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Abstract: Uncertainties inherent in biological systems make control of continuous fermenters a
challenging task. This work proposes to integrate the quasi-infinite horizon nonlinear model predictive
control (NMPC) algorithm, with an adaptive state and parameter estimator. As a result, the quasi-
infinite horizon NMPC can be applied to systems with only part of the states measured. Moreover, the
adaptive parameter estimation can update the uncertainty parameter online in the presence of plant-model
mismatch. Two variations of target setting optimization problem are proposed to adjust the equilibrium
points when they drift away due to the plant-model mismatch. The proposed method is applied to a
fermentor with partial state feedback.

1. INTRODUCTION

Biochemical processes exhibit highly nonlinear and complex
dynamics. Uncertainties inherent in biological systems render
control problems associated with fermenters and bioreactor dif-
ficult. Over the last decade, nonlinear model predictive control
has emerged as a promising approach for achieving tight control
of such uncertain nonlinear systems. Many researchers have
contributed important issues to guarantee the nominal stability
of NMPC. Keerthi and Gilbert [1988] and Mayne and Mis-
chalska [1990] proposed a terminal equality constraint scheme,
requiring the states to be zero at the end of each finite prediction
horizon. However, it is hard to get solution since it is diffi-
cult to determine the prediction horizon length to satisfy the
terminal equality constraint. In order to avoid this, Michalska
and Mayne [1993] proposed a terminal inequality constraint
approach and suggested a dual-mode receding horizon control.
NMPC with this scheme is implemented by switching between
the two controllers, depending on the states being inside or
outside the terminal region. Chen and Allgöwer [1998] pro-
posed a quasi-infinite horizon NMPC scheme that optimizes an
objective functional consisting of a finite horizon cost and a
terminal cost subject to system dynamics, input constraints and
an additional terminal region constraint. The terminal states are
penalized such that the terminal cost bounds the infinite horizon
cost of the nonlinear system controlled by a local linear state
feedback controller. It has the advantage that the local linear
state feedback controller is never implemented; it is only used
to determine the terminal region and the terminal penalty matrix
offline. In addition, it has computational advantages in NMPC
applications as well. The prediction horizon can be selected
shorter than in common practice, which chooses long prediction
horizons to achieve nominal stability. As a result, the quasi-
infinite horizon scheme has become the standard formulation in
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the NMPC literature with stability analyses, such as in Mayne
et al. [2000], Magni and Scattolini [2007], Limon et al. [2009]
and etc.

The above mentioned studies are based on the assumption that
all the states in nonlinear systems are measurable. However,
in practice, the outputs of systems are part of the states, or
are nonlinear functions of the states. Consequently, a state
estimator is usually employed to reconstruct the states from
the outputs. In addition, disturbances and modeling errors are
usually present due to parameter drift and changes of operating
conditions in industrial NMPC applications, causing the pres-
ence of plant-model mismatch. The plant-model mismatch may
lead to biased state estimates or cause the NMPC controller
to be unstable. Patwardhan et al. [2009] proposed a moving
horizon framework to adaptively estimate states and uncertainty
parameters for nonlinear discrete-time systems simultaneously.
This proposed scheme has the advantage that constraints can be
easily introduced on the uncertainty parameters.

The aim of this work is to incorporate the quasi-infinite NMPC
scheme with an adaptive state estimator, in order to deal with
systems with partial state feedback and the presence of plant-
model mismatch. In the next section, we briefly recall the
procedure to calculate the terminal penalty matrix and terminal
region constraints in the quasi-infinite horizon NMPC given by
Chen and Allgöwer [1998]. Then an adaptive extended Kalman
filter (EKF) for continuous-time systems, similar to that in
Patwardhan et al. [2009], is proposed. In addition, we propose
two target setting schemes which adjust the equilibrium points
of nonlinear systems in the presence of plant-model mismatch.
Finally, the adaptive quasi-infinite horizon NMPC is proposed
based on the adaptive EKF and the target setting optimization
problems. The proposed method is illustrated by simulation
studies of a fermentation process with partial state feedback.
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2. QUASI-INFINITE HORIZON NONLINEAR MODEL
PREDICTIVE CONTROL

In this section, we briefly summarize the quasi-infinite horizon
NMPC method for continuous systems given by Chen and
Allgöwer [1998]. The class of systems to be controlled is de-
scribed by the following general nonlinear ordinary differential
equations (ODEs):

dx(t)

dt
= f (x(t),u(t),θ(t)) (1a)

y(t) = h(x(t)) (1b)

where x(t) ∈ R
nx , y(t) ∈ R

ny and u(t) ∈ R
nu represent the state

vector, output vector and input vector, respectively. θ(t) ⊂
Ωθ ∈ R

nθ is the uncertainty parameter vector that is in a
compact set Ωθ , with 0 as its nominal value. The system is
subject to input constraint

u(t) ∈ U,∀t ≥ 0. (2)

Moreover, this system is assumed to have equilibrium point at
the origin, i.e.

