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Abstract: A novel recurrent neural network (RNN)-based approach is proposed in this work
to handle joint chance-constrained stochastic model predictive control (SMPC) problem. In the
proposed approach, the joint chance constraint (JCC) is first reformulated as a quantile-based
inequality to reduce the complexity in approximation. Then, the quantile function (QF) in the
quantile-based inequality is replaced by the empirical QF using sample average approximation
(SAA). Afterwards, the empirical QF is approximated via an RNN-based surrogate model, which
is embedded into the SMPC problem formulation to predict quantile values at different sampling
instants. By employing the RNN-based approximation, the resulting deterministic optimization
problem is finally solved through a nonlinear optimization solver. The proposed approach is
applied to a hydrodesulphurisation process to demonstrate its efficiency in handling the SMPC
problem.
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1. INTRODUCTION

Model predictive control (MPC) is a popular advanced
control methodology in the industry. At each time step,
a finite horizon optimal control problem is solved and
only the first control input is applied to the system. This
process is repeated in a receding horizon fashion. Practical
applications of MPC often face uncertainty issues. To deal
with the MPC problem under uncertainty, strategies in-
cluding robust MPC and stochastic MPC have been widely
studied. Among them, the stochastic model predictive
control (SMPC) problem has the flexibility in controlling
solution robustness and has received lots of attention in
the past decade, as shown in Mesbah (2016).

In this study, we focus on the SMPC problem with un-
certainty existing in constraints. Chance constraint is a
commonly used method to tackle the uncertainty in con-
straints. There are two types of chance constraint: the
individual chance constraint (ICC) and the joint chance
constraint (JCC) (Li et al., 2002). Although ICCs are
relatively easier to handle, they only guarantee that each
equation satisfies the constraint to a certain confidence
level. The JCC is more general in engineering applica-
tions than the ICC since the JCC ensures all constraints
are satisfied simultaneously to a certain confidence level
that is more natural in an optimization problem (You
et al., 2021). However, the JCC is generally difficult to
handle as it requires dealing with multidimensional dis-
tributions. Thus, joint chance-constrained programming
(JCCP) problems are generally solved through approxima-
tions. There are two main approximation methods: analyt-
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ical approximation methods and sampling-based methods
which are elaborated in Yuan et al. (2017).

We focus on sampling-based methods in this work because
they can avoid overly conservative solutions occurring in
analytical approximation methods (van Ackooij et al.,
2014). Among all sampling-based methods, the sample
average approximation (SAA) (Pagnoncelli et al., 2009)
is a widely used method which approximates the JCC
by the empirical JCC based on the collected samples
and enforces the empirical joint constraint satisfaction
probability (JCSP) to be greater than or equal to the
target value. The proposed approach in this study is based
on the SAA. More specifically, in the proposed method,
the JCC is rewritten as the quantile-based form, and
the involved quantile function (QF) is approximated by
the empirical QF extended from the SAA. Then, the
empirical QF is further modelled by a recurrent neural
network (RNN)-based surrogate model to enhance the
tractability of problem-solving. Finally, the RNN-based
model is incorporated into the constraints to predict
quantile values at different sampling instants for handling
the JCC at different sampling instants.

There are several existing methods for dealing with the
SMPC, e.g., stochastic tube approaches, sample-based
SMPC approaches, scenario-based SMPC methods, etc.
However, those methods have drawbacks that hinder their
applications. Stochastic tube approaches are limited to
individual chance constraints and unable to address hard
input constraints (Heirung et al., 2018). A sample-based
SMPC approach suffers from the high computational cost
due to the large sample size required for the optimization
at each sampling instant (Batina, 2004). The difficulty



of a scenario-based SMPC method lies in identifying the
appropriate number of scenarios that guarantees both con-
straint satisfaction and manageable computational bur-
den. Additionally, the computation of a scenario-based
SMPC method might be time-consuming, as shown in
Navia et al. (2014). The proposed method can overcome
the above-mentioned disadvantages in the existing SMPC
approaches, by employing the RNN technique which pos-
sesses powerful approximation ability and high computa-
tional efficiency (Mohajerin and Waslander, 2019).

The proposed approach has the following features: 1)
it leads to solutions with desired constraint satisfaction
probability; 2) the optimal solution can be obtained more
efficiently when compared to the sampling-based approach
Moen (2015); 3) there is no restriction on the number
of constraints involved in the joint chance constraint; 4)
it is applicable to both linear and nonlinear SMPCs via
exploiting the RNN-based surrogate model. In the rest of
the paper, the SMPC problem is presented first, followed
by the proposed approaches and a case study.

