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Abstract: A multiscale model of atomic layer deposition (ALD) inside a nanoporous material
is developed in this paper. The overall model couples lattice Monte Carlo simulators describing
molecular-scale growth of the ALD film to a continuum description of the precursor transport
within the nanopore. The multiscale simulator is used to study how intra-pore precursor
depletion leads to nonuniform ALD films and can be used to examine whether film properties,
such as composition and surface roughness, are functions of position within the pore. The
simulator developed in this study is used to optimize the film growth process by manipulating the
precursor species exposure level to produce nearly perfectly uniform films within the nanopores.
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1. INTRODUCTION

Atomic layer deposition (ALD) has been used to modify
the geometry of nanostructured materials (6; 9), such as
nanoporous membranes that serve as templates for the
fabrication of nanoengineered devices (4). The increasing
importance of ALD as a thin-film manufacturing tech-
nique and recognition that ALD does not always produce
perfectly conformal films has motivated recent modeling
studies. “First-principles” modeling (7) has mostly been
limited to the initial growth of ALD films because of the
computational difficulties associated with applying large-
scale molecular dynamics techniques to simulate growth of
ALD films over multiple cycles. Gas-phase species trans-
port within nanopores has been modeled by molecular
dynamics and other sophisticated techniques (3). However,
the growth and transport models have only been recently
been coupled in a complete multiscale simulation (2) ca-
pable of predicting film structure over hundreds of ALD
cycles.

1.1 The multiscale nature of the problem

In an earlier paper (1), we describe a detailed lattice Monte
Carlo model of ALD alumina growth using trimethylalu-
minum and water as the precursors, 1 and examine the
progression of film growth from a crystalline substrate
with a fully hydroxylated initial surface (7). In (2), we
built on this molecular-scale model of film growth, incorpo-
rating that model in a Knudsen-diffusion based transport
model within a high aspect ratio anodic aluminum oxide
? The author acknowledges the support of the National Science
Foundation through grant NSF-CBET 0828410.
1 Precursors are the gas phase chemical species that react to form
the deposited film; see, e.g., (10) for an overview relevant to ALD.

nanopore, examining the interplay between film growth
along the nanopore and the resulting modification to the
diffusive transport within the pore. The phenomenological
and computational aspects of coupling the microscropic
model of film growth to the continuum description of
transport within the pore were explored in the cited
manuscript. Furthermore, a representative simulation was
examined to determine if film properties change as a func-
tion of position along the length of the nanopore. In this
paper, we continue to extend this line of study, and for
the first time, apply the multiscale simulator as a means
of optimizing film uniformity within the nanopores.

The full ALD reaction/diffusion system is characterized
by two time scales: the slower time-scale t (min to hrs) of
film growth and the faster time τ corresponding to surface
reactions and the exposure period duration. Likewise,
there are two length scales: r (nm) corresponding to
the pore radius, compositional variations, and surface
roughness, and z (µm) the pore length scale. This splits
the model problem neatly into a combination of spatial and
temporal scales: the molecular-scale surface reaction model
characterized by τ and r, the pore evolution model in
which the pore radius measured by r depends on time scale
t and length scale z, and the gas-phase transport model,
which will be integrated over τ , making it a function of t
and z.

2. THE FILM GROWTH MODEL

Al2O3 ALD growth proceeds by the two half reactions,
the first corresponding to the trimethylaluminum (TMA)
exposure in which the TMA binds to the oxygen of a
surface hydroxyl group (12) and then reacts releasing a
methane molecule:

AlOH + Al(CH3)3 → Al-O-Al(CH3)2 + CH4.
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Fig. 1. An idealized atomic layer deposition (ALD) process,
illustrating the two precursor (A, W) exposure and
two purge steps making one complete ALD cycle.

The surface hydroxyl groups are reformed during the sub-
sequent half reaction when water is used as the precursor:

Al-O-Al(CH3)2 + 2H2O → Al-O-Al(OH)2 + 2CH4.

An idealized illustration of one complete ALD cycle is
shown in Fig. 1, where M· denotes the TMA and O· the
water precursor molecules. Of course, the actual reactions
are far more complex, and do not normally produce perfect
monolayers during each deposition cycle. Numerous stud-
ies have examined specific aspects of the ALD reactions;
some of these include (5; 7; 10; 12).

To develop a comprehensive model of the atomic layer
deposition process, (1) presented a two dimensional lattice
to represent the alumina surface as it grows during ALD
(see Fig. 2). The rationale behind developing this coarse-
grained model of film structure was to provide a simple
computational representation of the relative positions of
reactive surface groups and film morphology, and not to
create a framework for precise representation of the film
molecular structure.