0 = f (0,0,0), 0 = h(0). (3)

In practice, if the equilibrium point is not 0, one can shift the
origin to the equilibrium point so that this assumption holds
true.

If all the states are measurable, i.e. y(t) = x(t), the quasi-infinite
horizon NMPC is formulated as follows:

min

∫ k+Np

k

(

z(τ)TWxz(τ)+ v(τ)TWuv(τ)
)

dτ

+ z(k +Np)
TW∞z(k +Np)

s.t
dz(t)

dt
= f (z(t),v(t),0) (4a)

z(k) = x(k) (4b)

v(t) ∈ U, z(k +Np) ∈ Ωx (4c)

t ∈ [k, k +Np], (4d)

where Np is the prediction horizon, z(t) and v(t) are the future
predicted states and control movements. Wx and Wu are tuning
matrices, denoting positive-definite weights for the states and
inputs, respectively. W∞ and Ωx represent the terminal penalty
matrix and terminal region constraint, which are computed us-
ing local linearization of the nominal model (1a) at the terminal
state. Note that in the controller, the uncertainty parameter is
set to its nominal value.

The procedure to calculate the terminal penalty W∞ and termi-
nal region Ωx given by Chen and Allgöwer [1998] is as follows:

(1) Consider the Jacobian linearization of the system (1) at the
origin

dx

dt
= Ax+Bu (5)

where A := ∂ f

∂x
|(0,0,0) and B := ∂ f

∂u
|(0,0,0). If equation (5) is

stabilizable, then solve a linear state feedback gain K, i.e.
u = −Kx, by linear-quadratic regulator (LQR) algorithm,
such that Ak := A+BK is asymptotically stable.

(2) Choose κ ∈ [0,∞) that satisfies

κ < −λmax(Ak), (6)

and obtain the positive-definite symmetric W∞ by solving

(Ak +κI)TW∞ +W∞(Ak +κI) = −W ∗, (7)

where W ∗ =Wx +KTWuK is a positive-definite symmetric
matrix.

(3) Find the largest possible α1 such that Kx ∈ U, ∀x ∈ Ωα1
,

where Ωα1
:= {x ∈ R

nx |xTW∞x ≤ α1}.

(4) Find Ωx := {x ∈ R
nx |xTW∞x ≤ α} by making iterations of

an optimization problem

max
x

{xTW∞φ(x)−κxTW∞x|xTW∞x ≤ α} (8)

for the chosen κ by reducing α from α1 until the optimum
value given by (8) is nonpositive. Here α ∈ (0,α1] and

φ(x) = f (x,Kx)−Akx. (9)

Chen and Allgöwer [1998] have shown that this quasi-infinite
horizon formulation can guarantee asymptotic closed-loop sta-
bility under nominal conditions if all the states are measured.
In practice, however, the state information are usually not fully
measurable. Hence, a state estimator such as EKF is usually
implemented in parallel to reconstruct the initial state in order to
solve the NMPC problem. In addition, plant-model mismatch is
usually present. As a result, the state estimation may be biased
and the equilibrium point may drift away from the origin.

3. ADAPTIVE EXTENDED KALMAN FILTER

In this section, we present an adaptive EKF scheme based on a
moving horizon framework that estimates both the state and the
uncertainty parameter in the system (1).

