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Abstract: In this work, the problem of estimating the concentration of exothermic rectors with 
temperature measurement is addressed. The problem is treated within a global nonlinear stochastic 
framework, according to the Fokker Plank-based Kushner filtering theory. The on-line solution of the 
associated two-dimensional partial differential equation driven by the temperature measurements yields 
the evolution of the conditioned concentration-temperature probability density function (PDF), with 
considerable more information than the one provided by standard EKF based on a local-nonlinear 
approach. A catalytic reactor with deterministic multistability, experimental data, and previously 
addressed with EKF is addressed as case example, yielding: (i) the on-line evolution of the (possibly 
bimodal) conditioned concentration probability density function, and (ii) mean uncertainty values which 
are better than the ones drawn with EKF.  
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1. INTRODUCTION 

The problem of nonlinear estimation is of great importance 
for chemical process systems, where state variables like, e.g., 
concentrations, are not often continuously available on-line 
and needs to be inferred from secondary measurements. In 
the chemical process systems engineering field, the Extended 
Kalman Filter (EKF) has been by far the most tested and 
accepted state estimation technique. On the basis of a local-
nonlinear approach, the EKF provides estimates of the state 
mean and of its error covariance. In the EKF 
implementations, the uncertainty characterization is used as a 
means to draw the state mean and not to on-line assess its 
error covariance. This is so because, in the linear-to-nonlinear 
passage, the stochastic meaningfulness of the linear Kalman 
filter is somehow lost. According to the global-nonlinear 
stochastic estimation theory (Jazwinski, 1970): (i) the general 
solution to the estimation problem is given by the Kushner 
Filter (KF) which on-line solves the multidimensional Fokker 
Plank-like PDE which describes the (possibly multimodal) 
measurement-conditioned state probability density function 
(PDF), (ii) the nonlinear EKF is the local case of the global-
nonlinear KF, assuming that, in a neighborhood of the state 
motion, the error covariance propagation is given by the 
linear part of the state dynamics, and consequently, that the 
associated  PDF is Gaussian (i.e., monomodal), and (iii) as a 
consequence, the infinite-dimensional linear PDE of the KF 
becomes the familiar finite-dimensional matrix Riccati 
nonlinear ODE of the EKF. The EKF applies to nonlinear 

systems, but it can be inadequate when: (i) the initialization is 
poor (Sharma et al., 2006), (ii) there are significant system 
nonlinearities and constraints (Kolas et al, 2009 and reference 
there in), and (iii) there is PDF multimodality due to 
deterministic model (Tronci et al., 2009; Oberlack, 2000). It 
must be pointed out that deterministic multiplicity due to 
kinetics non-monotonicity with respect to concentration 
concerns an important class of chemical (or bio) reactors with 
reaction inhibition described by Langmuir-Hinshelwood (or 
Haldane) kinetics (Aris, 1965). The interplay between 
deterministic (mono/multi) stability and stochastic 
(mono/multi) modality in the context of a global-nonlinear 
stochastic chemical reactor modeling problem (without 
measurements) can be seen in a recent study (Tronci et al., 
2009). 

The KF theory, based on the global-nonlinear probabilistic 
description of the Fokker Planck equation, was developed 
sometime ago. However, due to the complexity and difficulty 
of having to on-line numerically solve a PDE with 
independent variables equal to the number of states, the KF 
applications was not used until the advent of modern 
computing technology. Recently, motivated by the need of 
designing system probabilistic descriptions and the 
availability of more powerful and reliable computational 
tools, the development of numerical schemes and packages to 
handle Fokker-Plank equations has become a subject of 
intense research (Kushner and Budhiraja, 2000; Sharma et al., 
2006; Germani et al., 2007; Budhiraja et al., 2007; Xu and 
Vedula, 2009; Sharma, 2009). As far as we know, the KF 
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theory has not been applied in chemical process systems 
engineering field, even if the characteristics of those systems 
(e.g. deterministic multistability) can take advantage of a 
global nonlinear estimation approach.  

