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Abstract: In this work, we focus on sequential and iterative distributed model predictive
control (DMPC) of large scale nonlinear process systems subject to asynchronous measurements.
Assuming that there is an upper bound on the maximum interval between two consecutive
asynchronous measurements, we design DMPC schemes that take into account asynchronous
feedback explicitly via Lyapunov techniques. Sufficient conditions under which the proposed
distributed control designs guarantee that the states of the closed-loop system are ultimately
bounded in regions that contain the origin are provided. The theoretical results are illustrated
through a catalytic alkylation of benzene process example.
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1. INTRODUCTION

Model predictive control (MPC) is a popular control strat-
egy based on using a model of the system to predict
its future evolution from the current state along a given
prediction horizon. Using these predictions, the manipu-
lated input trajectory is optimized by minimizing a given
performance index. To obtain finite dimensional optimiza-
tion problems, MPC optimizes over a family of piecewise
constant trajectories with a fixed sampling time and a
finite prediction horizon. Once the optimization problem
is solved, only the first manipulated input value is imple-
mented, discarding the rest of the trajectory and repeating
the optimization in the next sampling step. Typically,
MPC is studied from a centralized control point of view
in which all the manipulated inputs of a control system
are optimized with respect to an objective function in a
single optimization problem. When the number of the state
variable and manipulated inputs of the process, however,
becomes large, the computational burden of the central-
ized optimization problem may increase significantly and
may impede the applicability of a centralized MPC system,
especially in the case where nonlinear process models are
used in the MPC. One feasible alternative to overcome
this problem is to utilize a distributed MPC (DMPC) ar-
chitecture in which the manipulated inputs are computed
by more than one optimization problems in a coordinated
fashion.

1 Corresponding author: Panagiotis D. Christofides. Tel.:+1 310 794
1015; fax: +1 310 206 4107; e-mail: pdc@seas.ucla.edu.

In our previous work (Liu et al. (2009) and Liu et al. (in
press)), we proposed two different DMPC architectures
for nonlinear systems. One DMPC architecture is the
sequential DMPC in which distributed controllers use a
one-directional communication strategy, are evaluated in
sequence and each controller is evaluated only once when
a new measurement is available. The other DMPC archi-
tecture is the iterative DMPC in which the distributed
controllers utilize a bi-directional communication strategy,
are evaluated in parallel and iterate to improve closed-loop
performance. The results obtained in Liu et al. (2009) and
Liu et al. (in press) are based on the assumption that con-
tinuous state feedback is available. In the present work, we
consider the design of DMPC schemes in a more common
setting for chemical processes; that is, measurements of the
states are not available continuously but asynchronously.
With respect to other available results on DMPC design,
several DMPC methods have been proposed in the litera-
ture that deal with the coordination of separate MPC con-
trollers (Camponogara et al. (2002); Rawlings and Stewart
(2008); Dunbar (2007); Richards and How (2007); Magni
and Scattolini (2006)). All of the above results are based
on the assumption of continuous sampling and perfect
communication between the sensor and the controller.
Previous work on MPC design for systems subject to
asynchronous measurements has primarily focused on cen-
tralized MPC design (Muñoz de la Peña and Christofides
(2008)) and little attention has been given to the design
of DMPC for systems subject to asynchronous measure-
ments except our recent work (Liu et al. (2010)) on the
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design of DMPC schemes for nonlinear systems subject to
asynchronous and delayed measurements. However, in Liu
et al. (2010), we only considered the design of sequential
DMPC involving two distributed controllers for nonlinear
systems subject to asynchronous measurements, and no
attention was given to the design of iterative DMPC for
nonlinear systems subject to asynchronous measurements.

In this work, we focus on the design of sequential and
iterative DMPC schemes for large scale nonlinear process
systems subject to asynchronous measurements. We first
extend the results obtained in Liu et al. (2010) for se-
quential DMPC to include multiple distributed controllers,
and then modify the iterative DMPC scheme presented
in Liu et al. (in press) to take explicitly into account
asynchronous measurements in the design. The distributed
controllers are designed via Lyapunov-based MPC tech-
nique Mhaskar et al. (2005). Sufficient conditions under
which the proposed distributed control designs guarantee
that the states of the closed-loop system are ultimately
bounded in regions that contain the origin are provided.
The theoretical results are illustrated through a catalytic
alkylation of benzene process example.