The substrate and initial fully hydroxylated growth surface
(7) is represented on this lattice, and subsequent reactions
with gas phase TMA during the first exposure are simu-
lated using a Monte Carlo approach, taking into account
the ability of TMA to react with up to three neighboring
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Fig. 2. Representative ALD film after 50 exposure cycles
with δA = 10 and δW = 0.5 torr sec. This case
corresponds to significant water under-exposure.
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Fig. 3. Film growth per cycle (GPC) in monolayers/cycle
as a function of the two precursor exposure levels δA
and δW . Note the plateau region corresponding to self
limited growth at GPC ≈ 0.6 monolayers/cycle.

surface OH groups. Steric hindrance effects are accounted
for by limiting the local surface CH3 group density, and
other reactions also are included in the reaction model
(1). Reactions with water are treated in a similar manner.
Overall, the MC modeling procedure allows simulation of
arbitrarily large numbers of ALD cycles, observing how
growth per cycle (GPC), film density ρ, and RMS film
surface roughness σ evolve with ALD cycle number and
precursor dosages. A representative segment of ALD film
is shown in Fig. 2.
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Given the precursor partial pressure Pi (i = A,W ) during
each exposure period, we now define the half-cycle average
precursor dose δi for TMA and water as

δi(z) =

τi∫
0

Pi(z, τ)dτ

where τi is the length of each exposure period. Using the
film growth model, we compute the GPC as a function
of the two precursor dosages δA, δW and plot the results
in Fig. 3. This figure maps out the region of self-limited
growth, illustrating that for larger values of δA and δW , no
increase in film growth rate occurs. In this region (marked
by the darkest red of Fig. 3), the reaction has gone to
completion and no further benefit is to be gained by higher
precursor exposure levels.

3. PORE TRANSPORT MODELING

Given the relatively low pressure of the ALD process and
the small (e.g., 10-100 nm) nanopore diameters, we find
Knudsen numbers on the order of 1000, clearly indicating
Knudsen diffusion as the precursor transport mode within
the pore (3; 11). Based on the pore geometry illustrated
in Fig. 4, the following relationship balancing the overall
transport and reaction that takes place over each exposure
period can be posed:

Net Knudsen diffusion = ALD surface reactions

and then translated into the following modeling equation

1
L2

∂

∂z

r2(z, t)
RT

Di
∂δi
∂z

=

τi∫
0

2r(z, t)Rci (Pi, z)dτ (1)

for pore length L, reactor temperature T , pore radius r,
and pore axial position z. Again, i = A,W indicate the
two precursor species. Rci (Pi, z) is the instantaneous rate
of precursor consumption by the ALD surface reactions,
per unit of growth surface area, and the Knudsen diffusion
coefficient is defined by

Di =
2
3
r(z, t)

√
8RT
πMi

[
1− (L)sgn

(
∂δi
∂z

)
∂r/∂z

L2 + (∂r/∂z)2

]
where R is the gas constant and Mi the molecular mass of
each of the precursor species. Notice that the right-most
term (enclosed in brackets []) accounts for the enhance-
ment/reduction of the Knudsen diffusion that results from
gradients in r along the pore length. Omission of this term
can lead to negative partial pressure values and numerical
instabilities (2). As discussed earlier, note that r(z, t) is
used to indicate that pore diameter evolves slowly relative
to the length of the exposure cycles τi.

We now define the total number Γi of precursor molecules
that collide and subsequently react with the growth surface
as

Γi(δi(z)) =

τi∫
0

Rci (Pi(z, τ))dτ,

respectively. Having averaged the two precursor mass
balance equations over each half-cycle and using the

definitions above gives the greatly simplified two-point
boundary-value problem:

d

dz
r3(z, t)[1− ε(z, t)]dδi

dz
− αir(z, t)Γi(δi) = 0 (2)

with

αi = 3L2

√
πMiRT

8

and

ε(z, t) = (L)sgn
(
dδi
dz

)
∂r/∂z

L2 + (∂r/∂z)2

subject to the two pore mouth boundary conditions
δi(0) = δoi and δi(1) = δ1i .

The constants αi essentially lump the Knudsen diffusion
coefficient, the pore aspect ratio, and the geometry factor
relating pore gas-phase depletion to the precursor con-
sumption rate by the ALD surface reactions into a single
term.

4. MULTISCALE SIMULATION

The final form of the boundary value problem (2) subject
to the specified boundary conditions is discretized using
an orthogonal polynomial collocation technique, where the
polynomials are globally defined over z ∈ [0, 1]. If A is the
discrete (1st order) differentiation array produced using
the collocation procedure, the discretized equations are
written as

A diag(r3 ◦ [1− ε])Aδi − αir ◦ Γi(δi) = 0

where ◦ is the Hadamard (term-by-term) product and
diag() indicates a diagonal array with r3 ◦ [1 − ε] as the
diagonal elements.

A Newton-Raphson procedure then is used to solve each
set discretized equations, first for δA(z) during the TMA
exposure step and then δW (z) during the water exposure.
We write δi(z) instead of the vector of discretized values
δi because the former is found from the latter by using the
orthogonal polynomial sequence and discrete transforma-
tion array of the collocation procedure.

