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Abstract: Membrane fouling control is of paramount importance for sustainable operation of membrane-
based drinking water treatment processes. Natural organic matter (NOM) is considered as the major
membrane foulant and therefore its characterization is important for implementing fouling control
strategies. This study proposes a fluorescence-based modeling approach for estimating and predicting the
fouling dynamics in a bench-scale ultrafiltration (UF) membrane cross flow set-up for drinking water
treatment. Principal component analysis (PCA) was used to extract the information that is relevant for
membrane fouling from fluorescence excitation-emission matrix measurements captured during UF
operation. PCA extracted principal components (PCs) that were related to major NOM membrane
foulants. The model predictions were based on PC scores of retentate and permeate captured at time = 15
min of the UF experiments. The proposed fluorescence-based modeling approach is able to forecast
different fouling behaviours with good accuracy. This proposed approach was then used for optimization
of the UF process in which membrane back-washing times were estimated in order to achieve minimum
energy consumption while ensuring maximum production of drinking water.

Keywords: drinking water treatment, fluorescence spectroscopy, membrane filtration, optimization,
prediction, principal component analysis, real-time optimization.



1. INTRODUCTION

Membrane-based technologies are increasingly used to
achieve improved removal of pathogenic organisms and
comply with water quality related regulatory limits in
drinking water treatment applications. However, membrane
fouling is a major constraint for maintaining efficient
membrane-based drinking water treatment processes.
Membrane fouling in drinking water applications is mainly
caused by the presence of natural organic matter (NOM) and
colloidal/particulate matter in water (Saravia et al., 2006;
Jermann et al., 2007). NOM-related fouling increases
operational costs as a result of permeate flux decline and/or
increased energy consumption due to higher trans-membrane
pressure (TMP) requirements. In addition, the need for
frequent chemical cleaning of fouled membranes leads to the
deterioration of membrane performance, shortened service
life and increased costs.

Preventing or reducing membrane fouling while ensuring a
high production of water flux is therefore essential to reduce
the energy demand and other operational costs associated
with fouling for sustainable operation of membrane-based
drinking water treatment facilities. This could be achieved by
optimizing the operation of the membrane filtration processes
(Seidel and Elimelech, 2002).

1.1 Characterization of Membrane Foulants

The individual and combined effects of different NOM
fractions, such as humic-, protein- and polysaccharide-like
substances, as well as colloidal/particulate matter present in
natural water contribute to different membrane fouling
behaviour. Characterization of these components in the raw
water serving as feed to the membrane operations is essential
for the understanding and identification of their changes that
occur during the membrane filtration process. This
information can then be used for the development of fouling
control and optimization strategies.

In this study, the fluorescence excitation-emission matrix
(EEM) approach has been used as a method of characterizing
NOM membrane foulants in water as it is able to capture
specific fluorescence features that correspond to humic- and
protein-like materials (Henderson et al., 2009). The light
scattering regions captured in the fluorescence EEMs can
also provide information related to the particulate/colloidal
matter present in water (Peiris et al., 2010). The fluorescence
EEMs of natural water contain a large number of intensity
readings recorded at different excitation and emission
wavelength combinations. Unlike other available NOM
characterization methods (Huber et al., 1992; Her et al., 2003;
Gray et al., 2007), this approach is able to differentiate the
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major NOM fractions and is suitable for performing rapid,
direct and accurate analysis with high instrumental sensitivity
(Coble et al., 1990; Peiris et al., 2008).

1.2 Fouling Monitoring and Optimization Approach

In a previous study, principal component analysis (PCA) was
successfully used to de-convolute spectral information
captured within fluorescence EEMs into principal
components (PCs) that were related to humic-like, protein-
like and colloidal/particulate matter present in natural water
(Peiris et al., 2010). This approach, which was based on the
PC scores generated by the PCA of fluorescence EEMs, is
suitable for rapid monitoring of the performance of a
membrane-based drinking water treatment system with high
sensitivity. The same approach was therefore used in this
study to generate PC scores that correspond to the
fluorescence EEMs captured over the course of the
membrane filtration operation. These PC scores were then
used as states within a system of differential equations in a
dynamic model to estimate and predict ultrafiltration (UF)
membrane fouling dynamics. Then, based on these predicted
dynamics, an optimization approach is proposed for the
estimation of optimal membrane back-washing times
corresponding to minimum energy consumption while
ensuring maximum production levels of drinking water.