In this work the global-nonlinear Kushner filter (Jazwinski, 
1970) approach is applied to solve the on-line estimation of 
the composition in continuous exothermic reactors with 
deterministic bistability due to kinetics non-monotonicity 
with respect to concentration. A catalytic reactor with 
deterministic bistability, experimental data, and previously 
addressed with EKF (Baratti et al., 1993) is considered as 
representative case example, yielding: (i) the on-line 
evolution of the (possibly bimodal) conditioned concentration 
probability density function, and (ii) mean uncertainty values 
which are better than the ones drawn with EKF. The 
numerical implementation issue and the tuning aspects 
(which are substantially different than the familiar ones of the 
EKF) are discussed. 

2. REACTOR ESTIMATION PROBLEM  

Consider exothermic continuous reactor with volume V, 
where a reactant is fed with volumetric flow F at 
concentration Ce and temperature Te, and converted into 
product via a Lipschitz-continuous reaction rate R with 
Arrhenius dependency on temperature T and isotonic 
(growing) or nonmonotonic (growing-decreasing) 
dependency on concentration C. The actual reactor dynamics 
are given by: 

(1) 

y = T + v(t), 

€ 

v(t) ~ N(0,qw )  

€ 

w(t) ~ N(0,Q), w(t) =
wC (t)
wT (t)
 

 
 

 

 
 , Q =

qCC qCT
qTC qTT

 

 
 

 

 
 , qCT =qTC  

where  θ is the dilution rate (F/V), β is the heat of reaction (-
ΔH) divided by the volumetric specific heat capacity (ρcp), δ 
is the mixture-jacket heat transfer coefficient divided by the 
heat capacity (Vρcp), and w(t) is a white noise vector with 
zero-mean and noise intensity matrix Q. 

Our global-nonlinear estimation problem consists in on-line 
computing the conditional probability density function 
π(C,T) on the basis of the stochastic model (1) in conjunction 
with the temperature measurement (y). For illustration and 
comparison purposes, a catalytic reactor with deterministic 
bistability, experimental data, and previously considered with 
the local-nonlinear EKF approach (Baratti et al., 1993) is 
addressed as representative case example. 

3. GLOBAL-NONLINEAR ESTIMATOR 

In the Bayesian framework, where the statistical models are 
available for the state and the measurements, the filtering 
problem consists in obtaining the states PDF at time t, given 
all the measurements until t (Gelb, 1988). The conditional 
probability density function of C(t), π(C(t)|Y(tk)), with Y(tk) 
being the vector of measurements collected until tk≤ t, is the 
complete solution of the filtering problem because it contains 

all the statistical information according to the measurements 
and initial conditions. In case of linear filtering, the 
conditional distribution is Gaussian and it is simply 
characterized by the state mean and its covariance matrix. In 
the EKF for nonlinear system (Gelb, 1988; Jazwinski 1970), 
a Gaussian PDF approximation is used in terms of its two 
moments, on the basis of the linearization of the dynamic 
model around the current state estimate. EKF functioning 
improvements can be obtained by increasing the filter order 
(Gelb, 1988, Sharma, 2009). However, the main disadvantage 
of the EKF is the impossibility of handling the non-Gaussian 
(i.e., asymmetric and/or multimodal) state PDF features 
associated with strong nonlinearitiy and deterministic 
multistability phenomena (Tronci et al., 2009; Oberlack et al., 
2000). 

