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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is an optimization
based advanced control strategy that can be used to control
nonlinear systems with constraints efficiently (Findeisen and
Allgöwer, 2002; Rawlings and Mayne, 2009). NMPC uses a
nonlinear model to forecast the system’s future behavior until
a finite horizon and obtains a sequence of control inputs that
optimizes a given objective and satisfies the state and input
constraints. The control input obtained at the first prediction
step is applied to the system, and the optimization problem
is solved at the next step in a receding horizon fashion. The
performance of the NMPC scheme depends critically on the ac-
curacy of the model. The uncertainties present in the model may
lead to erroneous forecasts resulting in constraint violation, loss
of recursive feasibility, or even closed-loop instability. Hence,
to systematically address the presence of uncertainties in the
model, robust NMPC schemes are necessary.

Open-loop min-max model predictive control (MPC) is one of
the earliest proposed robust strategies in the context of linear
systems (Campo and Morari, 1987). The scheme predicts a se-
quence of control inputs that minimize the worst-case objective
while satisfying the constraints for all realizations of the un-
certainty. However, predicting one control input per prediction
step may lead to conservative behavior. The closed-loop min-
max MPC (Scokaert and Mayne, 1998) and the multi-stage
MPC formulations (Muñoz de la Peña et al., 2005; Lucia et al.,
2013, 2020) were proposed to address this conservatism by
adapting the control inputs in the predictions for different pos-
sible realizations of the uncertainties. This models recourse in
the problem formulation and achieves less conservative results.
Because of the reduced conservatism, the multi-stage approach
has been applied in different case studies (Puschke and Mitsos,
2018; Jang et al., 2016; Krishnamoorthy et al., 2018).

Unlike the min-max approaches, multi-stage NMPC optimizes
the weighted mean of all the scenarios considered in the pre-
diction while accounting for the feedback in the predictions.

The drawback of the scheme is that the complexity of the
optimization problem grows rapidly when the number of uncer-
tainties and the prediction horizon increase. Tube-based NMPC
is another class of robust NMPC approach that provides compu-
tationally simpler alternative that generates nominal trajectories
optimally and then regulates the processes to converge to or stay
close to these (see (Mayne et al., 2011; Rubagotti et al., 2011;
Villanueva et al., 2017)). In (Mayne et al., 2011), a nominal and
an ancillary controller are employed hierarchically to achieve
robustness. In the presence of significant uncertainties, tube-
based NMPC can be conservative while the complexity remains
close to the nominal NMPC controller.

To improve the trade-off between optimality and complexity
compared to the existing robust MPC strategies, Tube-enhanced
multi-stage (TEMS) MPC was proposed for the linear case
in (Subramanian et al., 2021) and for the nonlinear case in
(Subramanian et al., 2018). The sufficient conditions to achieve
closed-loop stability using the TEMS NMPC scheme were
derived in (Subramanian et al., 2022). While it is possible to
obtain prior safety and stability guarantees of the closed-loop,
it is however very difficult to verify in practice whether the
required assumptions are satisfied.

The TEMS NMPC approach, in its basic form, employs two
hierarchical robust multi-stage NMPC controllers. In this con-
tribution, we elaborate on the flexibility and the applicability of
the TEMS NMPC approach from an application point of view.
The following aspects of the design process are explained:

(1) Construction of the scenario tree for handling different
kinds of uncertainties with varying significance.

(2) Different formulations of the ancillary controller to achieve
robust constraint satisfaction.

(3) Constraint tightening of the primary controller.
(4) Initialization of the scenario tree for the primary con-

troller.

This is followed by the application of the method to an indus-
trially relevant fed-batch polymerization process.