2. MATERIALS AND METHODS

Grand River water (GRW) (Southwestern Ontario, Canada)
was filtered using a 200 micron filter (038A-2080; Keller
Products, Inc. Acton, MA) and used as the membrane feed in
UF experiments. The dissolved organic content (DOC) of the
membrane feed ranged from 3.9 – 6.5 mg/L and its turbidity
values were in the range of 1.2 – 3.8 NTU.

2.1 Bench-scale Membrane Filtration Set-up

UF of GRW was performed using a bench-scale cross flow
set-up shown in Fig. 1. Flat sheet UF membranes
(Polysulfone - YMEWSP3001; GE Osmonics) with a 60 kDa
molecular weight cut-off (MWCO) were used. The initial
pure water flux at TMP = 15 psi (103.4 kPa) was ~ 2.4
L/min.m2. A new membrane was used for each filtration run.

Filtered GRW was fed to the membrane set-up at 0.6 L/min.
The retentate was circulated back to the feed tank. The TMP
was maintained at 15 psi (103.4 kPa) and the temperature of
the feed tank was maintained at ~ 25 °C using a temperature
controller. The permeate water flux was recorded with a
balance connected to a computer using a LabView-based
interface (version 8.0; National Instruments, Austin, TX).
The filtration consisted of a two step operation cycle: (1)
permeation period and (2) back-washing for 20 s. For non-
optimized conditions, the permeation period was 1 h while
for optimized back-washing, the permeation period was
varied to accommodate the back-washing times calculated
based on the optimization approach discussed later. Back-
washing of the membrane was implemented by forcing the
permeate flow in the opposite direction through the

membrane using pressurized Nitrogen gas at 10 psi (68.9
kPa). Fluorescence EEMs of both retentate and permeate
were recorded at 15 min intervals during the course of the
filtration as explained below.

Fig. 1. Schematic of the bench-scale ultrafiltration cross flow
set-up

2.2 Fluorescence Analysis

The fluorescence EEMs were recorded using a Varian Cary
Eclipse Fluorescence Spectrofluorometer (Palo Alto, CA) by
scanning 301 individual emission spectra (300 – 600 nm) at
sequential 10 nm increments of excitation wavelengths
between 250 and 380 nm. A detailed description of the
fluorescence analysis procedure and the selection of the
spectrofluorometer parameter settings used in this study for
obtaining reproducible fluorescence signals, especially for
low NOM concentrations levels, is found in Peiris et al.
(2008; 2009). To eliminate water Raman scattering and to
reduce other background noise, fluorescence spectra for
Milli-Q water, obtained under the same conditions, were
subtracted from all spectra. During the course of the
fluorescence analyses, the Raman scattering peak intensity
recorded for Milli-Q water at Ex/Em ~ 348 nm/396 nm was
less than 1%, confirming that there were no significant
fluctuations in the performance of the spectrofluorometer
lamp or other hardware. The temperature of the water
samples were maintained at ~ 25 °C during the analysis.

2.3 Fluorescence Data Pre-treatment and PCA

The fluorescence EEM of each sample contained 4214
excitation and emission coordinate points. The fluorescence
intensity values corresponding to all 4214 coordinate points
(spectral variables) of each EEM were rearranged following
the fluorescence EEM data rearrangement procedure
described in Peiris et al. (2010). This resulted in a n x 4214
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data matrix (X), with each row containing fluorescence EEM
data points of each sample; n represents the total number of
both retentate and permeate samples obtained at 15 min
intervals as described above for fluorescence analysis.

PCA was applied to matrix X to generate PC scores as
explained in Persson and Wedborg (2001) and Peiris et al.
(2010). Essentially, PCA extracts a smaller set of underlying
new variables that are uncorrelated, orthogonal and
mathematically represented by linear combinations of
original variables in the X matrix. These new variables,
referred to as PCs, are calculated to account for much of the
variance present in the X matrix (Wold et al., 1987; Eriksson
et al., 2001) and therefore are able to describe major trends in
the original spectral data in X matrix. PCA decomposes the
data matrix X as the sum of the outer product of vectors si

and pi plus a residual matrix E as presented in equation (1).
The si vectors are known as scores (i.e. values) on the PCs
(i.e. new variables) extracted by PCA. The pi vectors are
known as loadings and contain information on how the
variables (spectral variables in this case) relate to each other.
A more detailed description about PCA is found in Wold et
al. (1987) and Eriksson et al. (2001).