At time step k, a nominal extended Kalman filter (EKF) is
carried out as follows:

x−(k +1) = x̂(k)+
∫ k+1

k
f (x(τ),u(τ),0)dτ (10a)

x̂(k) = x−(k)+L(k)(y(k)−h(x−(k)), (10b)

where x− and x̂ are a priori and a posteriori estimates respec-
tively. L(k) represents the time-varying Kalman gain matrix,
which is calculated by

L(k) = PXY (k)PYY (k)−1. (11)

where PXY (k) represents the cross-covariance matrix relating
x(k) and y(k), while PYY (k) represents the auto-covariance
matrix of signal y(k). These matrices are approximated using
the following set of equations

PXY (k) = P(k)−C(k)T (12a)

PYY (k) = C(k)P(k)−C(k)T +R (12b)

P(k) = (I −L(k)C(k)P(k)− (12c)

P(k +1)− = Φ(k)P(k)Φ(k)T +Q (12d)

where P(k)− and P(k) are called a priori and a posteri-
ori covariance matrices, and Φ(k) := exp(A(k)T ), A(k) :=
∂ f

∂x
|(x−(k),u(k),0), C(k) := ∂h

∂x
|x−(k), T is the sampling time, R and

Q are tuning matrices. The EKF is called nominal because the
prediction is based on the nominal plant model.

In the presence of plant-model mismatch, the a priori and a
posteriori error sequences will not converge to zero. In order
to get an accurate estimate of the state and to improve the
model for the further NMPC application, an adaptive method to
update the model parameter online is proposed by Patwardhan
et al. [2009], based on observer error information for nonlinear
discrete-time systems. The idea is that at each time step k, we
solve an optimization problem over a time horizon N to get
an optimal value of the uncertain parameter θ to minimize the
output error. This can be modified for continuous-time systems
as follows:
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θ̂(k) =argmin
θ

N

∑
j=1

|y(k−N + j)−h(z−(k−N + j))|2W (k−N+ j)

s.t. z(k−N + j +1)− = ẑ(k−N + j)

+
∫ k−N+ j+1

k−N+ j
f (z(τ),u(k−N + j),θ)dτ

ẑ(k−N + j) = z−(k−N + j)

+L(k−N + j)(y(k−N + j)−h(z(k−N + j)−))

ẑ(k−N) = x̂(k−N),

j = 1 . . .N, θ ∈ Ωθ ⊂ R
nθ (13)

where W (k−N + j) is the weighting matrix of each time step,
z−(k−N + j) and ẑ(k−N + j) are the a priori and a posteriori
state estimates in the optimization problem, its initial condition
is chosen to be the estimated value from the observer at time
step k − N. Moreover, the Kalman gain matrix L(k − N + j)
is calculated in the same way as in equation (11). Finally,
the estimated states are smoothed with the updated uncertainty

parameter, i.e. x̂(k−N + j) = ẑ(k−N + j, θ̂(k−N + j)), j =
0, . . . ,N. It means that the adaptive EKF automatically updates
the estimated state over the horizon N according to the esti-
mated uncertainty parameter. Patwardhan et al. [2009] pointed
out that unlike state and parameter estimation by augmenting
systems, this formulation allows us to add constraints for the
uncertain parameter θ . Moreover, if the uncertainty parameter
is observable, the adaptive EKF (13) can guarantee the esti-
mated uncertainty parameter converges to the true plant value,
even for multiple uncertainty parameters.

4. TARGET SETTING

Due to the presence of plant-model mismatch, the equilibrium
point of the plant may drift away from the origin. In this section,
we propose to solve a target setting optimization problem that
adjusts the equilibrium point. The new target state will be used
as the state setpoint in the NMPC formulation. Moreover, the
terminal penalty matrix and terminal region constraint will be
calculated based on the adjusted equilibrium point. Depending
on different objectives, we propose two formulations of the
target setting optimization problem. The first one considers pro-
viding offset free behavior for the plant output. The objective
function is to minimize the difference between the setpoint
of plant output and the calculated target output. The second
formulation aims to gain the best profit of the plant. Hence the
objective function is to maximize an economic criteria, such as
production rate, economic profit value, etc.

The following formulation is to calculate the target values
of state x(k)ts and input u(k)ts that minimize the difference
between the target output y(k)ts and the setpoint yr.

min |yts(k)− yr|
2
Wy

s.t. 0 = f (x(k)ts,u(k)ts, θ̂(k))

y(k)ts = h(x(k)ts)

u(k)ts ∈ U, (14)

where Wy is the corresponding weighting matrix, θ̂(k) is the
calculated uncertainty parameter from the adaptive EKF (13).
Unlike the target setting optimization problem based on state
and output errors proposed by Huang et al. [2009], this formu-

lation is based on the updated uncertainty parameter θ̂(k) from
the adaptive EKF.