2. PRELIMINARIES

2.1 Problem formulation

We consider nonlinear process systems described by the
following state-space model:

ẋ(t) = f(x(t)) +

m
∑

i=1

gi(x(t))ui(t) + k(x(t))w(t) (1)

where x(t) ∈ Rnx denotes the vector of process state
variables, ui(t) ∈ Rmui , i = 1, . . . , m, are m sets of control
(manipulated) inputs and w(t) ∈ Rnw denotes the vector
of disturbance variables. The m sets of inputs are restricted
to be in m nonempty convex sets Ui ⊆ Rmui , i = 1, . . . , m,
which are defined as follows: Ui := {ui ∈ Rmui : |ui| ≤
umax

i } 2 , i = 1, . . . , m, where umax
i , i = 1, . . . , m, are

the magnitudes of the input constraints. The disturbance
vector is bounded, i.e., w(t) ∈W , where W := {w ∈ Rnw :
|w| ≤ θ, θ > 0}.

We assume that f(x), gi(x), i = 1, . . . , m, and k(x) are
locally Lipschitz vector functions and that the origin is an
equilibrium of the unforced nominal system (i.e., system
of Eq. 1 with ui(t) = 0, i = 1, . . . , m, w(t) = 0 for all t)
which implies that f(0) = 0.

2.2 Modeling of asynchronous measurements

We assume that the state of the system of Eq. (1), x(t),
is available asynchronously at time instants tk where
{tk≥0} is a random increasing sequence of times. The
distribution of {tk≥0} characterizes the time needed to
obtain a new measurement. In general, if there exists the
possibility of arbitrarily large periods of time in which a
new measurement is not available, then it is not possible
to provide guaranteed stability properties. This is because
there exists a non-zero probability that the system may
operate in open-loop for a period of time large enough for

2 | · | denotes Euclidean norm of a vector.

the state to leave the stability region. In order to study the
stability properties in a deterministic framework, in the
present work, we assume that there exists an upper bound
Tm on the interval between two successive measurements,
i.e., max

k
{tk+1 − tk} ≤ Tm. This assumption is reasonable

from a process control perspective.

2.3 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
h(x) = [h1(x) . . . hm(x)]T with ui = hi(x), i = 1, . . . , m,
which renders the origin of the nominal closed-loop system
asymptotically stable while satisfying the input constraints
for all the states x inside a certain stability region. We
note that this assumption is essentially equivalent to the
assumption that the process is stabilizable or that the pair
(A, B) in the case of linear systems is stabilizable. Using
converse Lyapunov theorems (e.g., Lin et al. (1996)), this
assumption implies that there exist functions αi(·), i =
1, 2, 3, 4 of class K 3 and a continuously differentiable Lya-
punov function V (x) for the nominal closed-loop system
which is continuous and bounded in Rnx , that satisfy the
following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x
(f(x) +

m
∑

i=1

gi(x)hi(x)) ≤ −α3(|x|)

|
∂V (x)

∂x
| ≤ α4(|x|), hi(x) ∈ Ui, i = 1, . . . , m

(2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of
the origin. We denote the region Ωρ ⊆ D 4 as the stability
region of the closed-loop system under the Lyapunov-based
controller h(x). The construction of V (x) can be carried
out in a number of ways using systematic techniques like,
for example, sum-of-squares methods.

By continuity, the local Lipschitz property assumed for the
vector fields f(x), gi(x), i = 1, . . . , m, and k(x) and taking
into account that the manipulated inputs ui, i = 1, . . . , m,
and the disturbance w are bounded in convex sets, there
exists a positive constant M such that

|f(x) +

m
∑

i=1

gi(x)ui + k(x)w| ≤M (3)

for all x ∈ Ωρ, ui ∈ Ui, i = 1, . . . , m, and w ∈ W .
In addition, by the continuous differentiable property of
the Lyapunov function V (x) and the Lipschitz property
assumed for the vector field f(x), there exist positive
constants Lx, Lui

, i = 1, . . . , m, and Lw such that

|
∂V

∂x
f(x) −

∂V

∂x
f(x′)| ≤ Lx|x− x′|, |

∂V

∂x
k(x)| ≤ Lw

|
∂V

∂x
gi(x) −

∂V

∂x
gi(x

′)| ≤ Lui
|x− x′|, i = 1, . . . , m

(4)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . , m, and w ∈W .