EpsX
n

i
ii 

1

(1)

Before performing PCA analysis, X matrix was auto-scaled,
i.e. adjusted to zero mean and unit variance by dividing each
column by its standard deviation. To determine the number of
PCs that are statistically significant in capturing the
underlying features in X matrix, the leave-one-out cross
validation method (Eriksson et al., 2001) was implemented.
All computations were performed using the PLS Toolbox 5.2
(Eigenvector Research, Inc., Manson, WA) within the
MATLAB 7.8.0 (R2009a) computational environment
(MathWorks, Natick, MA).

3. MODEL DEVELOPMENT AND OPTIMIZATION

The PCs extracted from the fluorescence data (matrix X)
during UF were found to be respectively correlated to
different NOM foulants such as humic-like, protein-like and
particulate/colloidal matter present in water. Thus, the scores
of each PC can be thought as a qualitative measurement of
the corresponding foulant component. The evolution of the
PC scores (si) that correspond to these PCs during the UF of
water is related to the membrane fouling behaviour (Peiris et
al., 2010). Therefore the PC scores (si) associated with the
retentate and permeate of the UF process were used to model
the fouling behaviour of the UF membrane operation.

3.1 PC-based Modeling of Membrane Fouling

Since it is impossible at this point to identify the individual
foulant species in natural water, it was decided instead to
perform a balance on the PC scores which are physically
related to groups of foulants as mentioned above.
Accordingly, the accumulation of NOM foulants on the

surface and in the pores of the membrane was calculated
based on the PC score balance for a given group of foulant
which is analogous to a mass balance performed on the
control volume of the solution occupied by the membrane.
The accumulation of the NOM foulant (j) that contributes to
fouling can therefore be represented as follows:
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for j=1, 2, 3, ..., N and w = 0 or 1

Where sj is the PC score related to the jth NOM foulant. N is
the number of PCs generated by PCA which are statistically
significant and deemed to be important for capturing the
information related to the major groups of NOM foulants as
explained in section 2.3. Subscripts R, P and M denote
retentate, permeate and the membrane, respectively. VM is the
volume of the solution occupied by the membrane and k is a
parameter that specifies the active portion of VM (i.e. actual
portion of VM that participates in the filtration). The
membrane area, TMP and the water viscosity are represented
by symbols A, ΔP and μ respectively. is the mass flow
rate used for periodic membrane back-washing, w is a binary
variable that models permeation through the membrane
(w=0) or back-washing (w=1). effj represents the efficiency
at which the jth NOM foulant fraction (i.e. jth PC) is removed
during the back-washing. q is a parameter describing the
decay of efficiency in back-washing over time due to
irreversible fouling due to the jth NOM foulant; accumulated
membrane foulant material that cannot be removed by
membrane back-washing results in irreversible membrane
fouling. Rt is the membrane resistance at time = t, which is
given in terms of the scores as follows:
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R0 is the initial membrane resistance of the membrane before
fouling occurs. βj, j=1, 2, 3, …, N are the model parameters.
βinter is also a model parameter related to the interaction
between protein and colloidal/particulate matter (represented
by Sprotein,M and Scoll./partic.,M respectively) that contributes to
membrane fouling. The existence of this interaction was
found to be significant in a separate correlation analysis study
(results not shown for brevity) and found to be very
important for improving the model predictions in this study.

Also, from continuity considerations, the net NOM foulant
transfer rate across the membrane was assumed to be equal to
the back diffusion rate of foulants from the membrane foulant
layer to the bulk retentate phase which can be expressed by:
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Where Dj is the molecular diffusivity of the jth NOM foulant
fraction.

