(40.54, 40.56), i = 5

(14)

where U(a, b) denotes the uniform random numbers on
the closed interval [a, b]. That is, there are three types
of the correlation among variables although there are five
reactors. In this case study, the operation data of 20
batches of each reactor are stored in the database. The
objective is to construct soft-sensors that can estimate
the amount of the product C accurately at the end of the
batch.

5.2 Clustering

Before constructing soft-sensors, the operation data of all
100 batches stored in the database are clustered into three
classes using the k-means method and the proposed NC-
spectral clustering. As preprocessing of the operation data,
its dimension is reduced by Multiway PCA (Nomikos and
MacGregor (1994)); the number of the retained principal
components is two. That is, the input variables of these
clustering methods are the scores t1 and t2. The parameter
of NC-spectral clustering is γ = 0.99.

The clustering results of the k-means method and NC-
spectral clustering are shown in Fig. 6, where the sample
distribution on the t1-t2 plane is shown. In the result of the
k-means method, the center of each class cj (j = 1, 2, 3) is
designated by a circle, and samples are certainly classified
based on the distance. On the other hand, in the case of
NC-spectral clustering, samples are classified regardless of
the distance.

5.3 Soft-sensor design

A soft-sensor is constructed to estimate the amount of
product MC [kmol] at the end of the batch. A model is
built for each of three classes clustered by NC-spectral
clustering. The input variables of soft-sensors are the time
series of Tr and Tj , and PLS is used for modeling.

In addition, another soft-sensor is designed on the basis of
the clustering result of the k-means method. In this case,
the distance from the class center cj is used for sample
discrimination when an output is requested. That is, the
classifier g is described a

g(x) = arg min
Kj

||x − cj ||2. (15)
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Fig. 7. Estimation results by PLS with the k-means
method (top) and NC-spectral clustering (bottom)

In this case study, MC of the new reactor R6 is estimated.
The heat transfer coefficient of R6 changes as the random
number following U(40.60, 40.62), which is the same as
that of R1 and R2. The number of the validation batches
is 20.

The estimation results of soft-sensors are shown in Fig. 7.
In these figures, the horizontal line and the vertical line
express the measurement and the estimates, respectively.
RMSE is the root-mean-squared error and r denotes
the correlation coefficient between measurements and es-
timates. These results clearly show that the proposed
method can achieve the higher estimation performance
than the k-means method-based soft-sensor, and RMSE
is improved by 43%.

6. CONCLUSION

A new clustering method is proposed by integrating the
NC method and spectral clustering. The proposed NC-
spectral clustering can accurately discriminate the correla-
tion among variables. In addition, a new soft-sensor design
method based on NC-spectral clustering is proposed. Since
NC-spectral clustering can discriminate the individual dif-
ference of production devices, the proposed soft-sensor
design method can improve the estimation performance.
The superiority of the proposed method over conventional
methods is demonstrated through a numerical example
and a case study of parallelized batch processes.
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