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Abstract: In this work, we design an output predictive controller that operates a common class
of activated sludge plants. The controller solves a state-feedback model predictive control problem
in which the process state and disturbances are determined by a moving horizon estimator. We
illustrate the behaviour of the controller when operating the plant to produce an effluent water
of varying nitrogen content. The close tracking of the effluent profiles is enforced by stabilizing
the system around optimal steady-state points that satisfy the output reference trajectories.
Considering the generality of the formulation, the predictive controller can be configured to
operate this class of activated sludge plants to achieve alternative objectives.
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1. INTRODUCTION

Scarcity of natural resources and growing populations
are some of the current issues pressuring society in the
direction of sustainable development. Among many feasible
solutions, proper management of water plays a central role
in attaining these goals. As it relieves the need for fresh
water, wastewater treatment is a solution which has been
proven to be inherently circular and useful in supplying
water for urban, industrial, and agricultural activities.

Due to their wide diffusion, biological treatment of wastew-
ater through activated sludge processes is essential and its
efficient operation has clear environmental impact. Many
research efforts have been fostered thanks to support tools
that provide a simulation protocol for real-world treatment
plants: The Benchmark Simulation Model no. 1 (BSM1,
Gernaey et al. (2014)), specifically, singled out as the
reference platform for controlling activated sludge plants
subjected to typical municipal wastewater influents. The
availability of the BSM1 has clearly stimulated numerous
control and estimation strategies (Olsson et al., 2014; Yin
et al., 2018; Zhang and Liu, 2019; Yin and Liu, 2019).
However, most solutions focus on the problem of satisfying
effluent quality restrictions, and do not explore alternative
applications of activated sludge plants such as their use for
optimising water reclamation chains (Kehrein et al., 2020).

In this work, we design an output model predictive con-
troller to operate activated sludge plants to produce effluent
water of specified quality on demand. The controller solves
a state-feedback model predictive control (MPC) problem
in which the current process state and disturbances are
determined by moving horizon estimation (MHE) over noisy
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measurements (Rawlings et al., 2020). The tracking of the
desired effluent profiles is enforced by stabilizing the system
around optimal steady-state points that satisfy the output
reference trajectories. We specialise the control problem
by considering quadratic cost functions and linearisations
of the process dynamics around each set-point. Similarly,
we consider estimation problems with linearised dynamic
constraints in which the initial state, disturbances, and
measurement noise, have Gaussian distributions. As such,
the output predictive controller solves convex optimisation
problems and offers guaranteed stability properties (Mayne
et al., 2000; Rao et al., 2003).

We illustrate the controller performance on the task of
operating a plant described by the BSM1 to track an effluent
profile of varying nitrogen content. According to our results,
the controller is able to operate the plant to closely track
reference trajectories, despite the persistent disturbances.
We also show that the estimator can accurately determine
the process state and the entering disturbances from
measurements. The controller behaviour is showcased when
the plant is requested to satisfy conventional treatment
requirements, to produce water for reuse, and to achieve
extreme nitrogen removal. Considering the generality of
its formulation, such a controller can be also configured to
operate the plant according to alternative objectives.

The work is presented as follows: Section 2 describes the
activated sludge plant and its state-space model, Section
3 describes the optimal control and estimation strategies,
Section 4 discusses our results on the predictive control of
this class of activated sludge plants for reference tracking.

2. THE ACTIVATED SLUDGE PLANT

We consider the activated sludge process in a conventional
wastewater treatment plant. The prototypical process
consists of five biological reactors and a settler, Fig. 1.



Fig. 1. The activated sludge plant: Process layout.