A vector of objects defining the local film properties
is subjected to the Monte Carlo simulation procedure
corresponding to the appropriate half reaction exposure
level δi(zj). A film growth model object is defined at every
collocation point to determine the GPC and consumption
Γi of the precursors at each point zj . To couple the
stochastic model of film growth to the deterministic model
of precursor transport, by regression we fit a model of the
form

Γi = Γ∞i
(
1− eaiδi

)
where Γ∞i and ai are the model parameters to be fitted af-
ter each half-cycle. We note that the most computationally
difficult elements of the Jacobian array necessary for the
Newton procedure all lie on the diagonal and correspond
to dΓi(δi(zj))/dδi(zj). The more numerous off-diagonal
elements correspond to the differentiation array A, which
only must be computed at the outset of the simulation.
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Fig. 4. Nanoporous film (left) and closeup of an individual pore geometry (right) illustrating the scale z over which which
the cycle-averaged TMA and water exposure levels (δA and δW , respectively) are defined. Individual lattice Monte
Carlo film growth models are evaluated at the collocation points zj.

Overall, this Jacobian structure is exploited to produce a
relatively efficient computing procedure that scales nearly
linearly with collocation number Nc.

After convergence of the Newton procedure, the pore
radius profile is updated using the local GPC values:

r(zj , th) = r(zj , th−1) +GPC(zj , th−1)

where h is the cycle number and j the collocation point in-
dices. Using the updated pore radius profile, the following
exposure levels δi then are computed for the next exposure
cycle.

5. REPRESENTATIVE RESULTS

As a representative simulation, we consider a nanoporous
membrane that is open at both ends (such as in Fig. 4)
subject to the symmetric boundary conditions δA(0) =
δA(1) = 40Torr · s, i.e., a four second exposure to each
precursor supplied at a pressure of 10Torr, and δW (0) =
δW (1) = 32Torr · s. These exposure levels are far above
those values that are required to saturate the growth
surface when no mass transfer resistance is present (see
Fig. 3); the motivation for choosing these relatively high
values was to increase the transport of precursors to the
pore central region. The initial pore diameter was set at
30nm and pore length to be 3µm resulting in values of
αA = 10800 and αW = 5400Torr s nm4/molecule. The
difference between the two coefficients is attributable to
the differences in Knudsen diffusion coefficient of the two
precursor species at T = 500K.

Results of this representative simulation are shown in
Fig. 5. A total of 85 ALD cycles were simulated, at which
the pore mouths have been substantially reduced due to
the build up of the ALD film. Early in the ALD deposition
process (e.g., 25 cycles, second profile from the top in
Fig. 5) little resistance to diffusion within the pores is en-
countered by either precursor, giving a relatively uniform
film. However, as the pore diameter shrinks, resistance
to precursor diffusion in the pore mouth region increases,
resulting in precursor depletion in the pore central region
and reduced growth - the reduced precursor exposure

level is denoted by the blue end of the color scale and
by the decreasing values of center(δA) and center(δW ) in
Fig. 5, right. Once started, this becomes a self-accelerating
process, with pore closure occurring relatively rapidly after
the onset of the nonuniform deposition.

5.1 Dosage optimization

Given the self-limiting nature of the ALD process and
that we have identified the limits of δA and δW in Fig. 3
above which the maximum deposition rate will take place,
we can formulate a relatively simple process optimization
procedure in which the boundary values of (2) are adjusted
so that the minimum values of δA(z) and δW (z) equal
5Torr · s. The corresponding boundary values, denoted as
bc(δA) and bc(δW ) in Fig. 6, which were fixed during the
ALD cycles described previously, now will increase with
cycle number as the pore radius shrinks.

While conceptually straightforward, the computational
procedure used to compute the minimal boundary values
of the exposure levels δi necessary to assure deposition
uniformity throughout the pore requires a modification of
the Newton-Raphson technique described earlier. In this
optimization procedure, the variable/parameter status of
the exposure boundary and pore centerpoint values are
switched. Thus, the new residual equation δi(z = L/2) −
5 = 0 replaces the discretized precursor material balance
at the pore center, a simple procedure if an odd num-
ber of collocation points Nc is used. In this procedure,
the boundary δi thus are computed directly; the mod-
ified discretized problem converges quadratically under
the Newton-Raphson procedure and is computationally
comparable to the original simulation procedure, retaining
its O(Nc) scaling.

Under the optimized conditions shown in Fig. 6, the
minimum (centerpoint) values of each precursor exposure
levels remain constant at the setpoint of 5Torr · s. What
changes is the dose levels at the pore mouths; both the
TMA and water dosages increase with decreasing pore
radius, compensating for the increased resistance due to
the narrowing pore. While very high exposure levels are
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Fig. 5. Base case simulation showing pore deposition profile snapshots corresponding to cycles 5, 25, 45, 65, and 85
(top to bottom, left). Deposited film is shown in gray, original pore outline in black, along with the gas phase TMA
exposure level δA(z). The color bar indicates δA in Torr · s. Minimum exposure levels within the pore are shown at
right illustrating how the pore central-region exposure levels fall to zero due to depletion within the pore.

required as the pore radius shrinks to zero, we see that
it remains possible to control the pore radius uniformity
though all the ALD cycles. Because the area under each
curve in the bc(δi) vs. cycle-number plots corresponds
to total precursor consumption of this process, further
investigation of other modes of ALD operation to decrease
precursor utilization is underway to improve the efficiency
of precursor utilization.
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