The permeate water flux through the membrane at time = t is
as follows:

t

t
R

P
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 (5)

3.2 Model Calibration and Validation

Experimental permeate water flux data obtained by UF runs
performed using GRW with different DOC content and
turbidity values within the ranges as indicated above were
used to calibrate the model given by the system of equations
(2a), (2b), (3), (4) and (5). The model calibration involved the
estimation of the model parameters k, β1, β2, β3, …, βN, βinter.,
eff1, eff2, eff3, …, effN and q. This was achieved by
minimizing the sum of squares error (SSE) between
experimental and model predictions of permeate water flux
by using the MATLAB function “ga”, a genetic algorithm
code available within the MATLAB 7.8.0 computational
environment. The model predictions were generated by
solving the above state space model based on the
fluorescence EEMs of retentate and permeate captured at
time = 15 min of the UF experiments using MATLAB
ordinary differential equation (ODE) solver “ode23.” PC
scores (sj,R_15min and sj,p_15 min) that are related to these
fluorescence measurements were used for the estimation of
the predicted permeate water flux into the future, i.e. for a
total time horizon of 4 h. The model validation was achieved
using additional experimental permeate water flux data that
were not used in the calibration.

3.3 Optimization of the UF process

The predicted permeate water flux can be used to understand
the fouling of the membrane and reduced permeate water flux
occurring over time for constant TMP operations (as
demonstrated in this study). On the other hand, if constant
permeate flux is desired, the TMP would increase as a result
of fouling. In both situations, membrane fouling results in an
increase in the energy requirement per unit amount of
drinking water produced.

In this study, the UF membrane back-washing times were
manipulated to optimize the UF process so that the energy
requirement was minimized for the production of a unit
amount of drinking water. This optimization approach was
implemented by minimizing the following objective function
(OF), (equation 6) subjected to the constraints listed in
equations (9) and (10).

productionWater

nconsumptioEnergy
OF  (6)

Where energy consumption and the water production for time
duration = Δt is given by: 
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Where t1, t2, t3 and t4 are the times at which the back-washing
of the UF membrane was implemented. The number of back-
washing cycles was limited to four as it was sufficient to
demonstrate the application of the proposed approach. The
number of back-washes could be another parameter that
could be included in this optimization approach; this will be
addressed in future research.

Also, tw = 180 s indicates the time that was needed for back-
washing (20 s) plus the time required to connect and
disconnect the Nitrogen gas supply for back-washing and
adjusting the TMP of the UF membrane cell holder (160 s),
which were performed manually. The total filtration time is
indicated by tF (= 257 min) and td (= 15 min) is the time at
which the first set of fluorescence EEMs of the retentate and
permeate for UF operation were obtained. This information
was required for the model predictions as explained in section
3.2. The minimization of the OF (equation 6) subjected to the
constraints (equations 9 and 10) were performed by using the
MATLAB function “ga”- a genetic algorithm code available
within the MATLAB 7.8.0 computational environment. “ga”
was better able to handle the non-linear and non-smooth (due
to back-washing) nature of the OF compared to other
optimization approaches, and was therefore selected.

4. RESULTS AND DISCUSSION

4.1 Typical fluorescence EEM features of GRW
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Fig. 2. Typical spectral features seen in the fluorescence
EEM for GRW. First order Rayleigh scattering (RS) regions
are indicated using dashed-lines.
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The spectral regions (α) and (β), indicated in the fluorescence 
EEM of GRW (Fig. 2), are representative of the presence of
humic-like NOM (Coble et al., 1990; Peiris et al., 2008). The
region (δ) is related to the presence of protein-like NOM in 
GRW (Peiris et al., 2010). Rayleigh scattering regions
observed in the fluorescence EEM also provide information
related to the particulate/colloidal matter present in water
(Peiris et al., 2010).

During the UF of GRW, subtle changes in spectral
information related to these NOM membrane foulants in both
retentate and permeate are expected and related to UF
membrane fouling. PCA was used to extract these changes in
terms of the PC scores.