3.1 Nonlinear stochastic filter 

In the absence of measurements, the evolution of the 
normalized concentration PDF function π, associated with the 
stochastic model (1), is given by the solution of the Fokker-
Planck PDE: 

€ 

∂π
∂t

=
1
2
qCC

∂2π
∂C2 +

1
2
qTT

∂2π
∂T 2 + qCT

∂2π
∂C∂T

−
∂ f1π( )
∂C

−
∂ f2π( )
∂T

    (2)  

 π(C, T, 0) = πo(C, T) 

€ 

f1 (0,T)π(0,T) −
1
2
qCC

∂π
∂C C=0

−
1
2
qCT

∂π
∂T C=0

= 0,

∂π
∂C C=∞

= 0, ∀T, t > 0

f2 (C,0)π(C,0) − qTT
∂π
∂T T =0

−
1
2
qCT

∂π
∂C C=0

= 0,

∂π
∂T T =∞

= 0, ∀C, t > 0

 

Without restricting the approach, and for the sake of clarity, 
let us recall the nonlinear stochastic observer, called Kushner 
Filter, for the discrete measurements case (Jazwinsky, 1970): 

Initialization at t = 0:   π(C, T, 0) = πo(C, T) (3a) 

Evolution over [tk, tk+1]:  

πo(C, T) = π+(C, T, tk), π−(C, T, tk+1) = π(C, T, tk+1) (3b)  
Update at tk+1:   

€ 

π + C,T,t k+1( ) =
π− C,T,t k( )µ(T)

µ τ( ) π− (ξ,τ, t k )dξ
0

∞

∫ dτ
0

∞

∫
 (3c) 

where µ is the measurements error (possibly not gaussian) 
PDF, π- is the a priori (before measurements) concentration 
PDF according to Fokker-Planck equation-based prediction 
along [tk, tk+1] (3b), π+ is the a posteriori (after 
measurements) concentration PDF according to the 
conditioned (Bayesian) PDF formula at tk+1 (3c). It must be 
pointed out that: (i) the update step (3c) consists of a rather 
straightforward double integration, and (ii) consequently, the 
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complexity of the NLS filter resides in the evolution step 
(3b), or equivalently, in the integration of the Fokker-Planck 
parabolic linear PDE (2) with two “spatial” independent 
variables (C and T). 

3.2 Numerical scheme 

To tackle the numerical integration of the FPE, including the 
fulfillment of the PDF positivity and normalization 
conditions, efficient and accurate integration methods from 
the field of Computational Fluid Dynamics are recalled. 
Specifically, we apply the technique employed in the 
simulation of mass or heat transport in a conveying fluid, 
according to the fundamental mechanisms of advection (drift 
of elementary mass particles due to the mean fluid velocity) 
and diffusion (related to, e.g., Brownian motion, described by 
the Fickian flux model, heat conduction, with the Fourier 
law, or turbulent diffusion). It should be noted that the 
analogy is not merely formal: the advection-diffusion 
equation (ADE) is indeed a FPE, with the mass concentration 
divided by total mass representing the PDF of mass location 
in the physical space, 

Even though the ADE (and the FPE) are formally parabolic 
for non vanishing diffusivities, all the major problems related 
to its numerical solution are related to its hyperbolic part, i.e. 
the transport equation for pure advection. Therefore, the 
positivity condition is more difficult to fulfill in advection 
dominated problems characterized by high Péclet numbers. 

For the purpose at hand, let us re-write equation (2) in 
compact vector notation: 

 (4) 

where ∇ ≡ (∂/∂C, ∂/∂T) is the Nabla operator, f ≡ (f1, f2) is the 
corresponding drift “velocity” vector. Recall the divergence 
of a vector field represents the net outgoing flow across the 
walls of an infinitesimal parallelepiped control volume, per 
unit volume, Eq. (4), express the rate of local change of the 
PDF in terms of advective (fπ) and diffusive (D∇π) flows,  
integrate Eq. (4) over an arbitrary and fixed surface of finite 
extent on the phase space Ω, (denominated control volume 
with boundary Γ), and applying the divergence theorem to 
obtain (Hirsch, 1991)  

 (5) 

where n is the unit outgoing normal. This states that the local 
variation of probability associated with a finite portion Ω of 
the phase space equals the ingoing probability from outside 
the control volume, so that the total probability over the 
whole phase space must be conserved. A numerical method 
based on such concept, called a finite volume method (FVM), 
by definition conserves the total (unit) probability regardless 
of its overall accuracy. This is why equation (4) (written in 
divergence form) is also (more often) referred to as equation 
in conservation form. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Arakawa-C grid with control volume and 
computational stencil for u > 0 and v > 0 (full points involved 
in definition of flux Fi+1/2, j; empty, bold points involved in 
scheme for control volume). 