2. SYSTEM DESCRIPTION AND CONTROL GOALS

The dynamics of the system is described as follows:

x+ = f (x,u,d), (1)

where x ∈ R
nx ,u ∈ R

nu , d ∈ D ⊂ R
nd denote the states, inputs

and model uncertainties (both parametric and additive uncer-
tainties). The nonlinear mapping f : Rnx ×R

nu ×R
nd → R

nx

denotes the system dynamics. The uncertainty bound D is as-
sumed to be compact and can be represented as D= {d | dL ≤
d ≤ dU}, where dL and dU denote the lower and the upper
bounds of the uncertainty. The state constraints are denoted by
X, and the input constraints are denoted by U. The constraint set
X is assumed to be closed and U is assumed to be compact. The
control goal can be either to track a setpoint or to economically
optimize the performance of the plant while satisfying the state
and input constraints for all realizations of the uncertainties
at all times. In addition, the controller should not be overly
conservative and should be real-time implementable. Here, we
assume for simplicity that full-state information is available.

3. TUBE-ENHANCED MULTI-STAGE NMPC

Tube-enhanced multi-stage NMPC employs two controllers
hierarchically to achieve the control goals: a primary multi-
stage NMPC controller and an ancillary multi-stage NMPC
controller. The primary controller achieves robustness of the
primary system, for which the dynamics are described by

z+ = f (z,v,d) (2)

where z ∈ R
nx denotes the state, v ∈ R

nu denotes the control
input, and d ∈D⊂R

nd denotes the uncertainties of the primary
system. The nonlinear mapping f : Rnx ×R

nu ×R
nd → R

nx is

the same as in (1) for all d ∈D. The uncertainty set D is a finite
set and is generated by sampling the true uncertainty set D.
The predicted trajectories generated by the primary controller
are then tracked by the ancillary controller to mitigate the
uncertainties that are not considered in the primary system.

3.1 Primary controller

To achieve robustness against the uncertainties that are consid-
ered in the primary system described in (2), multi-stage NMPC
is employed. The optimization problem formulation for the
primary controller is given below:

min
v

j
k
∀( j,k)∈I[0,N−1]

N−1

∑
k=0

sk

∑
j=1

ω
j
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j
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V f (z
j
N), (3a)
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z
c( j,r)
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k,v
j
k,d

r), ∀( j,k) ∈ I[0,N−1], r ∈ {1, . . . , s}, (3b)

z
j
k ∈ Z,v

j
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j
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v
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k if z
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k ∀ ( j,k),(l,k) ∈ I[0,N−1], (3e)

where N denotes the prediction horizon, s denotes the number
of branches in the scenario tree, I denotes the set of indices
( j,k) in the scenario tree, I[k1,k2] denotes the set of indices from
the time step k1 until the step k2, IN denotes the indices at

the terminal nodes, ℓ(z
j

k,v
j

k) denotes the stage cost, and V f (z
j
N)

denotes the terminal cost. The weights associated with each

node are denoted by ω
j

k ,∀( j,k) ∈ I. (3b) denotes the model

of the system where the predicted state z
c( j,r)
k+1 is the child

node obtained from its parent state z
j
k for the input v

j
k and the

realization of the uncertainty d
r( j)
k ∈ D. The state and input

constraints are defined in (3c). The terminal constraints are
defined in (3d). The state constraint set is denoted by Z, the
input constraint set is denoted by V, and the terminal constraint
set is denoted by Z f . Both Z and V are tightened compared to
original constraint sets, and Z f ⊆ Z ⊆ X and V⊆ U hold. The
non-anticipativity constraints are defined in (3e). The realized

uncertainty of the primary system d(t) for all t ≥ 0 can be
estimated by solving the optimization problem:

d(t)∈argmin
d∈D

|x(t + 1)− f (x(t),u(t),d)|, (4)

where x(t) and x(t + 1) denote the state measurements at time

steps t and t + 1. The resulting d(t) is used to obtain z(t + 1)
using (2), where d = d(t).