Based on the denitrification-nitrification process, bacteria
reduce nitrogen present in the influent wastewater in
the form of ammonia into nitrate, which is subsequently
reduced into nitrogen gas to be released into the atmosphere.
The treatment starts with a first reactor where wastewater
from primary sedimentation, return sludge from secondary
sedimentation and internal recycle sludge are fed. The
outflow from the first reactor is then fed sequentially to the
downstream reactors and, eventually, from the fifth reactor
to the secondary settler. Mixed liquor from the fifth reactor
is recirculated into the first reactor together with the recycle
sludge from secondary sedimentation, as mentioned. Excess
sludge from the settler can also be directed towards other
processes. Oxygen can be added by insufflating air into each
reactor. In the aerated reactors, the ammonium nitrogen
(NH4-N) in the wastewater is oxidised into nitrate nitrogen
(NO3-N), which is in turn reduced into nitrogen gas (N2)
in the anoxic reactors. Extra carbon can be added to each
tank independently. No other chemicals are added.

Each reactor is described by the Activated Sludge Model no.
1 (Henze et al., 2000), while the settler by a 10-layers non-
reactive model (Takács et al., 1991). As such, the process
corresponds to the Benchmark Simulation Model no. 1
(Gernaey et al., 2014), or activated sludge plant (ASP).

The dynamics of each reactor A(r) (r = 1, . . . , 5) are
described by 13 state variables, the vector of concentrations
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The plant is subjected to three additional controllable
inputs, internal and external sludge recycle flow-rates (QA
and QR, respectively) and wastage flow-rate QW , and to 14
disturbances, influent flow-rate QIN and its concentrations
xA(IN), all entering the first reactor. Wastewater concen-
trations in the internal recycle are given by xA(5), whereas
xS(1) are concentrations in external recycle and wastage.

As for the measurements, we consider a sensor-arrangement
consisting of analysers determining the concentrations
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The effluent concentrations of biochemical oxygen demand
(BOD5), chemical oxygen demand (COD) and total nitro-

gen (NTOT ) are defined from state variables,
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with stoichiometric parameters (fP , iXB , and iXP ) as per
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The state-space model for this class of ASPs is given as

ẋ(t) = f(x(t), u(t), w(t)|θx); (5a)

y(t) = g(x(t)|θy), (5b)

with state x(t) = [xA(1) · · · xA(5) xS(1) · · · xS(10)]T ∈ RNx

≥0 ,

measurements y(t) ∈ RNy

≥0 , controllable inputs u(t) = [QA

QR QW uA(1) · · · uA(5)]T ∈ RNu

≥0 , and disturbances w(t) =

[QIN xA(IN)]T ∈ RNw

≥0 . The time-invariant dynamics f(·|θx)

and g(·|θy) depend on a set of stoichiometric and kinetic
parameters collectively denoted by the vectors θx and θy
(Gernaey et al., 2014). The state-space model in Eq. (5)
thus consists of Nx = 13× 5 + 8× 10 = 145 state variables,
Nu = 3+2×5 = 13 controls, Nw = 1+13 = 14 disturbances
and Ny = 5× 2 + 5 = 15 outputs. We refer to Table 1 for
a characterisation of the process variables.

Table 1. ASP: State and output variables.

Description [Unit]

SI Soluble inert organic matter [g COD m−3]
SS Readily biodegradable substrate [g COD m−3]
XI Particulate inert organic matter [g COD m−3]
XS Slowly biodegradable substrate [g COD m−3]
XBH Active heterotrophic biomass [g COD m−3]
XBA Active autotrophic biomass [g COD m−3]
XP Particulate products from biomass decay [g COD m−3]
SO Dissolved oxygen [g O2 m−3]

SNO NO−
2 +NO−

3 nitrogen [g N m−3]

SNH NH+
4 + NH3 nitrogen [g N m−3]

SND Soluble biodegradable organic nitrogen [g N m−3]
XND Particulate biodegradable organic nitrogen [g N m−3]

SALK Alkalinity [mol HCO−
3 m−3]

XSS Total suspended solids [g COD m−3]
BOD5 Biochemical oxygen demand [g COD m−3]
COD Chemical oxygen demand [g COD m−3]
NTOT Total nitrogen [g N m−3]