4.2 PCA of fluorescence data

PCA analysis was performed on X matrix that contained
fluorescence data of 340 samples (retentate and permeate)
that were obtained from 10 UF experiments with different
feed water conditions as explained in section 2.3. This
generated new and fewer numbers of variables or PCs that
captured systematic trends present in the 4214 original
spectral variables in the X matrix. The first four PCs alone,
generated in this way, were able to capture nearly 90% of the
total variance (i.e. PC – 1: 63.0 %, PC – 2: 16.4 %, PC – 3:
5.5 % and PC – 4: 4.7 %), present in the original spectral
variables in X matrix. The remaining variance (~ 10%) is due
to the combination of unexplained variance by the first four
PCs and the instrumental noise in the fluorescence
measurements. None of the additional PCs were statistically
significant (< 2% variance captured) and were not found to
be related to membrane foulant fractions present in water as
explained below.

The first four PCs were found to be related to different NOM
membrane foulant fractions present in water; PC – 1, PC – 2,
and PC – 3 were related to humic-like, colloidal/particulate
and protein-like substances, respectively. PC – 4 was also
found to be related to colloidal/particulate substances. This
was verified by examining the loading plots corresponding to
each PC, (generated from the loading values, i.e. pi values) as
demonstrated in Peiris et al. (2010). For example, the loading
peak of PC – 1 appeared in the same location where the
fluorescence EEM regions related to humic-like NOM.
Similar observations were made with PC – 2, PC – 3 and PC
– 4 in relation to the NOM foulant fractions they represent
(results not shown for brevity). The PCA model developed
using these four PCs was then used to calculate the PC scores
(i.e. s1, s2, s3 and s4) that were used as states in the proposed
PC-based dynamic fouling model explained in section 3.1.

4.3 Model Predictions

Fig. 3 demonstrates the model predictions and the
experimentally measured permeate water flux of selected UF
experiments that were not used in the model calibration.
These experiments cover low, medium and high membrane
fouling situations. The model predictions for these
experiments were obtained using only the fluorescence-based

PC scores of retentate and permeate obtained at time = 15
min of the UF. The prediction results indicate that the model
was able to successfully predict different membrane fouling
behaviours experienced by the UF operations. The root-
mean-squared error between predictions and experimental
values for high, medium and low fouling situations were
0.09, 0.07 and 0.08, respectively.

The results presented indicate that the proposed fluorescence-
based membrane fouling modeling approach can be used for
forecasting different fouling behaviours corresponding to
changes in the membrane feed water quality. Therefore, this
approach has application in the process control of membrane-
based drinking water treatment systems where the model
predictions of high membrane fouling situations could be
detected well in advance and thus appropriate process
optimization measures implemented to ensure sustainable
operation of the treatment process.

Fig. 3. Model predictions (lines) and experimentally
measured (markers) permeate water flux for selected UF
experiments characteristic of low, medium and high
membrane fouling situations.

4.4 Optimization of UF for Drinking Water Treatment

This section illustrates the application of the proposed
modeling approach for the optimization of UF operations for
drinking water applications. The model predictions of the
fouling behaviour for UF of GRW (obtained on Oct. 25, 2009
and pre-filtered) with back-washing at normal time intervals
(i.e. 1 hr) are shown in Fig. 4. When the back-washing times
were optimized using the proposed optimization approach
(section 3.3) the model predictions indicated an energy
savings of 3.7% with a 4.3% increase in the total volume of
drinking water production. The back-washing times
generated by the optimization approach were t1 = 61 min., t2

= 90 min., t3 = 118 min., and t4 = 137 min. These model
predictions were also experimentally validated (Fig. 4).

The optimization approach used in this study was limited to
four back-washing cycles; however, it is possible to further
improve the energy savings and the water production by
employing additional back-washing cycles to the optimized
conditions. For example, when two additional back-washing
cycles were included as illustrated in Fig. 4, the model
predictions indicated an increase in the energy savings and
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the volume of drinking water production up to ~ 8.0% and ~
9.8% respectively. The use of additional back-washing cycles
will also limit the high fouling behaviour of the membrane
that may occur even with the optimized back-washing (as
was the case in this study). In addition, it would further
extend the life span of the membrane and minimize the need
for chemical cleaning to recover flux decline caused by
irreversible fouling. Current research is investigating the use
of the number of back-washing cycles as another
optimization parameter.
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Fig. 4. Model predictions (lines) and experimentally
measured (markers) permeate water flux obtained with
normal back-washing (BW) times (every hour) and optimized
back-washing times.

