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Abstract: Distributed Model Predictive Control refers to a class of predictive control architectures
in which a number of local controllers manipulate a subset of inputs to regulate a subset of outputs
composing the overall system. These controllers may cooperate to find an optimal control sequence that
minimizes a global cost function, as in the case of Cooperative Distributed Model Predictive Control
(CD-MPC). In this paper two linear CD-MPC algorithms for tracking are proposed. The aim of these
controllers is to drive the outputs of the overall system to any admissible piece-wise constant set-point,
satisfying input and state constraints. However, in the available literature this result is achieved by using
a set of centralized variables that keep track of the global state of the system. In contrast, we develop
novel CD-MPC approaches for tracking that rely on “as local as possible” information instead of the
plant-wide information flow. These new control strategies reduce the required communication overhead,
local computational demands, and are more scalable than CD-MPC algorithms available in the literature.
We illustrate the main characteristics and benefits of the proposed approaches by means of a multiple
evaporator process example.
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1. INTRODUCTION

Model predictive control (MPC) is by far the most successful
advanced control technique applied in the process industries,
capable of providing controllers that ensure closed-loop sta-
bility, constraint satisfaction, and robustness for multivariable
(linear and nonlinear) systems (Maciejowski, 2000; Rawlings
and Mayne, 2009; Pannocchia et al., 2011). Typical theoreti-
cal results on MPC consider the regulation problem. Nonzero
piece-wise constant setpoints can be accounted for by solving a
target calculation problem and shifting the origin of the system
accordingly. Depending on the extent of the required setpoint
change, feasibility issues may arise. To overcome this problem,
in (Limon et al., 2008) a centralized MPC for tracking applica-
ble to constrained linear systems is proposed, which ensures
nominal recursive feasibility and stability of the closed-loop
system under any change of the set-point.

Large-scale systems (e.g. industrial processing plants, power
generation networks, etc.) usually comprise several intercon-
nected units which may exchange material, energy and in-
formation streams. Thus, industrial control systems are often
decentralized. Between centralized and decentralized strategies
(Bemporad and Barcelli, 2010; Riverso et al., 2013), distributed
control algorithms preserve topology and flexibility of decen-
tralized controllers and may offer nominal closed-loop sta-
bility guarantees. In non-cooperative distributed control, each
subsystem controller anticipates the effect of interactions only
locally, i.e. to optimize a local objective function (Farina and
Scattolini, 2012; Betti et al., 2014). However, if these inter-
actions are strong, non-cooperative control can destabilize the
plant and performance can be poorer than decentralized control.
Alternatively, cooperative distributed model predictive control

(Rawlings and Mayne, 2009; Stewart et al., 2010) guarantees
nominal closed-loop stability and convergence to the central-
ized optimal performance by requiring each subsystem to con-
sider the effect of local control actions on all other subsystems.
So, each local controller optimizes the same plant-wide objec-
tive function over its local inputs. In (Ferramosca et al., 2013) a
Cooperative Distributed linear Model Predictive Control (CD-
MPC) strategy to track changing set-points, applicable to any
finite number of subsystems, is presented. This paper extends
the formulation in (Ferramosca et al., 2013) to develop novel
cooperative distributed MPC approaches for tracking that reliy
on information that is “as local as possible”.

Notation. The field of reals is denoted by R. The identity
matrix is denoted by I, and the zero matrix is denoted by 0.
Dimensions of those matrices are omitted when they can be
easily inferred from the context or indicated as subscripts. For
any x ∈ Rn, the symbol ‖x‖ denotes the 2-norm. Given a pos-
itive semi-definite matrix Q ∈ Rn×n, we denote ‖x‖2

Q = xT Qx.
The superscript 0 denotes an optimal cost or vector. Operators
diag{T1, . . . ,TM} and hor{T1, . . . ,TM} represent block diagonal
and the horizontal concatenation, respectively.

2. PRELIMINARIES

2.1 Overall system and subsystems

This paper focuses on discrete-time, linear, time-invariant sys-
tems (DLTI) in the form:

x+ = Ax+Bu
y =C x

(1)

Preprint, 11th IFAC Symposium on Dynamics and Control of Process Systems,
including Biosystems
June 6-8, 2016. NTNU, Trondheim, Norway

Copyright © 2016 IFAC 520



in which x∈Rn and x+ ∈Rn are the current and successor state,
u∈Rm is the manipulated input, y∈Rp is the controlled output.
Without loss of generality, we assume that the overall system
(1) can be represented as the union of M DLTI subsystems. The
evolution of the i-th subsystem (i ∈ {1, . . . ,M}) is given by:

x+i = Ai xi +Bi ui + ∑
j∈Ni

Bi j u j

yi =Ci xi

(2)

where Ni is the set of neighbors of subsystem i, and xi ∈ Rni ,
x+i ∈ Rni , ui ∈ Rmi , y+i ∈ Rpi . Note that it is not necessary to
consider in (2) state interactions among subsystems, because
the “local” state xi may be augmented (if necessary) to include
other required state interaction terms.
Assumption 1. For each subsystem i: the state is measurable at
each decision time and the pair (Ai, Bi) is controllable.