2. PROBLEM STATEMENT

In this work, we consider the SMPC problem with uncer-
tainty in constraints. The optimization problem in such
SMPC is formulated in discrete-time, which is given as:

min
uj∈U

K−1∑
j=0

J(uj) (1a)

s.t. xj+1 = fD(xj , uj , ξ), j = 0, ..,K − 1 (1b)

Pr(gi(xj) ≤ 0, i = 1, · · · , p) ≥ 1− ε, j = 1, ..,K
(1c)

x0 = xt0 (1d)

where j is the index for sampling instants. K is the
number of sampling instants. xj ∈ Rnx , uj ∈ Rnu , and
ξ ∈ Rnξ are the system state, input, and uncertainty
vector, respectively. U is the set of feasible inputs. J is
the cost function that only depends on uj . xt0 is the initial
system state at t0 (current sampling instant). In the above
discrete-time optimization problem, the prediction horizon
covers the sampling instants j = 0, ...,K, and the control
horizon covers the sampling instants j = 0, ...,K − 1.
xj indicates the state at a certain sampling instant j
(j = 1, ...,K) in the prediction horizon, based on the initial
state x0 = xt0 . fD is a function describing the discrete-
time system dynamics. Eq. 1c enforces the constraint
satisfaction probability at a certain sampling instant j.

3. METHODS

3.1 Quantile reformulation of chance constraint

The general formulations of a ICC and a JCC are given
as:

ICC: Pr(gi(u, ξ) ≤ 0) ≥ 1− ε, i = 1, · · · , p (2a)

JCC: Pr(gi(u, ξ) ≤ 0, i = 1, · · · , p) ≥ 1− ε (2b)

where u ∈ Rnu represents the decision variable vector.
ξ ∈ Rnξ is the random parameter vector. For each i, gi :
Rnu × Rnξ → R is a function. The difference between the
ICC and the JCC is the position of (i = 1, · · · , p). Since the
JCC in (2b) ensures that all constraints gi=1,...,p(u, ξ) ≤ 0

are satisfied simultaneously to a certain confidence level
1−ε which is more general than the ICC, we only consider
the JCC in this study.

The above JCC can be rewritten as the following form for
further reformulation:

Pr(ḡ(u, ξ) ≤ 0) ≥ 1− ε, ḡ(u, ξ) = max
i=1,··· ,p

gi(u, ξ) (3)

Then, consider the definition of the 1 − ε level quantile
with a random variable G, which is given as:

Q1−ε(G) = inf {γ ∈ R | Pr(G ≤ γ) ≥ 1− ε} (4)

Due to the above definition, the rewritten JCC in (3) can
be reformulated as the quantile-based form according to
the following relationship:

Pr(ḡ(u, ξ) ≤ 0) ≥ 1− ε ⇔ Q1−ε(ḡ(u, ξ)) ≤ 0 (5)

The benefit of rewriting the JCC as the quantile-based
form is shown in Fig. 1. As can be seen from Fig. 1,
Q1−ε(ḡ(u, ξ)) has better convexity and less complexity
than 1 − ε − Pr(ḡ(u, ξ) ≤ 0) in the original JCC. Ac-
cordingly, Q1−ε(ḡ(u, ξ)) is easier for a surrogate model to
approximate than 1 − ε − Pr(ḡ(u, ξ) ≤ 0) in the original
JCC.

Subsequently, Q1−ε(ḡ(u, ξ)) in (5) can be approximated

by the empirical QF Q̃1−ε(ḡ(u, ξ)) which is defined as:

Q̃1−ε(ḡ(u, ξ))

= inf

{
γ | 1

N

N∑
l=1

I(ḡ(u, ξl) ≤ γ) ≥ 1− ε

}
= ḡ⌈M⌉(u)

(6)

where M equals to (1 − ε)N , and N is the number of
collected samples of ξ. I is the indicator function defined
as:

I(ḡ(u, ξl) ≤ γ) =

{
0, for ḡ(u, ξl) > γ

1, for ḡ(u, ξl) ≤ γ (7)

ḡ⌈M⌉(u) represents the M -th smallest component of
{ḡ(u, ξ1), ..., ḡ(u, ξN )}. The definition of the empirical QF
shown in (6) is based on the idea of SAA (Pagnoncelli
et al., 2009).