Under constant influent conditions, the benchmark reports
a default operating point SS := (xSS , uSS , wSS , ySS). The
default control strategy proposed in Gernaey et al. (2014)
for the BSM1 considers two low-level controllers:

• NO−2 +NO−3 nitrogen in the second reactor, S
A(2)
NO , is

controlled by manipulating the internal recycle, QA;
• Dissolved oxygen concentration in the fifth reactor,

S
A(5)
O , is controlled by manipulating the oxygen mass

transfer coefficient KLa
(5), a proxy to the air flow-rate.



The plant’s performance is based on flow-weighted and time-
averaged effluent concentrations of total suspended solids
(XSS), biochemical oxygen demand (BOD5), chemical oxy-
gen demand (COD), total nitrogen (NTOT ) and ammonia
(SNH). Typically, the control performance is given in terms
of effluent quality by measuring and minimising the effluent
concentration of these compounds (Gernaey et al., 2014).

Our state-space configuration includes all control handles
suggested in Gernaey et al. (2014) that do not require
changes to the plant layout depicted in Fig. 1. We
consider the possibility of having the default low-level
controllers applied on each of the five reactors. As such,
our configuration necessarily includes a sensor-arrangement

that measures S
A(r)
NO and S

A(r)
O in all reactors (r = 1, . . . , 5).

3. PRELIMINARIES: MODEL PREDICTIVE
CONTROL AND MOVING HORIZON ESTIMATION

We consider the general state-space representation of a
stochastic and time-homogenous controlled system

ẋ(t) = f
(
x(t), u(t), w(t)|θx

)
; (6a)

y(t) = g
(
x(t)|θy

)
+ v(t), (6b)

with state equation (6a) describing the evolution of state
x(t) ∈ RNx , given its current value and a set of controllable
inputs u(t) ∈ RNu and disturbances w(t) ∈ RNw . The
measurement equation (6b) determines how the state plus
noise v(t) ∈ RNy is emitted as measurement y(t) ∈ RNy .
The nonlinear functions f(·|θx) and g(·|θy) are fixed by the
parameter vectors θx and θy. We consider no feedthrough
of the input and static state-feedback policies. The initial
state is x(t0) ∼ px0

(x(t0)|θx0
) and the disturbance and

the measurement noise are w(t) ∼ pw(w(t)|θw) and v(t) ∼
pv(v(t)|θv), with some fixed parameters θv, θw, and θx0

.

We discuss the synthesis of optimal control policies that
transfer the system from an initial state x(t0) to a desired
state x(tf ) by means of predictive control. Specifically, we
aim at obtaining optimal controls u? : [t0, tf ]→ RNu , and
resulting optimal state trajectories x? : [t0, tf ]→ RNx , that
solve the finite-horizon optimal control problem (OCP)

min
x(·),u(·)

∫ tf

t0

Lc(x(t), u(t))dt+ Lf (x(tf )) (7a)

s.t. ẋ(t) = f(x(t), u(t), ŵ(t)|θx), (7b)

x(t) ∈ X , u(t) ∈ U , (7c)

x(t0) = x̂(t0). (7d)

The functions Lc : RNx × RNu → R and Lf : RNx → R
define the stage and terminal cost functions, respectively.
The sets X and U characterise the constraints to the state
and control trajectories, respectively. The values ŵ(t) and
x̂(t0) are estimates of the disturbance- and initial state-
vectors: They must be determined from measurements.

The estimated state x̂ : [t0, tf ] → RNx and disturbance
ŵ : [t0, tf ]→ RNw trajectories are obtained by solving the
finite-horizon optimal estimation problem (OEP)

min
x̂(·),ŵ(·)

L0(x̂(t0)) +

∫ tf

t0

Le(x̂(t), ŵ(t)|y(t))dt (8a)

s.t. ˙̂x(t) = f(x̂(t), u(t), ŵ(t)|θx), (8b)

x̂(t) ∈ X , ŵ(t) ∈ W. (8c)

The functions L0 : RNx → R and Le : RNx × RNu → R
define the initial and stage cost functions, respectively. Sets
X and W define the support of the distribution px0

and
pw of state and disturbance variables, respectively.