We remark that Assumption 1 implies that (A,B) is stabilizable.

2.2 Useful reminders of graph theory

In order to represent and analyze the different subsystems, it
is useful to recall a few concepts from graph theory. A graph
G = (V , E ) is composed by a finite set of vertices (or nodes)
V and a set of edges (or lines) E ⊂ V ×V that connect pairs
of vertices. A graph G = (V , E ) is directed if E is composed
by oriented edges between the two nodes. Edge (vi,v j) is an
edge from vi to v j, i.e. v j is the edge head and vi is the edge tail.
Given a directed graph G = (V , E ), the inlet star and the outlet
star of node vi are, respectively, the following sets:

SIN
i = {v j ∈ V |(v j,vi) ∈ E } SOUT

i = {v j ∈ V |(vi,v j) ∈ E }
We simplify the notation, indicating with i the generic node
vi, and with j the generic node v j belonging to inlet star
of i,

(
j ∈ SIN

i
)
, or to outlet star of i, i.e.

(
j ∈ SOUT

i
)
. Each

subsystem i in (2) can be seen as a node of a graph: the set
of its neighbors Ni coincides with its inlet star

(
j ∈ SIN

i
)
,

whereas SOUT
i is the set of subsystems of which subsystem i

is neighbor. The goal of this work is to manage large-scale
systems, with multiple inputs, multiple outputs, and state and
input constraints. Moreover, each subsystem, may influence
each other.

2.3 Centralized MPC: regulation and tracking

We first recall the basics of MPC in its centralized form.

Centralized regulation. Consider the DLTI system (1) such
that (x, u) = (0, 0) is an equilibrium point. Let N be a positive
horizon length. Suppose that the system is subject to state and
input constraints:

x(k ) ∈ X, u(k ) ∈ U
Given the current state, x, and a finite-horizon input sequence
u = {u(0), . . . ,u(N−1)} we define the cost function as:

V (x, u) =
N−1

∑
k=0

` (x(k) , u(k))+Vf (x(N)) s.t.

x(0) = x
x(k+1) = Ax(k)+Bu(k) k = 0, . . . , N−1

(3)

in which `(·) is the stage cost function. If `(·) is positive def-
inite, goal of the regulator is to steer the state to the origin.

Usually quadratic stage and terminal costs are considered re-
spectively in the form:

`(x, u) =
1
2
(
xT Qx+uT Ru

)
Vf (x) =

1
2

xT Px

with Q, R and P positive definite matrices. We can define the
finite horizon optimal control problem (FHOCP) as

P(x) : V 0(x) = min
u
{V (x , u) | u ∈UN (x)} (4)

where: UN (x) =
{

u | u(k) ∈ U, x(k) ∈ X, x(N) ∈ X f ⊆ X
}

.

P(x) in (4) provides u0(x) as optimal input sequence, asso-
ciated with a corresponding optimal state sequence x0(x) ={

x0(0) = x,x0(1), . . . ,x0(N)
}

. Finally, we recall that P(x) can
be posed as a Quadratic Program (QP) and solved numerically.

Centralized tracking. It is a common objective to drive the
outputs of a system (or a subset of them) to a desired target
(yt ) other than the origin. Clearly, this also means that input
and state vectors have to reach an equilibrium, in general,
different from the origin. Let (xs, us, ys) denote the steady-
state equilibrium triple of state, input and output. From (1), the
following relation must hold:[

A− I B 0
C 0 −I

][xs
us
ys

]
=

[
0
0

]
(5)

If we define
Vss(ys,yt) = ‖ys− yt‖2

T (6)
with T positive definite diagonal matrix, we obtain an equilib-
rium triple in which the output is as close as possible to the
desired target, while state and input constraints are fulfilled, by
solving the following problem:

min
xs,us,ys

Vss(ys,yt) s.t. (5) and xs ∈ X, us ∈ U (7)

The above is often referred to as a steady-state target optimizer
(SSTO) problem, and we remark that (7) is also a QP. Given(
x0

s , u0
s , y0

s
)
, solution to problem (7), we can define the devia-

tion variables as x̃ = x− x0
s and ũ = u−u0

s . Then, we solve the
FHOCP in deviation variables:

P(x̃) : V 0 (x̃) = min
ũ

{
V (x̃(0) , ũ)

∣∣ ũ ∈ ŨN (x̃)
}

(8)

where: ŨN (x̃) = {ũ | ũ(k) + u0
s ∈ U, x̃(k) + x0

s ∈ X, x̃(N) ∈
X f }. The receding horizon control law uses the first element
of the optimal sequence ũ0(x)solution to (8), so the input will
be u = ũ0 (x̃(0)) + u0

s . In some tracking formulations (Limon
et al., 2008) the steady-state problem (7) can be embedded into
problem P(x̃), resulting in a single-layer MPC structure.

2.4 Distributed MPC: regulation and tracking

Regulation and tracking MPC algorithms can be designed for
each subsystem i in a cooperative fashion, so that a plant-wide
cost function can be minimized.

Cooperative regulation. As in centralized MPC, for each sub-
system we consider the following cost function:

Vi

(
xi, ui,

{
u j
}

j∈Ni

)
=

N−1

∑
k=0

`i (xi (k) , ui (k))+Vf i (xi (N))

s.t. xi(0) = xi (9)
xi(k+1) = Ai xi(k)+Bi ui(k)+ ∑

j∈Ni

Bi j u j(k)
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in which

`i(xi,ui) =
1
2 (x

T
i Qixi +uT

i Riui), Vf i(xi) =
1
2

xT
i Pixi

with Qi ∈ Rni , Ri ∈ Rmi and Pi ∈ Rni , positive definite ma-
trices. We remark that Vi(·) depends also on neighbors’ input
sequences, u j for j ∈ Ni, due to interactions among subsys-
tems, as given in (2). In cooperative distributed MPC (Rawlings
and Mayne, 2009; Scattolini, 2009; Pannocchia, 2014), each
subsystem optimizes the global objective function defined as

V (x, u) =
M

∑
i=1

Vi

(
xi, ui,

{
u j
}

j 6=i

)
(10)

We notice that the global cost function (10) is equivalent
to that of the centralized problem (3) with weight matri-
ces Q = diag{Q1, . . . ,QM}, R = diag{R1, . . . ,RM}, P =
diag{P1, . . . ,PM}. So we define the FHOCP for each subsystem

Pi

(
x,
{

u j
}

j 6=i

)
: min

ui
V (x, u) s.t.

ui ∈Ui

(
x,
{

u j
}

j 6=i

)
(11)

x(N) ∈ X f ⊆ X
in which

Ui

(
x,
{

u j
}

j 6=i

)
= {ui | ui (k) ∈ Ui , x(k) ∈ X}

We remark that each subsystem solves problem (11) for a
known and fixed value of all other subsystem input sequences.
If time allows it, this process can be repeated performing
cooperative iterations as detailed next. Let u[q−1]

i be the known
value of subsystem i input sequence at the q-th cooperative
iteration (q = 1, at the beginning of this iterative process), and

let u0
i be the solution to problem Pi

(
x,
{

u[q−1]
j

}
j 6=i

)
in (11).

Then the input sequence of subsystem i for the next cooperative
iteration is defined as a convex combination of the new and old
values, i.e.: u[q]

i = wiu0
i +(1−wi)u

[q−1]
i , in which wi > 0 such

that ∑
M
i=1 wi = 1. Cooperative iterations are typically performed

until convergence, i.e. when
∥∥∥u[q]

i −u[q−1]
i

∥∥∥ is less than a given
tolerance, or until a maximum number of iterations is reached.
Then, the first component of computed input is sent to each
subsystem in the usual receding horizon fashion.

Cooperative tracking. Problem (11) described above can be
applied to tracking or can be integrated with dynamic optimiza-
tion layer as in (Ferramosca et al., 2013). In that work, an arti-
ficial equilibrium triple (xs, us, ys) of the overall system (1), i.e.
satisfying (5), is added as decision variable. Consequently, the
global cost function is modified by adding a term that penalizes
the deviation of ys from yt , as follows:

Vt (x, u, xs, us, ys) =
N−1

∑
k=0

`(x(k)− xs,u(k)−us)+

Vf (x(N)− xs)+Vss (ys, yt)

s.t. x(0) = x
x(k+1) = Ax(k)+Bu(k)

(12)

in which Vss (·) is defined in (6). The FHOCP to be solved by
each subsystem i reads as follows:

Pi

(
x,
{

u j
}

j 6=i

)
: min

ui,xs,us,ys
Vt (x, u, xs, us, ys) s.t.

ui ∈Ui

(
x,
{

u j
}

j 6=i

)
(13)

(x(N),ys) ∈Ω

where Ω is an admissible polyhedral invariant set for tracking
for system (1), as explained in (Ferramosca et al., 2013). We
also point out that in problem (13) solved by (Ferramosca et al.,
2013), the triple (xs,us,ys) is parameterized by ys only, which
represents together with ui the actual decision variable.