3.2 Ancillary controller

Robustness against the uncertainties that are not explicitly part
of the primary system (2) is achieved by the ancillary controller.
The ancillary controller tracks the predictions of the primary
controller, and the optimization problem formulation is

min
u
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where the stage cost of the ancillary controller is defined as

ℓa(x
j
k − z

j∗
k ,u

j
k − v

j∗
k ) and is tuned to track the optimal state and

input trajectories that were obtained from the primary controller

z
j∗
k and v

j∗
k for all ( j,k) ∈ I[0,N−1]. The terminal cost is denoted

as V f a(x
j
N). The weights associated with the nodes of the

scenario tree of the ancillary controller are denoted by ω
j

a,k for

all ( j,k) ∈ I. The state constraints are not part of the ancillary
controller problem. This enables the recursive feasibility of
the ancillary controller by construction. The robust constraint
satisfaction is achieved by tuning the stage cost of the ancillary
controller. At the initial time step t = 0, the primary controller is
initialized with x(0) and u= v1∗

0 is applied to the system. For all
t ≥ 1, the implementation steps are summarized in Algorithm 1.

The closed-loop dynamics of the composite system is given by

x+ = f (x,κN(x,z),d), d ∈D, (6a)

z+ = f (z,κ p
N(z),d), d ∈D, (6b)

where κN(x,z) = u1∗
0 denotes the control law of the ancillary

controller obtained by solving the optimization problem (5),
κ

p
N(z, t) = v1∗

0 denotes the control law for the primary sys-

tem (2), d is obtained by solving (4), and d ∈ D denotes the
realized uncertainty in the plant.

The differences among the robust NMPC schemes are illus-
trated in Figure 1. Multi-stage NMPC (Lucia et al., 2013)
typically requires more branches to handle the same set of
uncertainties compared to TEMS NMPC and employs a single
controller which is initialized with the true state of the system.



Algorithm 1 Tube-enhanced multi-stage NMPC algorithm

Require All the ingredients of (3) and (5).
Step 1 Measure the state x(t).
Step 2 Solve the optimization problem (4) and obtain

d(t − 1) and simulate (2) to obtain z(t).

Step 3 Solve (3) using z1
0 = z(t) to get {z

j∗
k }, ∀( j,k) ∈

I[0,N] and {v
j∗
k }, ∀( j,k) ∈ I[0,N−1].

Step 4 Initialize the ancillary controller with x(t), pass

the reference trajectories {z
j∗
k }, ∀( j,k) ∈ I[0,N] and

{v
j∗
k }, ∀( j,k) ∈ I[0,N−1] and solve (5).

Step 5 Apply u1∗
0 as the input to the plant, set t = t+1 and

go to step 1 at the next time step.

Tube-based NMPC (Mayne et al., 2011) uses two controllers
as in the TEMS NMPC scheme but employs only a single
scenario. This can lead to stringent constraint tightening in the
presence of significant uncertainties and therefore negatively
affect the performance. Considering only the significant uncer-
tainties in the TEMS NMPC controllers results in an improved
trade-off between optimality and complexity.

Primary trajectories obtained 

for significant uncertainties

.

.

.

.

Nominal trajectory

Trajectory of the

ancillary controller

Trajectory of the 

ancillary controller

Multi-stage NMPC Tube-based NMPC TEMS NMPC

Fig. 1. Illustration of multi-stage NMPC, tube-based NMPC,
and TEMS NMPC.

4. DESIGN DETAILS

Before discussing the design steps, we first discuss ways to
simplify the controllers.

4.1 Controller simplifications

The scenario tree of the primary and ancillary controller prob-
lems grows exponentially with respect to the prediction hori-
zon. To avoid the growth in problem complexity, the uncertainty
realizations can be assumed to remain constant or a distur-
bance model can be employed after a certain prediction step
called robust horizon NR. Beyond NR, there exists only one
child per parent node. Though there exists no prior guarantees,
robust constraint satisfaction and recursive feasibility are often
achieved in practice even with NR = 1 as demonstrated in (Lucia
et al., 2013, 2014).