3.1 Direct transcription of optimal control problem

We consider a discretise-then-optimise approach for solving
optimal control and estimation problems. For each time
interval t ∈ [tk, tk+1), we consider piecewise constant inputs
u(t) = u(tk) and w(t) = w(tk), with tk = k∆t the k-th time
instant given interval ∆t > 0. The discrete-time dynamics
can thus be represented by transition functions of the form

xk+1 = xk +

∫ tk+1

tk

f(x(τ), uk, wk|θx)dτ︸ ︷︷ ︸
f∆t(xk,uk,wk|θx)

(9)

with xk = x(k∆t), uk = u(k∆t), and wk = w(k∆t). The
discrete-time output equation is yk = y(k∆t) = g(xk|θy).

Under such representation, the control and estimation
horizons can be partitioned into N = b(tf − t0)/∆tc
intervals, T = {[tn, tn+1]}N−1

n=0 , such that the integral terms
in the objective functionals of Eq. (7) and Eq. (8) can be
approximated by left Riemann sums of the form∫ tf

t0

Lc(x(t), u(t))dt ≈ ∆t

N−1∑
n=0

Lc(xn, un); (10)

∫ tf

t0

Le(x̂(t), ŵ(t))dt ≈ ∆t

N−1∑
n=0

Le(x̂n, ŵn). (11)

In this case, the initial and terminal costs are directly given
by L0(x̂(t0)) = L0(x̂0) and Lf (x(tf )) = Lf (xN ).

The optimisation associated to the optimal control (Eq. 7)
and estimation (Eq. 8) problems are then transcribed using
the direct method into standard nonlinear programs and
solved numerically (Betts, 2010). With linear (or linearised)
dynamics and quadratic costs, the problems specialise into
convex optimisation problems. To account for non-constant
disturbances, we specialise Eq. (7) to a model predictive
controller (MPC). Similarly, we specialise Eq. (8) into the
class of moving-horizon estimators (MHE). The coupling
of these methods, overviewed in the following, leads to an
output model predictive controller (Output MPC, Fig 2).

Model predictive control : At each k ∈ N, the MPC solves

min
xk, · · · , xk+N ,

uk, · · · , uk+N−1

k+N−1∑
n=k

Lc(xn, un) + Lf (xk+N ) (12a)

s.t.
∀n∈[k,k+N ]

xn+1 = f∆t(xn, un, ŵk|θx), (12b)

xn ∈ X , un ∈ U , (12c)

xk = x̂k, (12d)

then only the first control action is applied to the process.
The initial state of each control horizon, [k, k + N ], is
fixed as xk = x̂k, with x̂k estimated from measurements.
Disturbances are held constant over each horizon; that is,
wn = ŵk (n = k, . . . , k +N), given the estimate ŵk.

We consider regulation tasks with a quadratic stage

Lc(xn, un) = ‖xn − xspn ‖2Q + ‖un − uspn ‖2R (13)
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Dynamic system

min
x̂(·),ŵ(·)

L0(x̂(t0)) +
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t0

Le(x̂(t), ŵ(t)|y(t))dt

s.t. ˙̂x(t) = f(x̂(t), u(t), ŵ(t)|θx),

x̂(t) ∈ X , ŵ(t) ∈ W.

Moving horizon estimator

min
x(·),u(·)

∫ tf

t0

Lc(x(t), u(t))dt+ Lf (x(tf ))

s.t. ẋ(t) = f(x(t), u(t), ŵ(t)|θx),

x(t) ∈ X , u(t) ∈ U , x(t0) = x̂(t0).