By exploiting the above quantile-based reformulation, the
discrete-time optimization problem in (1a)-(1d) can be
rewritten as:

min
uj∈U

K−1∑
j=0

J(uj) (8a)

s.t. xj+1 = fD(xj , uj , ξ), j = 0, ..,K − 1 (8b)

Q̃1−ε(ḡ(xj)) ≤ 0, j = 1, ..,K (8c)

x0 = xt0 (8d)

where Q̃1−ε(ḡ(xj)) denotes the empirical QF at a certain
sampling instant j, and ḡ(xj) = maxi=1,...,p gi(xj).

3.2 RNN-based optimization model

Q̃1−ε(ḡ(xj)) can be further approximated to reduce
the computational complexity. The RNN-based surrogate
model is employed in this study. The RNN is a variant
of neural networks (NNs), which is capable of learning se-
quential data. An RNN can model a discrete-time dynamic
system through the feedback of the hidden state from the
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Fig. 1. Comparison between Q1−ε(ḡ(u, ξ)) and 1 −
ε − Pr(ḡ(u, ξ) ≤ 0). 1 − ε = 0.8; ξ =
[ξ1, ξ2]; ξ1 ∼ N (0, 1), ξ2 ∼ U(−2, 2); ḡ(u, ξ) =
max {g1(u, ξ1), g2(u, ξ2)}; g1(u, ξ1) = 1.5ξ1u

2 − 3;
g2(u, ξ2) = 2ξ2u

2 − 2.

previous time step to the current time step. There are dif-
ferent types of RNN with different structures, e.g., vanilla
RNN, Gated Recurrent Unit (GRU), Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997),
etc. The RNN-based surrogate model in this work is based
on the LSTM structure since the LSTM can avoid short-
term memory problems in the vanilla RNN and achieve
higher accuracy than the GRU (Althelaya et al., 2018).
The LSTM generates time-series predictions by updating
short-term memory (hidden state) and long-term memory
(cell state) at different sampling instants.

The structure of the RNN-based surrogate model used in
this study is shown in Fig. 2. The RNN-based model is
composed of two NNs and one stacked LSTM (stacked
NN-LSTM). The initial system state x0 is fed into the 2
NNs to produce the initial hidden and cell states for the
first LSTM layer which are h1

0 and C1
0 , respectively. By

this means, the stacked NN-LSTM can produce predictions
based on different initial conditions. The initial hidden
and cell states for the second LSTM layer (h2

0 and C2
0 ,

respectively) are set to be zero vectors. The internal
structure of an LSTM cell in the first LSTM layer is shown
in Fig. 3, which can be interpreted using the following
equations:

fj+1 = σS(Wf · [h1
j , uj ] + bf ) (9a)

inj+1 = σS(Win · [h1
j , uj ] + bin) (9b)

C̃j+1 = σT (WC̃ · [h1
j , uj ] + bC̃) (9c)

oj+1 = σS(Wo · [h1
j , uj ] + bo) (9d)

C1
j+1 = fj+1 ◦ C1

j + inj+1 ◦ C̃j+1 (9e)

h1
j+1 = oj+1 ◦ σT (C

1
j+1) (9f)

where σS represents the element-wise sigmoid activation
function (node ”S” in Fig. 3). Wf and bf are the weight
matrix and the bias vector for the forget gate layer,
respectively. [h1

j , uj ] is a vector concatenated from h1
j

and uj . σT represents the element-wise tanh activation
function (node ”T” in Fig. 3). Win and WC̃ are weight
matrices for the two input gate layers. bin and bC̃ are bias

vectors for the two input gate layers. Wo and bo are the
weight matrix and the bias vector for the output gate layer,
respectively. The symbol ◦ in (9e) and (9f) represents the
element-wise multiplication. The LSTM cell in the second
LSTM layer has the similar structure. The LSTM cells in
the second layer are different from the cells in the first layer
based on the following differences: 1) the input becomes h1

j

instead of uj ; 2) the dimensions of h2
j and C2

j are different

from h1
j and C1

j . The output layer of the stacked NN-
LSTM can be described by:

Q̂1−ε
j = σT (Wout · h2

j + bout) (10)

where Q̂1−ε
j is the quantile value predicted from the

stacked NN-LSTM at the sampling instant j. Wout and
bout are the weight matrix and the bias vector for the
output layer, respectively.