Alternatively, one can solve an equivalent infinite horizon dy-
namic optimization problem to obtain the target steady-state.

min

∫ k+∞

k

(

(y(τ)− yr)
TWy(y(τ)− yr)

)

dτ

s.t.
dz(t)

dt
= f (z(t),uts(k), θ̂(k))

y(t) = h(z(t))

z(k) = x̂(k), uts(k) ∈ U

t ∈ [k, k +∞]. (15)

Note that uts(k) is the calculated target input for the entire
horizon, and the initial condition is the state estimation from
the adaptive EKF (13). The target state is then chosen to be
xts(k) = z∗(k + ∞), which is the solution at the end of the
horizon. In practice, we approximate the steady state solution
by replacing ∞ with a finite number.

To improve the process profit in the presence of plant-model
mismatch, the second variation of the target setting optimiza-
tion problem can be formulated as follows:

max P(x(k)ts,u(k)ts)

s.t. 0 = f (x(k)ts,u(k)ts, θ̂(k))

y(k)ts = h(x(k)ts)

u(k)ts ∈ U, (16)

where P(·, ·) is an economic profit value which is a function
of the target state x(k)ts and target input u(k)ts. The alternative
equivalent dynamic optimization problem is formulated as fol-
lows:

max P
(

z(k +∞),uts(k)
)

s.t.
dz(t)

dt
= f (z(t),uts(k), θ̂(k))

y(t) = h(z(t))

z(k) = x̂(k), uts(k) ∈ U

t ∈ [k, k +∞]. (17)

The dynamic formulations (15) and (17) are essentially approx-
imations of the steady state formulations (14) and (16). In our
experiences, the dynamic formulations (15) and (17) make the
problem easier to converge even though they result in larger
dynamic optimization problems.

5. ADAPTIVE QUASI-INFINITE HORIZON NMPC

Once the state estimation, the optimal uncertainty parameter
and the updated target steady state are available, the adaptive
quasi-infinite horizon NMPC can be formulated as:

min

∫ k+Np

k

(

(z(τ)− x(k)ts)TWx(z(τ)− x(k)ts)

+(v(τ)−uts(k))TWu(v(τ)−uts(k))
)

dτ

+(z(k +Np)− x(k)ts)TW∞(k)(z(k +Np)− x(k)ts)

s.t
dz(t)

dt
= f (z(t),v(t), θ̂(k)) (18a)

z(k) = x̂(k) (18b)

z(k +Np) ∈ Ωx(k),
(

v(t)−uts(k)
)

∈ U (18c)

t ∈ [k, k +Np]. (18d)

Unlike the quasi-infinite horizon NMPC (4), this adaptive for-
mulation is initialized with the estimated state and the predic-
tive model is adaptively updated with the estimated uncertainty
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parameter. Moreover, the target state, the terminal penalty ma-
trix and the terminal inequality region are calculated online at
each time step.

At the time step k, the center of the terminal region is the
updated target state xts(k). The terminal penalty matrix W∞(k)
and the constant α(k), which determine the shape and size of
the terminal region, are calculated by the following procedure:

(1) Consider the Jacobian linearization of the system (1) at the
target:

dx

dt
= A(k)x+B(k)u (19)

where A(k) := ∂ f

∂x
|(xts(k),uts(k),θ̂(k)) and

B(k) := ∂ f

∂u
|(xts(k),uts(k),θ̂(k)). If equation (19) is stabilizable,

then solve a linear state feedback gain K(k), such that
Ak(k) := A(k)+B(k)K(k) is asymptotically stable.

(2) Choose κ ∈ [0,∞) that satisfies

κ < −λmax (Ak(k)) , (20)

and obtain the positive-definite symmetric W∞(k) by solv-
ing

(Ak(k)+κI)TW∞(k)+W∞(k)(Ak(k)+κI) = −W ∗(k),
(21)

where W ∗(k) = Wx + K(k)TWuK(k) is a positive-definite
symmetric matrix.

(3) Let △x := (x− xts(k)). Find the largest possible α1(k)
such that K(k)△x ∈ U, ∀△x that satisfy △xTW∞(k)△x ≤
α1(k).