3. DMPC WITH ASYNCHRONOUS
MEASUREMENTS

In this section, we design sequential and iterative DMPC
schemes, taking into account asynchronous measurements
3 A continuous function α : [0, a) → [0,∞) is said to belong to class
K if it is strictly increasing and α(0) = 0.
4 We use Ωρ to denote the set Ωρ := {x ∈ Rnx |V (x) ≤ ρ}.
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Fig. 1. Sequential DMPC for nonlinear systems subject to
asynchronous measurements.

explicitly in their designs, that provide deterministic
closed-loop stability properties. In each proposed archi-
tecture, we will design m Lyapunov-based MPC (LMPC)
controllers to compute ui, i = 1, . . . , m, and refer to the
LMPC computing the input trajectories of ui as LMPC i.

3.1 Sequential DMPC formulation

A schematic diagram of the proposed sequential DMPC
design for systems subject to asynchronous measurements
is shown in Fig. 1. We propose to take advantage of the
MPC scheme when feedback is lost to update the control
inputs based on a state prediction obtained by the model
and to have the control actuators store and implement
the last computed optimal input trajectories (Muñoz de
la Peña and Christofides (2008); Liu et al. (2010)). Specif-
ically, the proposed implementation strategy is as follows:

1. When a new measurement is available at tk, all the
LMPCs receive the state measurement x(tk) from the
sensors.

2. For j = m to 1
2.1. LMPC j receives the entire future input trajec-

tories of ui, i = m, . . . , j + 1, from LMPC j + 1
and evaluates the future input trajectory of uj

based on x(tk) and the received future input
trajectories.

2.2. LMPC j sends the entire input trajectories of uj

to its actuators and the entire input trajectories
of ui, i = m, . . . , j, to LMPC j − 1.

Note that in the above implementation strategy, each
LMPC sends its own computed input trajectories and the
other input trajectories it received to the next LMPC con-
troller (i.e., LMPC j sends input trajectories to LMPC j−
1). This implies that LMPC j, j = m, . . . , 2, does not
have any information about the values of ui, i = j −
1, . . . , 1, that will take when the optimization problems
of the LMPC controllers are evaluated. In order to make a
decision, LMPC j, j = m, . . . , 2 must assume trajectories
for ui, i = j−1, . . . , 1, along the prediction horizon. To this
end, the Lyapunov-based controller h(x) is used. In order
to inherit the stability properties of the controller h(x),
each control input ui, i = 1, . . . , m must satisfy a set of
constraints that guarantee a given minimum contribution
to the decrease rate of the Lyapunov function V (x) in the
case of asynchronous measurements.

In order to proceed, we define x̂(τ |tk) for τ ∈ [0, N∆] as the
nominal sampled trajectory of the system of Eq. 1 associ-
ated with the feedback control law h(x) and sampling time
∆ starting from x(tk). This nominal sampled trajectory is

obtained by integrating the following differential equation
recursively:

˙̂x(τ |tk) = f(x̂(τ |tk)) +

m
∑

i=1

gi(x̂(τ |tk))hi(x̂(l∆|tk)),

∀τ ∈ [(l∆, (l + 1)∆))

(5)

where l = 0, . . . , N − 1. Based on x̂(τ |tk), we can define
the following input trajectories:

un,j(τ |tk) = hj(x̂(l∆|tk)), j = 1, . . . , m,
∀τ ∈ [l∆, (l + 1)∆), l = 0, . . . , N − 1

(6)

which will be used in the design of the LMPCs. Specifically,
the design of LMPC j, j = 1, . . . , m, is based on the
following optimization problem:

min
us,j∈S(∆)

∫ N∆

0

[

x̃j(τ)T Qcx̃
j(τ) +

∑m

i=1
us,i(τ)T Rcius,i(τ)

]

dτ (7a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
∑m

i=1
gi(x̃j(τ))us,i (7b)

˙̂xj(τ) = f(x̂j(τ)) +
∑j

i=1
gi(x̂j(τ))un,i(τ |tk)