Fig. 2. Schematic diagram of the RNN-based surrogate
model employed in this research

Fig. 3. Schematic diagram for illustrating an LSTM cell

After incorporating the stacked NN-LSTM into the opti-
mization problem (8a)-(8d) to predict the quantile values
for (8c) at different sampling instants, the problem can be
rewritten as:



min
uj∈U

K−1∑
j=0

J(uj) (11a)

s.t. Q̂1−ε
j=1,...,K = NL(uj=0,...,K−1, x0) (11b)

Q̂1−ε
j ≤ 0, j = 1, ..,K (11c)

x0 = xt0 (11d)

where NL denotes the stacked NN-LSTM model. This is a
deterministic nonlinear optimization problem that can be
solved using a nonlinear solver such as IPOPT (Wächter
and Biegler, 2006).

While applying the proposed approach to a SMPC prob-
lem, we first solve the problem in (11a)-(11d) to obtain
the optimal control sequence based on the given initial
system state. Then, only the first component in the opti-
mal control sequence is applied to the controlled system.
Afterwards, the updated system state is used as the new
initial state for the problem in (11a)-(11d). The above
procedure is repeated to control the system.

4. CASE STUDY

The proposed SMPCmethod is applied to a case study and
compared with the Monte Carlo sampling-based method
from Moen (2015), to investigate the performance of the
proposed approach.

The case study in this work is the SMPC problem of
the hydrodesulphurisation process (HDS) shown in Fig. 4.
According to Fig. 4, there are 3 hydrogen feed streams,
namely F1, F2, and F3. The 3 streams are mixed and
fed to a compressor (C-1) to keep the inlet pressure of
the reactor constant. The hydrocarbon flow is denoted
as FHC . The reactor for the hydrodesulphurisation is a
two-stage reactor. R-1 and R-2 are the first stage reactor
and the second stage reactor, respectively. The outlet flow
of R-2 (F7) is fed into a flash tank (T-1) to separate
hydrocarbons from hydrogen and sulfide gas. Then, the
separated hydrocarbons are collected from the product
flow F8. The flow at the top of T-1 (F9) is recycled
to R-1 and R-2 partially, and the rest leaves the HDS
through a purge stream denoted as F10. The operation
of the HDS should satisfy the following constraints: The
hydrogen mole fractions in both R-1 and R-2 (XH2) should
be maintained above 0.7 to avoid catalyst deactivation.
The hydrogen mole fraction in stream F5 (X5) should be
kept above 0.9 because of the requirement of C-1.

The HDS is modelled mathematically based on the follow-
ing assumptions for simplification:

• Temperatures in R-1 and R-2 are controlled perfectly.
• Pressures in all the streams and units in the HDS are
controlled perfectly.

• The hydrodesulphurisation reaction can be described
by the first-order model.

• The flash tank T-1 can separate hydrocarbons from
hydrogen and sulfide perfectly.

• R-1 and R-2 can be modelled as 1 reactor.

According to the above assumptions, only mass and com-
ponent balances should be taken into account for mod-
elling the HDS process.

Fig. 4. Schematic diagram of the studied HDS

The optimal control objective is to minimize the cost of
hydrogen usage from streams F1 and F2 under the above-
mentioned constraints and uncertainty. The optimization
problem of this case study is formulated as:

min
F1,F2,F10

∫ tf

t0

(CH4X1F1 + CH3X2F2) dt (12a)

s.t. τ
dFH2

x

dt
+ FH2

x = FHCρ (12b)

V P

ZRgT

dXH2

dt
= F5X5 − F10XH2 − FH2

x (12c)

F5 = F10 + FH2
x (12d)

F5 = F1 + F2 + F3 (12e)

F5X5 = F1X1 + F2X2 + F3X3 (12f)

Pr(XH2 ≥ 0.7, X5 ≥ 0.9) ≥ 1− ε (12g)

0 ≤ F1 ≤ 1400 (12h)

0 ≤ F2 ≤ 790 (12i)