The FVM-based numerical scheme requires a partition of the 
computational domain, with non overlapping elements of 
arbitrary form. Since our FPE has a regular domain a 
structured mesh can be used, implying high degree of 
algorithmic simplicity. Thus, the numerical scheme is based 
on the staggered Arakawa-C Cartesian grid shown in Figure 
1, with rectangular elements (cells) of sides ΔC and ΔT, PDF 
values defined in cell centers as πi,j = π(Ci,Tj) and drift 
velocity defined on cell sides as normal components. 
Accordingly, the discretized form of equation (5) reads: 

 (6) 

where τC
 = Δt/ΔC and τT

 = Δt/ΔT, Δt is the step of time 
advancement of the scheme with related index n, such that 
tn = nΔt, and F and G are numerical approximations of time 
averages over the interval [tn, tn+1] of the flux fπ – D∇π across 
the cell sides ΔT and ΔC, respectively. Note that Eq. (6) is an 
approximation of the FPE (4) according to a finite-difference 
(FD) scheme. The actual FVM/FD method depends on the 
expression of the average numerical fluxes F and G, with 
schemes based on explicit time advancement being very 
efficient and particularly well-suited for transient problems. 

In this work, the two-dimensional FPE was efficiently solved 
by using MOSQUITO (Balzano et al., 1999) explicit 
numerical scheme for the advective part of FPE, and second-
order accurate in space and first order in time explicit scheme 
to handle diffusion term. Letting f1

 = u and f2
 = v to simplify 

the notation, the numerical difference scheme can be written 
as follows (for positive u and v): 

 (7) 

with 

€ 

π i+1/2 = adπ i+1,j
n + auπ i,j

n + auuπ i−1,j
n + auT auuπ i ,j−1

n , 

involving the full points shown in Figure (1), and 

ul ur 

vd  

vu 

i i+1 i−1 

j 

j+1 

j−1 

π
η 

j−2 

i−2 
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, (8) 

where: 

 

are the Courant numbers, and the average T velocity 
component is given by: 

. 

The location of the mesh points used in the scheme (stencil) 
is upwind biased, with more information being provided from 
upstream, reflecting the physical mechanism of pure 
advective transport in a mean velocity field. Analogous 
expressions are derived for the T flux and for different signs 
of the velocity components, according to the upwind concept.  

The boundary of the rectangular domain is assumed to be 
closed, i.e. it does not allow for probability to leave nor enter 
the domain. Zero fluxes are then prescribed. In a transient 
problem this is appropriate if the support of the asymptotic 
PDF is always located entirely away from the boundary. 

The truncation error is 0(Δt2, ΔtΔC, ΔtΔT) for unsteady 
advection. Nonetheless, based on computational tests, 
MOSQUITO was proved to be as accurate as, but more 
efficient than, third-order-in-space and second-order-in-time 
implicit models (for further details see Balzano, 1999). 

Because a stability condition for the advection-diffusion 
scheme cannot be expressed in closed form, guidance for 
selecting the time step can be given by the sufficient stability 
conditions of the schemes for pure advection (MOSQUITO) 
and pure diffusion, deduced from Fourier analysis. This is 
max{cx, cy} ≤ 1 for MOSQUITO, whereas for the scheme for 
pure diffusion both δCC

 + δTT
 ≤ 1 and δCC

 + δTT
 + δCT

 ≤ 1 must 
be fulfilled, where δCC

 = 1/2qCCΔt/ΔC2, δTT
 = 1/2qTTΔt/ΔT2 and 

δCT
 = 1/2qCTΔt/ΔCΔT are diffusion numbers. 