+
∑m

i=j+1
gi(x̂j(τ))us,i (7c)

us,i(τ) = un,i(τ |tk), i = 1, . . . , j − 1 (7d)

us,i(τ) = u∗

s,i(τ |tk), i = j + 1, . . . , m (7e)

us,j(τ) ∈ Uj (7f)

x̃j(0) = x̂j(0) = x(tk) (7g)

V (x̃j(τ)) ≤ V (x̂j(τ)), ∀τ ∈ [0, NR∆] (7h)

where S(∆) is the family of piece-wise constant functions
with sampling time ∆, N is the prediction horizon, Qc and
Rci, i = 1, . . . , m, are positive definite weighting matrices,
and NR is the smallest integer satisfying Tm ≤ NR∆. The
vector x̃j is the predicted trajectory of the nominal system
with uj computed by the above optimization problem (i.e.,
LMPC j) and the other control inputs defined by Eqs. 7d-
7e. The vector x̂j is the predicted trajectory of the nominal
system with uj = un,j(τ |tk) and the other control inputs
defined by Eqs. 7d-7e. In order to fully take advantage of
the prediction, we choose N ≥ NR. The optimal solution
to this optimization problem is denoted u∗

s,j(τ |tk) and is
defined for τ ∈ [0, N∆).

The constraint of Eq. 7b is the nominal model of the
system, which is used to generate the trajectory x̃j ;
the constraint of Eq. 7c defines a reference trajectory
of the nominal system (i.e., x̂j) when the input uj is
defined by un,j(τ |tk); the constraint of Eq. 7d defines
the value of the inputs evaluated after uj (i.e., ui with
i = 1, . . . , j− 1); the constraint of Eq. 7e defines the value
of the inputs evaluated before uj (i.e., ui with i = j +
1, . . . , m); the constraint of Eq. 7f is the constraint on
the manipulated input uj ; the constraint of Eq. 7g sets
the initial state for the optimization problem; and the
constraint of Eq. 7h guarantees that the contribution of
input uj to the decrease rate of the time derivative of the
Lyapunov function from tk to tk +NR∆, if uj = u∗

s,j(τ |tk),
τ ∈ [0, NR∆) is applied, is bigger or equal to the value
obtained when uj = un,j(t − tk|tk), t ∈ [tk, tk + NR∆)
is applied. This constraint guarantees that the proposed
sequential DMPC design maintains the stability of the
Lyapunov-based controller h(x) implemented in a sample-
and-hold fashion and with open-loop state estimation in
the presence of asynchronous measurements.

The manipulated inputs of the closed-loop system under
the above sequential DMPC are defined as follows:
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Fig. 2. Iterative DMPC for nonlinear systems subject to
asynchronous measurements.

ui(t) = u∗
s,i(t− tk|tk), i = 1, . . . , m,∀t ∈ [tk, tk+1). (8)

The stability of the proposed sequential DMPC with
asynchronous measurements is summarized in Theorem 1.

Theorem 1. Consider the system of Eq. 1 in closed-loop
with the DMPC design of Eqs. 7-8 based on the controller
h(x) that satisfies the conditions of Eq. 2 with class K
functions αi(·), i = 1, 2, 3, 4. Let ∆, ǫs > 0, ρ > ρmin > 0,
ρ > ρs > 0 and N ≥ NR ≥ 1 satisfy the following
inequalities:

−α3(α
−1

2 (ρs)) + L∗M ≤ −ǫs/∆ (9)

and

−NRǫs + fV (fW (NR∆)) < 0 (10)

with L∗ = Lx +
∑m

i=1
Lui

umax
i , NR being the smallest

integer satisfying NR∆ ≥ Tm, fV (s) = α4(α
−1

1 (ρ))s +
Mvs

2 and fW (τ) = Rwθ(eRxτ − 1)/Rx (Mv, Rw, Rx are
positive numbers depending on system characteristics). If
the initial state of the closed-loop system x(t0) ∈ Ωρ, then
x(t) is ultimately bounded in Ωρa

⊆ Ωρ where

ρa = ρmin + fV (fW (NR∆))

with ρmin = max{V (x̂(t+∆)) : V (x̂(t)) ≤ ρs} and x̂ being
the nominal trajectory of the system of Eq. 1 under the
control law h(x) applied in sample-and-hold fashion.

The proof of Theorem 1 can be found in Liu et al.
(submitted) and is omitted here due to space limitations.