0 ≤ F10 ≤ 1500 (12j)

t is time (unit: h). t0 is the current sampling instant
that the current system state is acquired. tf is the end
sampling instant in the above problem. Note that tf −
t0 = 2. CH4 and CH3 are unit prices (unit: AC/Mmol)
of hydrogen from streams F1 and F2, respectively. F1,
F2, and F10 are the molar flow rates of the streams
F1, F2, and F10 (unit: kmol/h), respectively. Since the
hydrodesulphurisation reaction model is assumed to be
first-order, the hydrogen consumption rate FH2

x (unit:
kmol/h) in the reactor can be described by Eq. 12b.
τ is the time constant of the reaction (unit: h). FHC

is the volume flow rate of hydrocarbons fed into the
reactor (unit: m3/h). ρ is a random parameter following
the Gaussian distribution (ρ ∼ N (12.6, 0.4)), which is
the specific consumption rate characteristic of the type of
hydrocarbon received (unit: kmol/m3). Eq. 12c is used to
calculate the hydrogen mole fraction in the reactor (XH2).
V is the reactor volume (unit: m3). P denotes the pressure
(unit: atm) inside the reactor. Z is the compressibility
factor. Rg is the ideal gas constant. T is the temperature
(unit: K) inside the reactor. F5 is the molar flow rate of
the stream F5 (unit: kmol/h). X5 is the hydrogen mole
fraction in stream F5. The mass balance over the reactor
is expressed as Eq. 12d. Eq. 12e is exploited to calculate F5.
The component balance of hydrogen can be described by



Eq. 12f. X3 is a random parameter following the Gaussian
distribution (X3 ∼ N (0.85, 0.013)), which is the hydrogen
fraction corresponding to F3. 1 − ε is the user-defined
confidence level, which is set to be 0.8 in this cases study.
Eqs. 12h-12j are the bounds for the decision variables of
the optimization problem. The values of parameters are
found in Moen (2015).

Since the proposed SMPC approach can only be used
for discrete-time problems, the objective function and the
differential equations in the above optimization problem
are discretized through the trapezoidal rule method with
20 time intervals. Then, the training data for the stacked
NN-LSTM is generated by the following steps:

(1) Collect 1000 samples of [ρ,X3] from the correspond-
ing Gaussian distributions.

(2) Randomly select a sequence of manipulated variables
(MVs) (F1, F2, and F10) from the uniform distribu-
tions between the lower and upper bounds of these
MVs.

(3) Calculate different values of XH2 and X5 based on
the sequence of MVs and different realizations of
[ρ,X3], through the discretized differential equations
mentioned above.

(4) Calculate the 0.8-quantile value of ḡ based on XH2

and X5 obtained from the previous step (ḡ =
max {−XH2 + 0.7,−X5 + 0.9}).

(5) Repeat steps 2 ∼ 4 to produce different 0.8-quantile
values corresponding to different sequences of MVs.

(6) Different 0.8-quantile values paired with different
sequences of MVs are respectively used as targets and
inputs to train the stacked NN-LSTM.

After training the stacked NN-LSTM (it takes 5300 sec-
onds to train), the stacked NN-LSTM is incorporated into
the mentioned discretized optimization problem. After-
wards, the optimization model involving the stacked NN-
LSTM can be solved deterministically using IPOPT solver.
Regarding the stacked NN-LSTM in this case study, the
dimensions of the hidden and cell states in the first LSTM
layer are all equal to 50. The dimensions of the hidden and
cell states in the second LSTM layer are all equal to 30.
The 2 NNs in the stacked NN-LSTM individually have 1
ReLU hidden layer containing 50 neurons.

While implementing the proposed method to address this
case study, the optimization model involving the stacked
NN-LSTM is first solved based on the given initial condi-
tions (FH2

x = 682.5 and XH2 = 0.9). Then, only the first
component in the obtained optimal control sequence is ap-
plied to the above-mentioned discretized differential equa-
tion model based on a realization of [ρ,X3] to attain new
values of FH2

x and XH2. Subsequently, the optimization
problem based on the new values of FH2

x andXH2 is solved
to obtain a new optimal control sequence. Afterwards, the
first component in the obtained optimal control sequence
is applied to the discretized differential equation model
based on a new realization of [ρ,X3] to attain new values
of FH2

x and XH2. After repeating the above procedure
for 20 sampling instants, 1 SMPC execution is completed.
100 SMPC simulation experiments are completed in this
case study and the obtained results are shown in Fig. 5.
Since the optimal sequences of F2 from the 100 SMPC
executions are all equal to 0 for all sampling instants, the
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Fig. 5. Results of 100 SMPC executions