Model predictive control

min
xsp
n ,usp

n

‖Hg(xspn |θy)− ỹspn ‖2Wy
+ ‖uspn − ûspn ‖2Wu

s.t. 0 = f(xspn , u
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n , ŵ

sp
n |θx),

xspn ∈ X sp, uspn ∈ Usp.

Steady-state optimisation

∆t

∆te

y(t)
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n

w(t), v(t)

ỹspn

Fig. 2. Output MPC: Control structure.

and terminal cost Lf (xk+N ) = ‖xk+N − xspk+N‖2Qf
, given

state xspn and input uspn references, and symmetric weighting
matrices Q,Qf � 0 and R � 0. The constraint sets X
and U are convex and represented by linear inequalities:
X = {x ∈ RNx |Hxx ≤ hx} and U = {u ∈ RNu |Huu ≤ hu}.
The nonlinear dynamics (Eq. 6a) in the vicinity of each
set-point Pn := (xspn , u

sp
n , w

sp
n , y

sp
n ) can be approximated by

ẋ(t) = z
(n)
f +A(n)∆x(t) +B(n)∆u(t) +G(n)∆w(t), (14)

with the Jacobian matrices A(n) = (∂f/∂x)|Pn
∈ RNx×Nx ,

B(n) =(∂f/∂u)|Pn
∈RNx×Nu ,G(n) =(∂f/∂w)|Pn

∈RNx×Nw ,

and vector z
(n)
f = f(xspn , u

sp
n , w

sp
n |θx)∈RNx . The variable

∆x(t) = x(t)−xspn (∆u(t) = u(t)−uspn and ∆w(t) = w(t)−
wspn , respectively) is the state (control and disturbance)
deviation from Pn. Given Eq. (14), the transition function
f∆t(·|θx) then corresponds to the affine state equation

xn+1 = z̃
(n)
f∆t

+A
(n)
∆t xn +B

(n)
∆t un +G

(n)
∆twn, (15)

with matrices A
(n)
∆t = eA

(n)∆t, B
(n)
∆t = S∆tB

(n), G
(n)
∆t =

S∆tG
(n), and vector z̃

(n)
f∆t

= S∆tz̃
(n)
f , given auxiliary S∆t =

A(n)−1

(A
(n)
∆t − I) and all the affine terms accumulated in

vector z̃
(n)
f = z

(n)
f − (A(n)xspn +B(n)uspn +G(n)wspn ).

For locally stabilizable and detectable systems, we ensure

the closed-loop stability by setting Q = Qf = C(n)TQyC
(n),

given some symmetric matrix Qy � 0 and output matrices

C(n) = (∂g/∂x)|Pn
∈ RNy×Nx (Mayne et al., 2000).

In practice, references are only provided for a subset of
output variables, ỹspn = Hg(xspn |θy) ∈ RNỹ . Matrix H ∈
{0, 1}Nỹ×Ny selects the Nỹ ≤ Ny outputs of interest. As
such, state and input set-points satisfying output references

are obtained offline, according to the nonlinear optimisation

min
xsp
n ,usp

n

‖Hg(xspn |θy)− ỹspn ‖2Wy
+ ‖uspn − ûspn ‖2Wu

(16a)

s.t. 0 = f(xspn , u
sp
n , ŵ

sp
n |θx), (16b)

xspn ∈ X sp, uspn ∈ Usp. (16c)

The symmetric weighting matrices Wy,Wu � 0 control
the trade-off between either satisfying a desired reference
ỹspn or a desirable control configuration ûspn , respectively.
The optimisation with Wu = 0 searches for any steady-
state satisfying ỹspn . Conversely, selecting Wu � 0 and
ûspn = 0 leads to pairs (xspn , u

sp
n ) of minimum control effort.

It is also possible to relax the constraint Eq. (16b) as
‖f(xspn , u

sp
n , ŵ

sp
n |θx)‖22 ≤ ε, with ε > 0, when feasible steady-

states satisfying the output requirements are non-existent.