(4) Find the largest constant α(k) ∈ (0,α1(k)] by making
iterations of an optimization problem

max
△x

{△xTW∞(k)φ(△x)−κ△xTW∞(k)△x|

△xTW∞(k)△x ≤ α(k)} (22)

for the chosen κ by reducing α(k) from α1(k) until the
optimum value given by (22) is nonpositive. Here

φ(△x) = f (△x,K(k)△x)−Ak(k)△x. (23)

As a result, the terminal region Ωx(k) centered around the target
state xts(k) is defined by

Ωx(k) = {x ∈ R
nx |

(

x− xts(k)
)T

W∞(k)
(

x− xts(k)
)

≤ α(k)}.
(24)

6. SIMULATION EXAMPLES

In this section, the proposed adaptive quasi-infinite horizon
NMPC is applied to a fermentation process reported by Henson
and Seborg [1990], Patwardhan and Madhavan [1993]. The
dynamic model equations for this process are given below:

dX

dt
= −DX + µX

dS

dt
= D(S f −S)−

1

Yx/s

µX

dP

dt
= −DP+(αµ +β )X

Y1 = X , and Y2 = S, (25)

where the X represents the biomass concentration, S represents
the substrate concentration, and P denotes the product con-
centration. Assume X and S are measured outputs, while the
dilution rate D and the feed substrate concentration S f are the
input variables. Model parameter Yx/s represent the cell-mass

yield, and α and β are kinetic parameters. µ is the specific
growth rate, which is calculated as

µ =
µm(1− P

Pm
)

Km +S + S2

Ki

. (26)

Equation (26) contains four model parameters: the maximum
specific growth rate µm, the product saturation constant Pm, the
substrate saturation constant Km and the substrate inhabitation
constant Ki. The nominal values of the model parameters are
listed in Table 1.

Table 1. Nominal Model Parameters

parameter nominal value parameter nominal value

Yx/s 0.4 g/g Pm 50 g/L

α 2.2 g/g Km 1.2 g/L

β 0.2 h−1 Ki 22 g/L

µm 0.48 h−1

At the nominal condition, the optimal steady-state values are
listed in Table 2.

Table 2. Optimal Steady State

variable value variable value variable value

X∗ 7.293 g/L S∗ 5.169 g/L P∗ 24.9 g/L

D∗ 0.164 h−1 S∗f 23.4 g/L

6.1 Target Setting with Offset Free

In the first scenario, the control objective is to maintain the
plant output at the nominal setpoint without offset, even in the
presence of plant-model mismatch. Consequently, target setting
optimization problem (15) is used. The cell-mass yield Yx/s is
considered as an uncertainty parameter.

In this simulation, the sampling time T is chosen as 0.5 hr. The

adaptive EKF (13) is tuned with Q =
[

∂ f

∂u
|x∗,u∗

]

Q̄
[

∂ f

∂u
|x∗,u∗

]T

,

Q̄ = diag[0.01,0.09], R = diag[0.01,0.01]. The horizon of the
adaptive EKF is chosen to be 5 time units. The prediction hori-
zon of the target setting optimization problem (15) is chosen to
be 40 time units, and the output weighting matrix is tuned as
Wy = diag[1,1]. The prediction horizon of the adaptive NMPC
(18) is chosen to be 20 time units. The calculated control action
is chosen to be the input blocking form with 2 steps as the
control horizon. It indicates that there are 2 degrees of freedom,
and they are spread over the entire prediction horizon, satisfy-
ing v(1) = v(2) =, · · · ,v(10) and v(11) = v(12) =, · · · ,v(20).
The weighting matrix are Wx = diag[1,1,1] and Wu = 0.5 ×
diag[1,1]. The simulation is performed in Matlab, the plant is
propagated using ODE45, the optimization problems (13), (15),
(17), (18) and (22) are solved using fmincon, which is based on
Sequential Quadratic Programming (SQP) algorithm.

The simulation starts from the nominal point. Then at 12.5 hrs,
the uncertainty parameter Yx/s is perturbed by 100%, to 0.8
g/g. Figures 1 and 2 show the closed-loop plant responses. It
is observed that the adaptive EKF can track the changes of the
uncertainty parameters in few time steps, removing the plant-
model mismatch. The proposed approach can quickly reject the
disturbance and regulate the plant at the target. The plant output
X and S are controlled at their setpoints without any offset.
Moreover, after the estimated uncertainty parameter converges
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to the plant value and the plant-model mismatch is removed,
the EKF yields unbiased state estimation as shown in Figure 1.