results of F2 are not shown in Fig. 5. Because the hydrogen
mole fraction of stream F2 (X2 = 0.931) is lower than
of stream F1 (X1 = 0.991), using hydrogen from stream
F2 would make the hydrogen mole fraction in the reactor
(XH2) more difficult to be above the required value of 0.7.
Thus, the optimal results suggest not to use stream F2. As
shown in Fig. 5, the constraint satisfaction probabilities
at all sampling instants are above the required confidence
level of 0.8 (minimum and maximum values are 0.8314
and 0.9548, respectively), which means that the proposed
method can reliably control the HDS in this case study
with satisfactory constraint satisfaction for all sampling
instants. Notably, the probability of constraint satisfaction
at each sampling instant is calculated through the follow-
ing steps: 1) calculate 100 ḡ based on the 100 XH2 and
X5 obtained from the 100 SMPC executions; 2) calculate
the percentage of the 100 ḡ less than or equal to 0, which
is the probability of constraint satisfaction at a sampling
instant.

The average optimal objective and solution time based on
the 100 SMPC executions by using the proposed approach
are compared with the optimal objective and solution time
attained from the Monte Carlo sampling-based method in
Moen (2015). The comparison is shown in Table 1. The
solution time corresponding to a method in Table 1 is the
overall time of an SMPC implementation for 20 sampling
instants. The Monte Carlo sampling-based method in
Moen’s work is based on 1000 realizations of [ρ,X3], which
is the same as the proposed approach. As can be seen
from Table 1, the proposed approach can obtain a better
objective value in a much shorter solution time than the
sample-based approach in literature.



Table 1: Comparison between the proposed approach and
the Monte Carlo sampling-based method in Moen (2015)

Method
Optimal

objective value
Solution
time (s)

Proposed
method

118.8 395

Monte Carlo
sampling-based

method
132.9 2100

Finally, based on the above discussion, the proposed ap-
proach can efficiently achieve the feasible solution for a
joint chance-constrained SMPC problem, and the solution
from the proposed method is better than the solution
from the existing method. Also, the presented method
is effective for the SMPC problem with any number of
constraints in the JCC since ḡ(u, ξ) = maxi=1,··· ,p gi(u, ξ)
is adopted. Moreover, the presented approach is applicable
for both linear and nonlinear SMPC problems because the
employed stacked NN-LSTM is capable of handling both
linear and nonlinear models. Although generating training
data and training the stacked NN-LSTM require a lot
of time, these time-consuming steps do not hinder the
application of the proposed approach to SMPC. This is
because these time-consuming steps are completed offline
before executing SMPC. In other words, the proposed
approach is applied to an SMPC after the stacked NN-
LSTM is trained. The presented method requires the prior
knowledge of uncertainty distributions. If the uncertainty
distributions in the SMPC problem studied are accessible,
the presented approach can be an efficient method for
SMPC problem.

5. CONCLUSION

A novel approach based on the RNN surrogate model is
proposed to address stochastic model predictive control
problems with joint chance constraints. In the proposed
method, the quantile-based reformulation is applied to the
joint chance constraint and the quantile function is further
approximated by a stacked LSTM-based surrogate model
(stacked NN-LSTM) which is a hybrid model consisting
of feed-forward neural networks and LSTM taking ini-
tial conditions and control sequence as input. To handle
SMPC, the stacked NN-LSTM can be embedded into the
considered optimization problem. When SMPC is executed
with this method, the involved optimization problem is
repeatedly solved at different sampling instants based on
the updated initial states.

The results show that the proposed approach can ob-
tain the solution satisfying the confidence level effectively.
While comparing with the sample-based method in the lit-
erature, the proposed approach can achieve faster and bet-
ter solutions for an SMPC problem. Furthermore, broad
flexibility is also an important feature of the proposed
approach. The approach presented in this work can be
applied to both linear and nonlinear SMPCs with joint
chance constraints involving any number of constraints.
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Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106(1), 25–57.

You, B., Esche, E., Weigert, J., and Repke, J.U. (2021).
Joint chance constraint approach based on data-driven
models for optimization under uncertainty applied to
the williams-otto process. In Computer Aided Chemical
Engineering, volume 50, 523–528. Elsevier.

Yuan, Y., Li, Z., and Huang, B. (2017). Robust op-
timization approximation for joint chance constrained
optimization problem. Journal of Global Optimization,
67(4), 805–827.