3.2 Iterative DMPC formulation

In contrast to the one-directional communication of the
sequential DMPC architecture, the iterative DMPC ar-
chitecture utilizes a bi-directional communication strategy
in which all the distributed controllers are able to share
their future input trajectories information after each it-
eration. In the presence of asynchronous measurements,
the iterative DMPC in Liu et al. (in press) cannot guar-
antee closed-loop stability. In this subsection, we modify
the implementation strategy and the formulation of the
distributed controllers to take into account asynchronous
measurements (see Fig. 2). Specifically, the proposed im-
plementation strategy is as follows:

1. When a new measurement is available at tk, all the
LMPCs receive the state measurement x(tk) from the
sensors.

2. At iteration c (c ≥ 1):
2.1. All the distributed LMPCs exchange their latest

future input trajectories.

2.2. Each LMPC evaluates its own future input tra-
jectory based on x(tk) and the latest received
input trajectories of all the other LMPCs.

3. If a termination condition is satisfied, each LMPC
sends its entire future input trajectory to its actua-
tors; if the termination condition is not satisfied, go
to step 2 (c← c + 1).

For the iterations in this DMPC design, there are different
choices of the termination condition. For example, the
number of iterations c may be restricted to be smaller than
a maximum iteration number cmax (i.e., c ≤ cmax) or the
iterations may be terminated when the difference of the
performance between two consecutive iterations is smaller
than a threshold value or when a maximum computational
time is reached.

The proposed design of the LMPC j, j = 1, . . . , m, at
iteration c is based on the following optimization problem:

min
up,j∈S(∆)

∫ N∆

0

[

x̃j(τ)T Qcx̃j(τ) +
∑m

i=1
up,i(τ)T Rciup,i(τ)

]

dτ

(11a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
∑m

i=1
gi(x̃j(τ))up,i (11b)

up,i(τ) = u
∗,c−1
p,i

(τ |tk), ∀i 6= j (11c)
∣

∣up,j(τ) − u
∗,c−1
p,j

(τ |tk)
∣

∣ ≤ ∆uj , ∀τ ∈ [0, NR∆] (11d)

up,j(τ) ∈ Uj (11e)

x̃j(0) = x(tk) (11f)

∂V (x̃j)

∂x̃j

(

1

m
f(x̃j(τ)) + gj(x̃

j(τ))up,j(τ)

)

≤
∂V (x̂)

∂x̂

(

1

m
f(x̂(τ |tk)) + gj(x̂(τ |tk))un,j (τ |tk)

)

,

∀τ ∈ [0, NR∆] (11g)

where x̃j is the predicted trajectory of the nominal system
with uj computed by the LMPC of Eq. 11 and all the other
inputs are the optimal input trajectories at iteration c−1 of
the rest of the distributed controllers. The optimal solution
to this optimization problem is denoted u∗,c

p,j(τ |tk) which

is defined for τ ∈ [0, N∆). Accordingly, we define the final
optimal input trajectory of LMPC j (that is, the optimal
trajectories computed at the last iteration) as u∗

p,j(τ |tk)

which is also defined for τ ∈ [0, N∆).

Note that for the first iteration of each distributed LMPC,
the input trajectories defined in Eq. 6 based on the
trajectory generated in Eq. 5 are used as the initial guesses
of the input trajectories; that is, u∗,0

p,i = un,i with i =
1, . . . , m.

The constraint of Eq. 11d puts a limit on the input
change in two consecutive iterations. This constraint al-
lows LMPC j to take advantage of the input trajectories
received at the last iteration (i.e., u∗,c−1

p,i , ∀i 6= j) to more
accurately predict the future evolution of the system state.
For LMPC j (i.e., uj), the magnitude of input change in
two consecutive iterations is restricted to be smaller than
a positive constant ∆uj . The constraint of Eq. 11g is used
to guarantee the closed-loop stability.

The manipulated inputs of the closed-loop system under
the above iterative DMPC are defined as follows:

ui(t) = u∗
p,i(t− tk|tk), i = 1, . . . , m,∀t ∈ [tk, tk+1). (12)
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Fig. 3. Process flow diagram of alkylation of benzene.

The stability of the proposed iterative DMPC with asyn-
chronous measurements is summarized in Theorem 2.