Moving-horizon estimation: At each k ∈ N, the MHE solves

min
x̂k−Ne+1, · · · , x̂k

ŵk−Ne+1, · · · , ŵk

L0(x̂k−Ne+1) +

k∑
n=k−Ne+1

Le(x̂n, ŵn| yn)

(17a)

s.t.
∀n∈[k−Ne+1,k]

x̂n+1 = f∆te(x̂n, un, ŵn|θx), (17b)

x̂n ∈ X , ŵn ∈ W. (17c)

to obtain current state x̂k and disturbance ŵk estimates.
With slight abuse of notation, we will consider ŵk = ŵk−1.
The period ∆te > 0 corresponds to the interval after which
new measurements yk = y(k∆te) are available.

Rao and Rawlings (2002) show that for xk−Ne+1, wn, and
vn with a distribution from the exponential family,

px0
(xk−Ne+1|θx0

) ∝ eL0(xk−Ne+1|θx0 ); (18a)

pw(wn|θw) ∝ eLw(wn|θw); (18b)

pv(vn|θv) ∝ eLv(vn|θv), (18c)

with functions L0 : RNx → R, Lw : RNw → R, and
Lv : RNy → R, the solutions to the optimisation problem
(17) are understood as maximum a posteriori estimates
of (xk−Ne+1, . . . , xk+1) and (wk−Ne+1, . . . , wk). Thus, we
consider the class of estimation problems with stage cost

Le(x̂n, ŵn|yn) = ‖g(x̂n)− yn‖2Q−1
v

+ ‖ŵn − w̄n‖2R−1
w
, (19)

and initial cost L0(x̂k−Ne+1) = ‖x̂k−Ne+1 − x̄k−Ne+1‖2Q−1
x0

,

arising from the assumption that the initial state, process
disturbance and measurement noise, are distributed as

xk−Ne+1 ∼ N (x̄k−Ne+1, Qx0
); (20a)

wn∼N (w̄n, Rw); (20b)

vn∼N (0, Qv), (20c)

with E[(wn − w̄n)(wn′ − w̄n′)
T] = δn,n′Rw, E[vnv

T
n′ ] =

δn,n′Qv, and E[(wn − w̄n)vTn′ ] = 0, for all n and n′. The
constraint sets X and W are convex and represented
by linear inequalities X = {x ∈ RNx |Hxx ≤ hx} and
W = {w ∈ RNw |Hww ≤ hw}. Due to the recursive
nature of the MHE, the means of the initial state and
disturbance are estimated at the previous iteration (that is,
x̄k−Ne+1 = x̂k−Ne+1 and w̄n = ŵn, n = k−Ne+1, . . . , k−1,
with w̄k = ŵk−1). Under these conditions, the MHE is
stable for locally detectable systems (Rao et al., 2003).

The nonlinear dynamics and measurement process are
linearised around points Pn := (x̂n, un, ŵn, ŷn), to get



ẋ(t) = z
(n)
f +A(n)∆x(t) +B(n)∆u(t) +G(n)∆w(t), (21a)

y(t) = z(n)
g + C(n)∆x(t) + v(t), (21b)

with {x̂n, ŵn}k−1
n=k−Ne+1 being the estimates from the pre-

vious MHE iteration, and last pair (x̂k, ŵk) = (x̂k−1, ŵk−1)
is fixed. The Jacobian matrices are A = (∂f/∂x)|Pn