It must be pointed out that an adaptation of the ULTIMATE 
flux limiter (Leonard, 1991) has been employed, even though 
the limiter was originally designed for 1D advection schemes. 
This scheme has effectively avoided PDF approximations 
with appreciable negative values, meaning that a basic 
drawback of most, if not all, previous FPE numerical 
methods has been adequately resolved. 

4. CASE EXAMPLE 

The proposed reactor global-nonlinear stochastic KF was 
tested with experimental runs which correspond to a 
continuous reactor where carbon monoxide underwent 
catalytic oxidation to carbon dioxide, in the understanding 
that these experimental data have been treated with the EKF 
technique (Baratti et al., 1993). This reactor has a Langmuir-
Hinshelwood nonmonotonic kinetics with quadratic 
inhibition, and open-loop multiplicity with two stable steady-
states and an unstable one.  Given the reactor deterministic 
bistability feature and its associated potential bimodality in 
the open-loop stochastic model system, this example can be 

seen as an extreme case of a class of industrial exothermic 
reactors with nonmonothonic kinetics.  

4.1 Experimental apparatus 

The oxidation of carbon monoxide took place over Pt catalyst 
pellets, in a continuous micro reactor (see details in Baratti et 
al., 1993). The reactor and wall temperatures were measured 
with thermocouples, and the wall temperature acted as a pre-
programmed exogenous time-varying input. For stochastic 
model calibration and estimator behavior assessment 
purposes, the reactor concentration was on-line measured 
with a continuous non-dispersive infrared carbon dioxide 
analyzer.  

4.2 Reactor model  

In virtue that the reaction occurs in gas phase, the reactant 
concentration depends on temperature, and, consequently, the 
reactor model (1) acquires the following form 

 (9) 

 

where 

[x1, x2]T = [C/Cr, T/Tr]T , 
[d1, d2, d3] T = [CeTe/(CrTr), Te/Tr, Tw/Tr]T 
γ = E/(RTr), β = (-ΔH)cC/(ρCpTr), κ = (ρcp)g/(ρcp),  
δ = US/(ρcp) 

θ = 0.041 s-1
, k0 = 0.066 s-1, γ = 16.716 (dimensionless) 

σ = 2.993 (dimensionless), κ = 0.0006 s-1, δ = 0.0075 s-1. 

In dimensionless units (referred to Cr = 1.052 mol/m3, and Tr 
= 463 K), x1 (or x2) is the reactor concentration (or 
temperature), d1 is the feed concentration, d2 (or d3) is the 
feed (or wall) temperature, and y is the temperature 
measurement signal. The product (ρcp)g is the gas-phase heat 
capacity at the reference temperature, and ρcp is the overall 
heat capacity of the basket-pellet system.  The parameter 
triplet (θ, κ, δ) was determined with mass and heat step 
response tests in the absence of reaction, and the kinetic 
parameter triplet (β, γ, σ) was determined with a set of 
isothermal steady-state experiments at various temperatures. 
The resulting parameter values are listed in (Baratti et al., 
1993): 

θ=0.041 s-1
, k0=0.066 s-1, γ=16.716 (dimensionless), σ =2.993 

(dimensionless), κ =0.0006 s-1, δ =0.0075 s-1. 

4.3 Estimator implementation  

The implementation of the proposed global-nonlinear 
stochastic Kushner estimator was executed in a calibration 
step where the modeling error covariance matrix was tuned, 
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followed by a testing step where the performance of the KF 
was evaluated in two different cases. 