The second possible simplification is the choice of the ancillary
controller. Instead of tracking all the state and input trajectories
of the primary controller, only a subset of the trajectories that
are critical from control perspective can be tracked. In the
simplest possible case, a single trajectory can be tracked. In this
case, the ancillary control problem simplifies as follows:

min
uk,∀k∈{0,...,N−1}

N−1

∑
k=0

ℓa(xk − z∗k ,uk − v∗k)+V f a(xN), (7a)

subject to:

xk+1 = f (xk,uk,dnom), ∀k ∈ {0, . . . ,N − 1}, (7b)

u
j

k ∈ U, ∀k ∈ {0, . . . ,N − 1}, (7c)

where only the trajectories corresponding to the nominal un-
certainty dnom are tracked. This reduces the complexity of the
online implementation of the ancillary controller. Instead of
tracking a nominal trajectory, one can even adapt the trajecto-
ries to be tracked depending on the realization of the uncertainty
(Abdelsalam et al., 2020).

4.2 Construction of the controllers

The scenario tree is constructed for all the realizations of the
uncertainties in the set D. The choice of elements of the set D
(defined in (2)) is the first design decision to make. A heuristic
for scenario tree construction is to consider extreme values of
the uncertainties along with the nominal values of the param-
eter. In Lucia et al. (2014), it was shown that robust constraint
satisfaction was achieved for all d ∈ D even for nonlinear sys-
tems by considering only the extreme realizations and nominal
values of the uncertainties for industrially relevant case studies.
However, the problem complexity increases rapidly with the
dimension of the uncertainty nd .

In TEMS NMPC, the uncertainties shall be ordered in terms
of significance (e.g., based on sensitivity analysis) and only
the most significant uncertainties should be used for the con-
struction of the scenario trees. Let the number of significant
uncertainties be denoted as nd that is smaller than nd . Let the

uncertainty d be defined as d , {d1,d2, . . . ,dnd
}, the elements

of which are ordered such that the first nd elements are signifi-

cant. Let Dc be defined as

Dc =

{

d |dL
i ≤ di ≤ dU

i ,∀i ∈ {1, . . . ,nd},

di = dnom,∀i ∈ {nd + 1, . . . ,nd}

}

. (8)

Then D can be constructed by sampling the extreme and nom-
inal values of all di, i ∈ {1, . . . ,nd}. Various works in the lit-
erature concerning scenario tree generation can also be em-
ployed in the context of TEMS NMPC: quadrature-based ap-
proximation (Leidereiter et al., 2014), vector quantization ap-
proach (Goodwin et al., 2009) or sensitivity-based construction
(Thombre et al., 2021). The scenario tree of the ancillary has
the same structure used in the primary controller. However,
there exist computationally simpler alternatives as discussed in
Section 4.1.

4.3 Constraint tightening of the primary controller and tuning
the ancillary controller

The constraints of the primary controller should be tightened
to provide room for the ancillary controller to satisfy the con-
straints of the original system. There is an interplay between the
stage costs for the ancillary controller and the constraint tight-
ening of the primary controller. Hence during the simulation
study, it is recommended to study the closed-loop response as
the first step. The stage cost of the ancillary controller can be
chosen as a quadratic function as follows:

ℓa(x− z,u− v) = (x− z)T Q(x− z)+ (u− v)TR(u− v), (9)

where Q and R are positive semi-definite matrices. For simpler
implementations, Q and R can be chosen as diagonal matrices
with non-negative elements. The gains can be chosen to track
the critical states and inputs. If the tracking of the ancillary
controller is satisfactory, the primary controller constraints can



be tightened to account for the magnitude of the constraint
violations.

A simple way to tighten the constraints is by simulation studies
as proposed in Mayne et al. (2011). Let the state and input
constraints be represented as gi(x,u) ≤ 0, i = {1,2, · · · ,nc},
where nc denotes the number of constraints. The constraints
of the primary controller can be represented as gi(x,u) ≤ −δi,
i = {1,2, . . . ,nc}. The parameters δi ≥ 0, ∀i = {1,2, . . . ,nc}
associated with each constraint can be chosen based on the
maximum violations observed for the final tuning of the an-
cillary controller. Once the constraints are tightened, rigorous
constraint satisfaction can be verified by performing extensive
simulation studies for different values of uncertainties and for
different initial conditions.