∈
RNx×Nx , B = (∂f/∂u)|Pn

∈ RNx×Nu , G = (∂f/∂w)|Pn
∈

RNx×Nw , and C = (∂g/∂x)|Pn
∈ RNy×Nx , and the vectors

are z
(n)
f = f(x̂n, un, ŵn|θx) ∈ RNx and z

(n)
g = g(x̂n|θy) ∈

RNy . The deviation variables are ∆x(t) = x(t) − x̂n,
∆u(t) = u(t) − un, and ∆w(t) = w(t) − ŵn. Given Eq.
(21a), the transition function f∆te(·|θx) is represented by

xn+1 = z̃
(n)
f∆te

+A
(n)
∆te

xn +B
(n)
∆te

un +G
(n)
∆te

wn. (22)

with A
(n)
∆te

= eA
(n)∆te , B

(n)
∆te

= S∆teB
(n), G

(n)
∆te

= S∆teG
(n),

and vector z̃
(n)
f∆te

= S∆te z̃
(n)
f , given auxiliary S∆te =

A(n)−1

(A
(n)
∆te
− I) and all the affine terms accumulated

in vector z̃
(n)
f = z

(n)
f − (A(n)x̂n +B(n)un +G(n)ŵn).

4. CASE-STUDY: TRACKING EFFLUENT NITROGEN

In this section, we present the results obtained by the
predictive controller when operating the activated sludge
plant (Section 2) to produce effluent water of specified
quality. We consider the specific task of tracking a reference
profile of total nitrogen in the effluent. Specifically, we are
interested in tracking the following reference trajectory

N
S(10)
TOT (t) =


(5/3) NSS

TOT , t ∈ [2.8, 5.6) d

(2/3) NSS
TOT , t ∈ [8.4, 11.2) d

NSS
TOT , otherwise

,

under the benchmark weather scenario of two weeks which
includes two storm events in the last week (Gernaey et al.,
2014). NSS

TOT is equal to 14 g m−3, the usual steady-state
concentration in the benchmark. In addition to satisfying
conventional treatment requirements in terms of total
nitrogen, tracking this reference corresponds to operating
the plant to produce water for reuse (t ∈ [2.8, 5.6) d) and
to achieve extreme nitrogen removal (t ∈ [8.4, 11.2) d).

4.1 Configuration of the controller

We design the predictive controller to operate every hour,
with a half-day control horizon. This corresponds to an
actuation period ∆t = (1/24) d and N = 12 in Eq. (7).
Within each horizon, the dynamic constraints correspond to

a collection of linearisations
(
z̃

(n)
f∆t
, A

(n)
∆t , B

(n)
∆t , G

(n)
∆t , C

(n)
)

of model Eq. (5) around points Pn = (xspn , u
sp
n , ŵn, y

sp
n ).

Each pair (xspn , u
sp
n ) solves optimisation in Eq. (16) with

matrices Wy = 100 and Wu = [10−6 10−6 10−3 · · · 10−3],
and ûspn = uSS and ŵspn = wSS being uSS and wSS the
usual steady-state inputs in the benchmark. We tune the

controller with Q = C(n)TQyC
(n) and R = 10−4INu with

Qy = diag[0.01 · · · 0.01 20]. The initial state is x(0) = xSS .

We design the moving-horizon estimator to determine
the current state and disturbance vectors every 15
minutes, with a 5-hour estimation horizon. This corre-
sponds to an estimation period ∆te = (1/96) d and
Ne = 20 in Eq. (8). Within each horizon, the dy-
namic constraints correspond to another collection of

linearisations
(
z̃

(n)
f∆te

, A
(n)
∆te

, B
(n)
∆te

, G
(n)
∆te

, z̃
(n)
g , C(n)

)
of model

Eq. (5) around points Pn = (x̂n, un, ŵn, ŷn). The

pairs {x̂n, ŵn}k−1
n=k−Ne+1 and last fixed-pair (x̂k, ŵk) =

(x̂k−1, ŵk−1) are estimated at each previous estimation
horizon. We tune the estimator by setting the covariance
matrices of the disturbances and measurement noise to be

Rw = diag[9 · 106 0.5 5 100 7.5 100 1 0.2 0.9];

Qv = 0.02 · diag[0.1I5 0.6I5 1 0.9 0.1 3 1].