Figure 3 shows the profile of α and the eigenvalues of W∞,
which determine the size and shape of the terminal region as
in equation (24). It is worth emphasizing that the center of the
terminal region is the calculated target state which is shown as
the thick solid lines in Figure 1. Before 12.5 hrs, the terminal
penalty matrix is

W∞(k) =

[

58.5791 −3.0981 −15.8994
−3.0981 5.3694 4.0738
−15.8994 4.0738 6.3555

]

and Ωx(k)= {x∈R
nx |(x− xts(k))T

W∞(k)(x− xts(k))≤ 1.8792}.
After the disturbance at 12.5 hrs, the calculated terminal penalty
matrix is

W∞(k) =

[

59.1187 −1.4220 −14.6016
−1.4220 4.9367 1.8887
−14.6016 1.8887 4.1183

]

and Ωx(k)= {x∈R
nx |(x− xts(k))T

W∞(k)(x− xts(k))≤ 1.9895}.
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Fig. 3. Terminal region profile of scenario 1.

6.2 Target Setting with Maximizing Economic Profit

In the second scenario, the control objective is to maximize
the product concentration P in the presence of plant-model
mismatch. Consequently, target setting optimization problem
(17) is used. The objective function of the target setting problem
is to maximize P at steady states. The maximum specific growth
rate µm is considered as an uncertainty parameter. The tuning
parameters are chosen to be exactly the same as those in the
previous simulation.

Similarly, the simulation starts from the nominal point. Then at
35 hrs, the uncertainty parameter µm is perturbed by 50%, to
0.72 h−1. Figure 4 and 5 show the closed-loop plant responses.
Before the perturbation, the proposed approach adjusts the plant
setpoint to increase the product concentration P from 24.9 g/L
to the optimal value 36.13 g/L. Correspondingly, the setpoints
of biomass concentration X and substrate concentration S are
changed to 8.21 g/L and 5.137 g/L, respectively. The plant is
gradually moved to the new target state. After the introduction
of the perturbation, the adaptive EKF can track the change of
the uncertainty parameter. The setpoint of the biomass con-
centration X is increased to 9.85 g/L to maintain the optimal
product concentration. Moreover, the plant states are controlled
at the desired targets both before and after the disturbance.

Figure 6 shows the profile of α and the eigenvalues of W∞ in
the second simulation scenario. It may be noted that there is
significant change in size of the terminal region in this case.
When the system reaches the optimal target state before the
perturbation at 35 hrs, the calculated terminal penalty matrix
is

W∞(k) =

[

119.76 −9.9521 −11.572
−9.9521 13.183 4.3029
−11.572 4.3029 2.0405

]

and Ωx(k)= {x∈R
nx |(x− xts(k))T

W∞(k)(x− xts(k))≤ 16.815}.
After the perturbation, the calculated terminal penalty matrix
changes to

W∞(k) =

[

80.896 −9.2124 −13.26
−9.2124 9.4405 4.7057
−13.26 4.7057 3.4094

]

and Ωx(k)= {x∈R
nx |(x− xts(k))T

W∞(k)(x− xts(k))≤ 5.092}.
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Fig. 4. State profile of scenario 2.
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Fig. 5. Input and uncertainty profiles of scenario 2.
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Fig. 6. Terminal region profile of scenario 2.

7. SUMMARY AND FUTURE WORK

In this work, we extend the quasi-infinite horizon NMPC
scheme to deal with partial state feedback and plant-model mis-
match. An adaptive extended Kalman filter based on the moving
horizon framework is presented. In order to calculate the equi-
librium point of the system in the presence of plant-model mis-
match, two target setting optimization problems with objectives
of achieving offset free output and maximizing process profit
are proposed. The quasi-infinite horizon NMPC algorithm is
modified based on the proposed schemes. Simulation studies
of a fermentation process show that the proposed approach
can track the change of uncertainty parameter and the adaptive
quasi-infinite horizon NMPC is able to control the process at
the desired target states, even when the plant-model mismatch
is introduced.

In future, the adaptive quasi-infinite horizon NMPC will be
extended to discrete-time systems. In addition, we will study
the stability of the proposed approach. In particular, the effect
of the estimation error on the NMPC stability in the presence
of plant-model mismatch is of interest, since there are no valid
separation principles.
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