4.4 Reinitialization and solution of the controllers

Both (3) and (5) are solved recursively. At the initial step
(t = 0), the primary controller is initialized with the true state
(or the initial estimate) of the system. For all t > 0, the primary
controller is always initialized with one of its predicted states.
This is because (4) finds the closest uncertainty realization
considered in the scenario-tree branches to the measured state.
The optimization problem (3) can be solved in previous time
steps for all uncertainty realizations considered in the scenario
tree. As soon as the measurement is received, the trajectories
corresponding to the realized uncertainty can be passed to the
ancillary controller. In some cases, it is possible that the opti-
mization problem (4) results in fluctuations of the uncertainty
because of various disturbances. If the disturbance dynamics
are available, they can be employed to improve the accuracy

of the resulting estimates of d. An alternative is to include
regularization term for all t ≥ 1 in (4) as follows:

d(t)∈argmin
d∈D

|x(t + 1)− f (x(t),u(t),d)|+ |W(d(t − 1)− d)|,

were W is a weighting matrix. The weighting matrix can
be chosen as a diagonal matrix with large values for time-
invariant or slowly time varying parameters and small values for
rapidly time-varying parameters. To improve the performance
of the closed-loop, the parameters of the primary system can be
estimated for all t > 0 as follows:

d(t)∈arg min
d∈Dc

|x(t + 1)− f (x(t),u(t),d)|+ |W(d(t − 1)− d)|,

(10)

where Dc contains the closed intervals of the parameters con-
sidered in the scenario tree as defined in (8). The primary state
at the next time step (z(t+1)) can be computed from the current
values of the state and input of the primary controller and the
resulting uncertainty of the problem (10), using (2). If (10) is

employed, the primary dynamics (2) are defined for all d ∈ Dc.
When the initialization based on (10) is employed, it is assumed

that the primary controller can handle all uncertainties d ∈ Dc.
The ancillary controller is always initialized with the true state
of the system and the solution is computed online.

4.5 Tracking vs. economic objectives

For tracking objectives, a guaranteed stabilizing control law
using TEMS NMPC is possible. See (Subramanian et al., 2022)
for the necessary assumptions for prior guarantees. If the sys-
tem under investigation is too complex to verify the assump-
tions, the design steps provided here can help achieve required

robust constraint satisfaction and closed-loop stability. Offset-
free tracking requires additional steps which are beyond the
scope of the paper. The scheme implemented based on the
discussed methods may lead to offsets at steady-state.

In the case of economic objectives, the system often operates at
the system boundary. Employing multi-stage NMPC, ignoring
minor disturbances, may lead to oscillatory input moves (as a
response to minor state constraint violations). This oscillation
issue is resolved in the TEMS NMPC because the primary
controller is affected only by the uncertainties considered in the
tree and the ancillary controller does not have state constraints.
This avoids aggressive moves from the ancillary controller if
tuned properly. At the same time, implementing tube-based
NMPC in the presence of significant uncertainties may lead
to conservatism. TEMS NMPC can improve the economic
performance because of a less conservative primary controller.

4.6 Further extensions

The TEMS NMPC scheme can be easily extended to the output
feedback case as well. See (Subramanian et al., 2018) for
details on the same. One can use any efficient estimator to
estimate the states of the system and initialize the ancillary
controller using the state estimates. The primary controller is
implemented the same way as in the full-state feedback case
with a more stringent constraint tightening to account also for
the estimation errors.

In the case of time-invariant parameters, suitable parameter
estimation algorithms can be used to adapt the scenario tree
online. The adaptive TEMS NMPC scheme can yield major
performance advantages as shown in (Abdelsalam et al., 2021).