Theorem 2. Consider the system of Eq. 1 in closed-loop
with the DMPC design of Eqs. 11-12 based on the con-
troller h(x) that satisfies the conditions of Eq. 2 with
class K functions αi(·), i = 1, 2, 3, 4. Let ∆, ǫs > 0,
ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1 satisfy
the condition of Eq. 9 and the following inequality:

−NRǫs + fX(NR∆) + fV (fW (NR∆)) < 0 (13)

with NR, fV (·), fW (·) are defined as in Theorem 1,

fX(τ) =
∑m

i=1
( 1

m
Lx + Lui

umax
i )( 1

C1,i
fX,i(τ) −

C2,i

C1,i
τ) and

fX,i(τ) =
C2,i

C1,i
(eC1,iτ − 1) (C1,i and C2,i, i = 1, . . . , m, are

positive numbers depending on system characteristics). If
the initial state of the closed-loop system x(t0) ∈ Ωρ, then
x(t) is ultimately bounded in Ωρb

⊆ Ωρ where

ρb = ρmin + fX(NR∆) + fV (fW (NR∆))

with ρmin defined as in Theorem 1.

The proof of Theorem 2 can be found in Liu et al. (sub-
mitted) and is also omitted here due to space limitations.

4. APPLICATION TO AN ALKYLATION OF
BENZENE PROCESS

The process of alkylation of benzene with ethylene to
produce ethylbenzene consists of four continuously stirred
tank reactors (CSTRs) and a flash tank separator, as
shown in Fig. 3. Please refer to Liu et al. (in press) for
the detailed description and modeling of the process.

The manipulated inputs to the process are the heat in-
jected to or removed from the five vessels, Q1, Q2, Q3, Q4

and Q5, and the feed stream flow rates to CSTR-2 and
CSTR-3, F4 and F6. The states of the process consist of
the concentrations of benzene (A), ethylene (B), ethylben-
zene (C), and 1,3-diethylbenzene (D) in each of the five
vessels and the temperatures of the vessels. We consider
a steady state (operating point), xs, of the process which
is defined by the steady-state inputs Q1s, Q2s, Q3s, Q4s,
Q5s, F4s and F6s (see Liu et al. (in press)). The steady-
state temperatures in the five vessels are the following:

T1s = 477.24 K, T2s = 476.97 K, T3s = 473.47 K,
T4s = 470.60 K, T5s = 478.28 K.

The control objective is to regulate the system from an
initial state to the steady state. The initial temperatures
of the five vessels are the following:

T1o = 443.02 K, T2o = 437.12 K, T3o = 428.37 K,
T4o = 433.15 K, T5o = 457.55 K.

The first distributed controller (LMPC 1) will be de-
signed to compute the values of Q1, Q2 and Q3, the
second distributed controller (LMPC 2) will be designed
to compute the values of Q4 and Q5, and the third dis-
tributed controller (LMPC 3) will be designed to compute
the values of F4 and F6. Taking this into account, the
process model belongs to the class of nonlinear systems:
ẋ(t) = f(x) + g1(x)u1(x) + g2(x)u2(x) + g3(x)u3(x) where
the state x is the deviation of the state of the process from
the steady state, uT

1 = [u11 u12 u13] = [Q1 − Q1s Q2 −
Q2s Q3 − Q3s], uT

2 = [u21 u22] = [Q4 − Q4s Q5 − Q5s]
and uT

3 = [u31 u32] = [F4 − F4s F6 − F6s] are the
manipulated inputs which are subject to input constraints.
We use the same design of h(x) as in Liu et al. (in
press) based on a quadratic Lyapunov function V (x) =
xT Px with P being the following weight matrix: P =
diag 5 ([1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]).
Based on h(x), we design the sequential DMPC and the
iterative DMPC with the weighting matrices being Qc =
diag([1 1 1 1 103 1 1 1 1 103 10 10 10 10 3000 1 1 1 1 103 1
1 1 1 103]), Rc1 = diag([1 × 10−8 1 × 10−8 1 × 10−8 ]),
Rc2 = diag([1× 10−8 1× 10−8 ]) and Rc3 = diag([10 10]).
The sampling time of the LMPCs is chosen to be ∆ =
30 sec. For the iterative DMPC designs, ∆ui is chosen to
be 0.25umax

i for all the distributed LMPCs and maximum
iteration numbers (i.e., c ≤ cmax) are applied as the
termination conditions. In all the simulations, bounded
process noise is added to the process model to simulate
disturbances/model uncertainty.