5. CONCLUSIONS

The fluorescence-based membrane fouling model developed
in this study was suitable for accurately predicting different
fouling situations caused by changes in membrane feed water
quality. The ability of this approach to forecast membrane
fouling based on the fluorescence EEM measurements,
captured at time = 15 min of the UF operation, should allow
sufficient time for fouling control strategies to be
implemented. This is especially applicable for forecasting
high fouling events that are often harmful for membranes or
challenging for the efficient production of drinking water to
meet consumer demand. The potential of this approach for
process optimization would be very useful for the sustainable
operation of membrane-based drinking water treatment
facilities in terms of minimizing the energy spent on a unit
amount of drinking water produced.

ACKNOWLEDGEMENTS

The authors wish to acknowledge funding from the Canadian
Water Network and the Natural Sciences and Engineering
Research Council of Canada (NSERC), including an NSERC

Postgraduate scholarship to R.H. Peiris.

REFERENCES

Coble, P.G., Green, S.A., Blough, N.V., Gagosian, R.B.
(1990). Characterization of dissolved organic matter in

the Black Sea by fluorescence spectroscopy. Nature
348(6300), 432-435.

Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wold, S.
(2001). Multi- and Megavariate Data Analysis,
Principles and Applications. Umetrics Academy, Umea,
Sweden, ISBN 91-973730-1-X, p. 533.

Gray, S.R., Ritchie, C.B., Tran, T., Bolto, B.A. (2007). Effect
of NOM characteristics and membrane type on
microfiltration performance. Water Res. 41(17), 3833-
3841.

Henderson, R.K., Baker, A., Murphy, K.R., Hambly, A.,
Stuetz, R.M., Khan, S.J. (2009). Fluorescence as a
potential monitoring tool for recycled water systems: A
review. Water Res. 43(4), 863-881.

Her, N., Amy, G., McKnight, D., Sohn, J., Yoon, Y. (2003).
Characterization of DOM as a function of MW by
fluorescence EEM and HPLC-SEC using UVA, DOC,
and fluorescence detection. Water Res. 37(17), 4295-
4303.

Huber, S.A. and Frimmel, F.H. (1992). A liquid
chromatographic system with multi-detection for the
direct analysis of hydrophilic organic compounds in
natural waters. Fresenius J. Anal. Chem. 342(1–2), 198-
200.

Jermann, D., Pronk, W., Meylan, S., Boller, M. (2007).
Interplay of different NOM fouling mechanisms during
ultrafiltration for drinking water production. Water Res.
41 (8), 1713–1722.

Peiris B.R.H., Budman, H., Moresoli, C., Legge, R.L. (2009).
Acquiring reproducible fluorescence spectra of dissolved
organic matter at very low concentrations. Wat. Sci. And
Technol. 60(6), 1385-1392.

Peiris, B.R.H., Hallé, C., Haberkamp, J., Legge, R.L.,
Peldszus, S., Moresoli, C., Budman, H., Amy, G., Jekel,
M., Huck, P.M. (2008). Assessing nanofiltration fouling
in drinking water treatment using fluorescence
fingerprinting and LC-OCD analyses. Water Sci. and
Technol.: Water Supply 8(4), 459-465.

Peiris, R.H., Hallé, C., Budman, H., Moresoli, C., Peldszus,
S., Huck, P.M., Legge, R.L. (2010). Identifying fouling
events in a membrane-based drinking water treatment
process using principal component analysis of
fluorescence excitation-emission matrices. Water Res. 44
(1), 185-194.

Persson, T., Wedborg, M. (2001). Multivariate evaluation of
the fluorescence of aquatic organic matter. Anal. Chim.
Acta 434, 179–192.

Saravia, F., Zwiener, C., Frimmel, F.H. (2006). Interactions
between membrane surface, dissolved organic substances
and ions in submerged membrane filtration. Desalination
192 (1-3), 280–287.

Seidel, A., Elimelech, M. (2002). Coupling between chemical
and physical interactions in natural organic matter
(NOM) fouling of nanofiltration membranes:
Implications for fouling control. J. Mem. Sci. 203, 245–
255.

Wold, S., Esbensen, K., Geladi, P. (1987). Principal
components analysis. Chemo. and Intell. Lab. Sys. 2, 37–
52.

Additional back-washes

Copyright held by the International Federation of Automatic Control 832