For initial state, xk−Ne+1, we set Qx0 = diag(0.01xSS)2,
while the mean is fixed at the previous state estimate,
x̄k−Ne+1 = x̂k−Ne+1, or x̄0 = xSS for the first horizon.
Finally, we constraint XIN

BA = XIN
P = SINO = SINNO = 0

g m−3 and SINALK = 7 mol HCO−3 m−3, because these
variables are constant in the considered weather scenario.

4.2 Qualitative analysis of the control actions

The results, Fig. 3, show that the controller can operate the
plant to follow the requested reference, despite disturbance
rejection not being always ideal. Similarly, the estimator is
capable to provide accurate reconstructions of the state.

Fig. 3. Influent flow-rate QIN , top, and reference tracking

of effluent total nitrogen N
S(10)
TOT , bottom.

The optimal control actions and a selection of responses
from the system are shown in Fig. 4. We discuss how the
predictive controller operated at each set-point change:

• In the first set-point change (t = 2.8 d), the controller

serves the requested effluent total nitrogen, N
S(10)
TOT ,

mainly by producing S
S(10)
NO nitrogen. This is achieved

by manipulating KLa
(r) to increase (or decrease) the

oxygen used in the production of S
A(r)
NO in all the

reactors A(r) (r = 1, . . . , 5). In the settler, the changes

in the feed concentration S
A(5)
NO are reflected in the

effluent S
S(10)
NO ; and consequently on N

S(10)
TOT .

• In the second set-point change (t = 5.6 d), the
controller recovers the original concentrations of

N
S(10)
TOT by implementing the conventional nitrification-

denitrification layout: reactors A(1, 2) become anoxic
by reducing aeration through KLa

(1,2), whereas reac-
tors A(3 ; 5) are kept aerated through KLa

(3;5).



Fig. 4. Flow-rates (QA, QR, QW ), oxygen transfer coefficients KLa
(1;5), and extra carbon flow-rates Q

(1;5)
EC , top panels,

with nitrogen forms S
A(1;5)
NH and S

A(1;5)
NO , soluble oxygen S

A(1;5)
O , and suspended solids X

S(1;10)
SS , bottom panels.

Again, these changes are reflected in concentrations

S
S(l)
NO (l = 1, . . . , 10), and thus on effluent N

S(10)
TOT .

• In the third set-point change (t = 8.4 d), aeration
and external carbon are increased in all reactors by

KLa
(r) and Q

(r)
EC , respectively, for r = 1, . . . , 5. As a

result, denitrification is favoured in all reactors. This

leads to a significant decrease in S
A(r)
NO in reactors

A(r) (r = 1, . . . , 5), then reflected at concentrations

S
S(l)
NO (l = 1, . . . , 10). Despite tracking the reference for

effluent N
S(10)
TOT , this strategy leads to increased levels

of effluent ammonium nitrogen, S
S(10)
NH , an undesirable

water quality for conventional treatment regulations.

This is due to the increase in S
A(r)
NH (r = 1, . . . , 5).

• The last set-point change (t = 11.2 d) occurs during
the last storm event: The controller compensates for
the sudden dilution of the influent by decreasing
wastage flow-rate, QW , thus allowing particulates
to accumulate in the settler underflow. Nitrification
is then implemented throughout the plant by aer-
ating all reactors A(r). After the storm event, the
controller re-implements the conventional nitrification-
denitrification layout as in the second set-point change.

Our results indicate that the designed predictive controller
is able to operate a conventional activated sludge plant
when requested to track a given output reference. In the
showcased task, the controller shows good performance
when operating the plant to produce treated water of
varying nitrogen content. Given a model of the process,
this is achieved by using only sensor measurements to
recursively estimate the state of the system and the entering
disturbances, and then solving an online optimal control
problem. Considering its generality, such a controller can
be configured to operate with alternative objectives.
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