5. EXAMPLE

We present the details on the design of TEMS NMPC for
the example of a polymerization process that was provided
by BASF SE (Lucia et al., 2014). There are mass balances
of water mW, monomer mA and polymer mP. There are five
energy balances providing the dynamics of temperatures of
reactor TR, vessel TS, jacket TM, heat-exchanger mixture TEK

and coolant at the outlet of the heat exchanger TAWT. The
reaction is exothermic, and the jacket and the heat exchanger
are employed to regulate the temperature of the reactor. The
parameter values and the further details of the model can be
found in (Lucia et al., 2014). The constraints on the reactor
temperature TR help in achieving the desired quality of the
end product, and the adiabatic safety constraint on Tad ensures
safe operation of the plant. The manipulated variables are feed
rate of the monomer ṁF, the jacket inlet temperature T IN

M , and

the inlet coolant temperature of the heat exchanger T IN
AWT. The

bounds on the state and the control inputs are given in Table 1.

The reaction rate k0 and the enthalpy of the reaction ∆HR are
uncertain by ±30% relative to the nominal values. The nominal
values of ∆HR and k0 are −950kJ kg−1 and 7, respectively.
The bounds are given by ∆HR ∈ [−665,−1235]kJ kg−1 and
k0 ∈ [4.9,9.7]. In addition, the dynamics of all the states are
affected by additive disturbances whose bounds at each discrete
time-steps are given by ±0.5 kg/h for the mass balance of
water, ±5 kg/h for the mass balances of monomer and polymer,
and ±0.1◦C for the energy balances at discrete time steps. The
magnitudes of the uncertainties are different when compared to
the simulation study presented in (Subramanian et al., 2018).



Table 1. State and input constraints

State/

input

Min. Max. Primary

controller bounds

Unit

TR 88.0 92.0 [88.3, 91.7] ◦C

Tad 0 109 [1, 108] ◦C

ṁF 0 30000 [0, 29990] kg
h

T IN
M 60 100 [61, 99] ◦C

T IN
AWT 60 100 [61, 99] ◦C

5.1 Scenario tree construction

For the construction of the scenario tree, only the parametric
uncertainties were considered because they are the most sig-
nificant ones. Using the heuristics discussed in Section 4.2,
we built the scenario for the extreme and nominal realizations
of ∆HR and k0, where ∆HR ∈ {−950,−655,−1235} and k0 ∈
{7,4.9,9.1}. It can be seen that s = 32 = 9. For the additive
uncertainties, the nominal values are considered. The approach
was implemented for a robust horizon NR = 1. After the first
prediction step, all the uncertainties are assumed to be constant.
This results in nine scenarios for both the primary controller
and the ancillary controller. If we do not classify the uncertainty
and employ multi-stage NMPC, it would require 310 = 59,049
scenarios (including the additive uncertainties) for NR = 1. The
advantage of TEMS in the complexity reduction is obvious in
comparison to multi-stage NMPC.

5.2 Cost function of the primary controller

The goal is to produce a required amount of polymer as fast
as possible. To achieve this goal, the following stage cost was
chosen as in (Lucia et al., 2014) for the primary controller.

ℓ(z j
k,u

j
k) =−m

j
P,k + r1(∆ṁ

j
F,k)

2 + r2(∆T
IN, j

M,k )2 + r3(∆T
IN, j

AWT,k)
2,

where r1, r2 and r3 are tuning parameters that penalize the
control moves. The values of the tuning parameters were chosen
as r1 = 0.125, r2 = 4 and r3 = 0.25. The terminal cost was
chosen as V f (z) = 0, ∀z ∈ R

nx and the terminal set is chosen
as Z f = Z. The sampling time was chosen as fifty seconds
and the prediction horizon of N = 20 was chosen. Extensive

simulation studies were performed for all uncertainties in D

without constraint tightening.

5.3 Cost function of the ancillary controller

The stage cost of the ancillary controller is chosen as a
quadratic function defined in (9). The input weight matrix
was fixed to identity matrix R = I

3×3. The tuning of Q was
done considering two aspects: Good tracking of mP achieves
the required goal and tracking of TR is required to guar-
antee robust constraint satisfaction. The constraint TR re-
mains active throughout the batch and hence, poses a chal-
lenge in tuning of Q. After several tries, Q was chosen as
diag(0,0,1,500,0,0,0,0). The gain of 500 was required be-
cause of the differences in the absolute values of mP and TR.
If smaller gains were chosen for tracking TR, the constraint
violations were relatively large at the end of the batch. The
terminal cost of the ancillary controller was chosen as V f a(x) =
0, ∀x ∈R

nx .