Calibration. The fact that EKF behavior can be improved 
with the employment of a non-diagonal 2x2 model error 
covariance (symmetric) matrix  (Leu and Baratti, 2000), in 
conjunction with the global-nonlinear nature of the Kushner 
estimation approach, suggests the employment of a similar 
noise injection mechanism for the Kushner estimator design. 
Thus, one of the three experimental runs was dedicated to 
draw the three independent entries of the model error 
covariance matrix, according to the following procedure: the 
three parameters were obtained by performing a standard 
regression plus correlation assessment of model mismatch 
along the course of the reaction. The resulting error 
covariance entries are listed in Eq. (10a). The measurement 
uncertainty was set by looking at the instrument 
specifications and the standard deviation of the measurement 
signal, and setting the results in the form of a Gaussian PDF 
(10b).  

qCC = 0.38395 e-4, qTT  = 0.2195 e-5 , qCT = -0.8945 e-4 (10a) 
 
µ(T) = exp[-(y-T)2/(2qw)], qw = 0.187 e-6 (10b) 
Implementation. For the Kushner estimator implementation 
stage, the error covariance terms qCC, qTT (10a) and qw (10b) 
were kept fixed, and the cross error covariance term qCT 
underwent some refinement. Thus, the model dynamics cross 
term is the only “tuning” parameter.   
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Figure 2. Enforced wall temperature (solid line) and reactor 
temperature (dotted line). 

4.4 Estimator functioning  

First, the reactor was subjected to the sequence of wall 
temperature ramps depicted in Figure 2, with constant inlet 
CO concentration (0.03). The Kushner implementation did 
not require any refinement of the model error covariance 
cross term. As expected, the PDF bimodality of the stochastic 
model without measurements (Tronci et al., 2009) was 
switched to monomodality due to the information injected by 
the measurements. The resulting marginal PDF evolution in 
contour plot form is presented in Figure 3. Observe how the 
PDF evolves, with larger uncertainty at high temperature with 
more model mismatch and stronger asymmetry (non 
gaussianity). The associated mean concentration estimate and 
its uncertainty expressed in the form of a standard covariance 
band are presented in Figure 4. Comparing with the results 
with standard EKF (Figure 6 in Baratti et al., 1993), the 
Kushner estimator provides the entire (possibly multimodal 

or non Gaussian monomodal) PDF, and a considerably better 
estimate uncertainty assessment (Figure 5). The wideness of 
the interval is due to the lack of information regarding the 
cross term in the covariance matrix, that determine the 
impossibility of reconstructing the second order statistics. 
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Figure 3. Kushner estimator functioning: PDF evolution in 
contour level form. 
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Figure 4. Kushner estimator functioning: CO estimated (or 
experimental) mole fraction ratio concentration - in red 
continuous (or black dotted) plot – and estimate uncertainty 
(blue dotted) band in ± standard deviation (σ) wideness. 
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Figure 5. EKF estimate uncertainty (blue dotted) band in ± 
standard deviation (σ) wideness. 

Then the reactor was run with another sequence of 
temperature ramps (Figure 6a), at a different inlet 
concentration (0.053), with the results depicted in Figure 6b, 
showing that: without any further retuning of the cross 
correlation term the results are similar than the ones of the 
previous experiment with Kushner estimation. Comparing 
with the previous experiment, in this case the advantage of 
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the Kushner over the EKF (see Figure 7 in Baratti et al., 
1993) estimator is more pronounced.  

It is worth noting that the computational time required by the 
Kusher estimator is higher with respect to the EKF, but it is 
still adequate for real time applications. In fact, the time 
required to simulate one characteristic time of the reactor 
(circa 30s) is 1.7s.  
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Figure 6. Analysis of the filter performance: (a) enforced wall 
temperature (solid line) and reactor temperature (dotted line); 
(b) CO estimated (or experimental) mole fraction ratio 
concentration - in red continuous (or black dotted) plot – and 
estimate uncertainty (blue dotted) band in ± standard 
deviation (σ) wideness. 