We consider that the state of the process is sampled
asynchronously and that the maximum interval between
two consecutive measurements is Tm = 75 sec. The asyn-
chronous nature of the measurements is introduced by
the measurement difficulties of the full state given the
presence of several species concentration measurements.
We will compare the proposed sequential and iterative
DMPC for systems subject to asynchronous measurements
with a centralized LMPC which takes into account asyn-
chronous measurements explicitly (Muñoz de la Peña and
Christofides (2008)). The centralized LMPC uses the same
weighting matrices, sampling time and prediction horizon
as used in the DMPCs. To model the time sequence {tk≥0},
we apply an upper bounded random Poisson process. The
Poisson process is defined by the number of events per
unit time W . The interval between two successive state
sampling times is given by ∆a = min{−lnχ/W, Tm},
where χ is a random variable with uniform probability
distribution between 0 and 1. This generation ensures that
max

k
{tk+1 − tk} ≤ Tm. In the simulations, W is chosen to

be 30 and the time sequence generated by this bounded
Poisson process is shown in Fig. 4. For this set of simula-
tions, we choose the prediction horizon of all the LMPCs
to be N = 3 and choose NR = N so that NR∆ ≥ Tm.

We first compare the proposed DMPC designs for systems
subject to asynchronous measurements with the central-
ized LMPC from a stability point of view. Figure 5 shows
the trajectory of the Lyapunov function V (x) under these

5 diag(v) denotes a matrix with its diagonal elements being the
elements of vector v and all the other elements being zeros.
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Fig. 4. Asynchronous measurement sampling times {tk≥0}
with Tm = 75 sec: the x−axis indicates {tk≥0} and
the y−axis indicates the size of the interval between
tk and tk−1.
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Fig. 5. Trajectories of the Lyapunov function under the
Lyapunov-based controller h(x) implemented in a
sample-and-hold fashion and with open-loop state
estimation, the iterative DMPC with cmax = 1 and
cmax = 5, the sequential DMPC and the centralized
LMPC: (a) V (x); (b) Log(V (x)).

control designs. From Fig. 5, we see that the proposed
DMPC designs as well as the centralized LMPC design
are able to drive the system state to a region very close
to the desired steady state. From Fig. 5, we can also see
that the sequential DMPC, the centralized LMPC and
the iterative DMPC with cmax = 5 give very similar
trajectories of V (x). Another important aspect we can see
from Fig. 5(b) is that at the early stage of the closed-
loop system simulation, because of the strong driving
force related to the difference between the steady-state
and the initial condition, the process noise/disturbance
has small influence on the process dynamics, even though
the controller(s) has/have to operate in the presence of
asynchronous measurements. When the states get close to
the steady-state, the Lyapunov function starts to fluctuate
due to the domination of noise/disturbance over the van-
ishing driving force. However, the proposed DMPC designs
are able to maintain practical stability of the closed-loop
system and keep the trajectory of the Lyapunov function
in a bounded region (V (x) ≤ 250) very close to the steady
state.

Next, we compare the evaluation times of the LMPCs in
these control designs. The simulations are carried out by
Java programming language in a Pentium 3.20 GHz com-

puter. The optimization problems are solved by the open
source interior point optimizer Ipopt. We evaluate the
LMPC optimization problems for 100 runs. The mean eval-
uation time of the centralized LMPC is about 23.7 sec. The
mean evaluation time for the sequential DMPC scheme,
which is the sum of the evaluation times (1.9 sec, 3.6 sec
and 3.2 sec) of the three LMPCs, is about 8.7 sec. The
mean evaluation time of the iterative DMPC scheme with
one iteration is 6.3 sec which is the largest evaluation
time among the evaluation times (1.6 sec, 6.3 sec and
4.3 sec) of the three LMPCs. The mean evaluation time
of the iterative DMPC architecture with four iterations is
18.7 sec with the evaluation times of the three LMPCs
being 6.9 sec, 18.7 sec and 14.0 sec. From this set of
simulations, we see that the proposed DMPC designs lead
to a significant reduction in the controller evaluation time
compared with a centralized LMPC design though they
provide a very similar performance.
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