5.4 Constraint tightening of the primary controller

After choosing the ancillary stage cost, simulation studies were
performed mainly for the extreme realizations of the uncertain-
ties and the worst-case constraint violations were recorded. The

Table 2. Performance comparison between multi-stage NMPC, tube-based

NMPC (Tube) and TEMS NMPC scheme concerning batch times, constraint

satisfaction and computation times

Parameters
MS Tube TEMS

Average batch time [h] 2.1 3.1 1.96

No. of violation of TR 0 0 0

No. of. violation of Tad 0 14 0

Avg. comp. time per iter. [s] 3.07 0.07 0.98

primary controller constraints were tightened based on the pro-
cedure given in Section 4.3. The resulting constraint tightening
for the primary controller can be found in Table 1.

5.5 Computation of the solution

Orthogonal collocation on finite elements was employed for the
discretization of the nonlinear dynamics, and CasADi (Anders-
son et al., 2012) was employed for the automatic generation of
first and second-order exact derivatives. The resulting nonlinear
programming problem was solved using IPOPT (Wächter and
Biegler, 2006). For the primary controller, the re-initialization
strategy (10) was employed.

5.6 Results and comparison

After all the aspects of the controller had been tuned, a uniform
grid of 100 realizations was chosen in the uncertain paramet-
ric space. Each realization was selected for a batch run and
100 batch runs were simulated. The additive disturbances were
varied randomly at every time step during the batch. Selected
closed-loop trajectories obtained by applying TEMS NMPC
scheme for the industrial polymerization process are illustrated
in Figure 2. It can be seen that both the quality and safety con-
straints are satisfied at all times. Also no constraint violations
were noted for all 100 batch runs.

The method is compared with the tube-based NMPC and the
multi-stage NMPC approaches. As explained above, consid-
ering all the uncertainties in the multi-stage NMPC controller
leads to a high computational complexity. Completely ignoring
the additive uncertainties resulted in feasibility issues because
of violations of the constraint on TR. The additive disturbance
on the dynamics of TR was therefore considered together with
the parametric uncertainties in the scenario tree. For the im-
plementation of multi-stage NMPC, three uncertainties were
considered leading to 27 scenarios are employed. It was very
difficult to tune the tube-based NMPC because the nominal
trajectory varied considerably compared to the uncertain tra-
jectory. The tube-based NMPC was implemented with very
stringent constraint tightening. Even then, robust constraint sat-
isfaction was not possible for all the batches.

The results are given in Table 2. It can be seen that the TEMS
NMPC scheme yields the best average batch time. The average
computational complexity was less than one second. It can also
be seen that no constraints were violated. Multi-stage NMPC
had a higher computational cost. However, it does not result
in an improved performance. This is because there were small
oscillations in the control moves due to ignored disturbances.
Tube-based NMPC on the average leads to 1 hour longer batch
times when compared to both multi-stage NMPC and TEMS
NMPC. Tube-based NMPC requires the smallest computation
time, but it also resulted in violations of safety constraints
in 14 batches. Overall, it can be concluded that the TEMS
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Fig. 2. Trajectories of reactor temperature TR, adiabatic safety
temperature Tad, feed rate ṁF, jacket inlet temperature T IN

M
for various simulation runs of the TEMS NMPC scheme.

NMPC scheme provides a better trade-off between optimality
and complexity compared to the other two approaches.

6. CONCLUSION

Tube-enhanced multi-stage NMPC offers flexibility to achieve
the desired trade-off between optimality and complexity. We
presented various design details, simplifications, improvements
and extensions of the tube-enhanced multi-stage NMPC ap-
proach. The scheme was applied to an industrially relevant
example and all the design steps were discussed. The resulting
scheme showed superior performance when compared to both
the multi-stage NMPC and the tube-based NMPC schemes both
in terms of performance and computational complexity.
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