5. CONCLUSIONS 

The concentration estimation problem of exothermic rectors 
with temperature measurement has been addressed with a 
Kushner Filtering global-nonlinear stochastic approach, with 
results that: (i) are validated with experimental data, and (ii) 
outperform the ones obtained with EKF, in the sense that the 
entire concentration estimate (possibly multimodal) PDF 
evolution is obtained. The numerical integration of the FP 
partial differential equation was effectively and efficiently 
handled with an approach recalled from computational 
mechanics. These results evidence the tractability of the 
Fokker-Planck based Kushner estimation approach, and open 
the avenue for further studies on the subject, including: the 
consideration of batch reactor case, the exploitation of system 
characteristic and Bayesian estimation representation to draw 
PDF approximation in terms of interlaced low-dimensional 
Kushner estimators, as a generalization of the adjustable-
structure geometric estimation studies for multicomponent 
distillation column (Frau et al., 2009). 

Acknowledgements 

The authors acknowledge Regione Sardegna for the financial 
support (CRP2_370) and J. Alvarez also for the support 
through the program “Visiting Professor 2008”. 

 REFERENCES 

Aris, R., (1965). Introduction to the analysis of chemical 
reactors, Englewwod Cliffs, NJ, Prentice Hall. 

Balzano, A. (1999). MOSQUITO: An efficient finite 
difference scheme for numerical simulation of 2D 
advection. Intl. J. Numer. Meth. Fluids, 31, 481-496. 

Baratti, R., Alvarez, J., and Morbidelli, M, (1993). Design 
and Experimental Verification of a Nonlinear Catalytic 
Reactor Estimator. Chem. Eng. Sci., 48, 2573. 

Budhiraja, A., Chen, L.,  and Lee C.  (2007). A survey of 
numerical methods for nonlinear filtering problems. 
Physica D, 230, 27-36. 

Frau, A., Baratti R., and Alvarez, J., (2009). Composition 
estimation of a six-component distillation column with 
temperature measurements. ADCHEM conference, 
Turkey. 

Gelb., A. (1998). Applied optimal estimation. The M.I.T. 
Press. Cambridge.  

Germani, A., Manes, C., Palumbo, P. (2007). Filtering of 
stochastic nonlinear differential systems via a Calerman 
approximation approach, IEEE Trans. On Automatic 
Control, 52(11), 2166-2172. 

Hirsch, C. (1991). Numerical Computation of Internal and 
External Flows. John Wiley and Sons, New York. 

Jazwinski, A. H. (1970). Stochastic processes and nonlinear 
filtering. Academic Press, London.  

Kolas, S., Foss, B. A., Schei, T.S. (2009). Constrained 
nonlinear state estimation based on UKF approach. . 
Comp. & Chem. Engn., 33(8), 1386-1401. 

Kushner, H. J., Budhiraja, A. J., (2000). A nonlinear filtering 
algorithm based on an approximation of the conditional 
distribution. IEEE Trans. Autom. Contr., 45(3), 580-585.  

Leonard, B.P. (1991). The ULTIMATE conservative 
difference scheme applied to unsteady one-dimensional 
advection. Comp. Meth. Appl. Mech. Engng. 88, 17-79. 

Leu, G., and Baratti, R., (2000). An extended Kalman 
filtering approach with a criterion to set its tuning 
parameters; application to a catalytic reactor. Comp. & 
Chem. Engng, 23(11-12), 1839-1849. 

Oberlack, M., Arlitt, R., and Peters, N., (2000). On stochastic 
Damkohler number variations in a homogeneous flow 
reactor. Combust. Theory Modelling, 4, 495-509.  

Sharma, S. N., Parthasarathy H., and Gupta, J. R. (2006). 
Third-order approximate Kushner filter for a non-linear 
dynamical system. Int. Journal of Control, 79(9),1096-
1106. 

Sharma, S. N. (2009). A Kushner approach for small random 
perturbation of the Duffing-var der Pol system. 
Automatica, 45, 1097-1099. 

Tronci, S., Grosso, M., Alvarez, J., Baratti, R., (2009). 
Stochastic dynamical nonlinear behavior analysis of a 
class of single-state CSTRs. ADCHEM conference, 
Turkey.  

Xu, Y., and Vedula, P., (2009). A quadrature-based method 
of moments for nonlinear filtering. Automatica, 45, 
1291-1298. 

Copyright held by the International Federation of Automatic Control 790