3. PROPOSED METHODOLOGY

The proposed method is based on a single optimization layer
as described in § 2.4. Differently from the general approach
used in cooperative algorithms (Rawlings and Mayne, 2009;
Ferramosca et al., 2013; Pannocchia, 2014), in the proposed
method each local controller does not have to know the overall
system state but only a part of this one that is strictly necessary
to achieve the desired global tracking goal. To this aim we need
to exploit carefully the interactions among subsystems.

3.1 The augmented system

Each subsystem i is influenced by the inputs of its inlet star, as
described in (2) and its input influences the subsystems of its
outlet star, along with the inputs of their inlet stars (cfr. §2.3).
The evolution of its own state xi and of the states of subsystems
belonging to its outlet star are given by:

x+i = Ai xi +Bi ui + ∑
k∈SIN

i

Bikuk (14)

x+j = A j x j +B jiui +

B ju j + ∑
k∈SIN

j \{i}
B jk uk

 , j ∈ SOUT
i

The evolution of the states of the remaining subsystems can be
written as:

x+j = A j x j +

B ju j + ∑
k∈SIN

j

B jk uk

 , j /∈ SOUT
i (15)

It is therefore clear that each subsystem i should only consider
the evolution of subsystems reported in (14), because those
reported in (15) are independent of ui. We can define a new
set representing the inlet star of the augmented subsystem (14):

SIN
i ← SIN

i ∪SOUT
i ∪

 ⋃
j∈SOUT

i

SIN
j \{i}

 (16)

Note that by definition, i /∈ SIN
i . Then, defining the following

stacked vectors and matrices:

x̄i =

[
xi

[x j] j∈SOUT
i

]
, ūi = [uk]k∈SIN

i
, ȳi =

[
yi

[y j] j∈SOUT
i

]
Āi = diag

{
Ai, {A j} j∈SOUT

i

}
, B̄i =

[
Bi

[B ji] j∈SOUT
i

]
B̄IN

i =

[
hor{Bik}k∈SIN

i
hor{B jk} j∈SOUT

i , k∈SIN
i

]
(17)

we can rewrite the augmented system (14) compactly as:
x̄+i = Āi x̄i + B̄i ui + B̄IN

i ūi

ȳi = C̄i x̄i
(18)

IFAC DYCOPS-CAB, 2016
June 6-8, 2016. NTNU, Trondheim, Norway

522



3.2 Optimal control problem and cooperative iterations

We now analyze the global cost function for tracking given in
(12), and rewrite it in a way that the specific contribution of
each subsystem is highlighted:

Vt(·) =
M

∑
j=1

(
N−1

∑
k=0

` j(x j(k)− xs j,u j(k)−us j)+

Vf j(x j(N)− xs j)

)
+

M

∑
j=1
‖ys j− yt j‖2

Tj
(19)

where (xs j,us j,ys j) represent an equilibrium triple of each
subsystem j, yt j is the desired target of the j−th subsystem
output, and Tj is a positive definite diagonal matrix associated
to the output of subsystem j, easily defined from T in (6). We
observe that the input of subsystem i only affects the terms
associated to the augmented system (14), and hence all terms
associated to the other subsystems, i.e. for j /∈ SOUT

i , can be
dropped. More specifically let x̄i be the current value of the state
of the augmented system (18), and

{
u j
}

j∈SIN
i

the finite horizon
input sequence of its neighbors; then, the cost function to be
minimized by subsystem i reads:

Vti(·) =
N−1

∑
k=0

¯̀i(x̄i(k)− x̄si,ui(k)−usi)

+V̄f i(x̄i(k)− x̄si)+‖ȳsi− ȳti‖2
T̄i

s.t.

x̄i(0) = x̄i

x̄i(k+1) = Āi x̄i(k)+ B̄i ui(k)+ B̄IN
i ūi(k)

(20)

in which
¯̀i(x̄i,ui) =

1
2
(
x̄T

i Q̄ix̄i +uT
i Riui

)
, V̄f i(x̄i) =

1
2

x̄T
i P̄ix̄i (21)

Likewise, it is not necessary to include the state constraints of
all subsystems, as only those of the augmented system (14) will
be affected by the input ui. Therefore, the proposed method
considers the following finite horizon optimal control problem
to be solved by each subsystem i:

Pi

(
x̄i,
{

u j
}

j∈SIN
i

)
: min

ui,xs,us,ys
Vti(ui,xs,us,ys)

s.t. (5) and

ui ∈ Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
(22)

(x̄i(N), ȳsi) ∈ Ω̄i

in which

Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
= {ui | ui (k) ∈ Ui , x̄i(k) ∈ X̄i}

with X̄i being the state constraint set for the augmented sys-
tem (18), and Ω̄i is an admissible polyhedral invariant set for
tracking for system (18), as explained in (Ferramosca et al.,
2013). Once we solve problem (22), we obtain an optimal input
sequence u0

i . In similar manner as in cooperative regulation
problem, we operate cooperative iterations until a relative error
tolerance between the input vector at two consecutive iterations
or a maximum number of cooperative iterations are achieved.
The detailed calculations are reported formally in Algorithm 1.

Algorithm 1. (Cooperative MPC - Single step). Require: Systems
(18), SIN

i ∀i = 1 . . .M, tolerance ε , maximum number of cooperative itera-
tions qmax, convex combination weights wi > 0, such that ∑

M
i=1 wi = 1.

1: Set q← 0 and ei← 2ε .
2: while q < qmax and ∃ i such that ei > ε do

3: q← q+1
4: for i = 1 to M do
5: Solve problem Pi in (22) to obtain the optimal input sequence

u0
i (x) and the centralized state-steady triple (xs, us, ys).

6: if q = 1 then
7: u[q−1]

i =
[
uT

si
· · · uT

si

]T
8: end if
9: Define new iterate: u[q]

i = wiu0
i +(1−wi)u

[q−1]
i .

10: Compute convergence error: ei =
||u[q]i −u[q−1]

i ||
1+||u[q]i ||

11: end for
12: end while
13: return Overall solution u =

(
u[q]

1 , u[q]
2 , . . . , u[q]

M

)
.

The lines 5-10 of Algorithm 1 are executed (in parallel) by each
subsystem defined as in (18). Problem (22) finds, in a single
step, the optimal input sequence for subsystem i, u0

i and the
centralized steady-state triple (us, xs, ys). It is important to note
that subsystems solve their optimization problem independently
of each other since there is no communication at this point.
Communication takes place after line 10, when each subsystem
communicates its local input u[q]

i and its convergence error ei.

3.3 A two step variant

A variant of the proposed algorithm is where the steady target
problem is executed by each subsystem separately from the
optimal control problem. In the first step each subsystem finds
the equilibrium triple (xs,us,ys) for the overall system from
(5). Then, each subsystem solves a problem that is similar to
Pi in (22) with (xs,us,ys) being known parameters instead of
decision variables. The problem is solved in parallel by each
agent. At the end of each cooperative iteration, communication
takes place; each subsystem communicates its local input u[q]

i
and its convergence error ei.

3.4 Complexity analysis

It is important to remark that in problem (22), each subsystem
i computes the evolution trajectory of its augmented system.
This is sufficient to minimize the global objective function
and enforce state (or output) constraints because the states that
are discarded are those that are not affected by the input of
subsystem i. On the contrary, general cooperative algorithms
keep track of the evolution of the overall state to achieve the
same goals. It is well known that Quadratic Programs arising
in MPC problems, like (4) or (22), are more effectively solved
for large scale systems using Interior Point algorithms with
both state and input sequences as decision variables (Rao et al.,
1998). Since the augmented system comprises a subset of
the overall system state, it follows that proposed single step
method has lower (no higher) complexity than the method in
(Ferramosca et al., 2013). A summary of the complexity of both
methods, as well as of the two step variant discussed in §3.3,
is reported in Table 1, in which DMPC0 refers to the method
discussed in §2.4, DMPC1 is the proposed single step method
discussed in §3.2, and DMPC2 is the proposed two step method
discussed in §3.3.

4. APPLICATION EXAMPLE

4.1 Multi-stage evaporator model and subsystems

As an example, we consider a “forward feed”, triple effect,
evaporator process. The mass and energy balance equations for
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the three evaporators (i = 1,2,3) are given by:
dMi

dt
= Li−1−Li−Vi

cpMi
dTi

dt
= Li−1cp (Ti−1−Ti)−Viλi +Vi−1λi−1

Mi
dχi

dt
= Li−1χi−1 +(Vi−Li−1)χi

(23)

in which the states/outputs are: the liquid mass Mi, the evap-
orator temperature Ti, the solute mass fraction χi; the inputs
are: the liquid outlet rate Li, the vapor outlet rate Vi. For the
first evaporator Li−1 = F is the feed rate, Ti−1 = TF is the
feed temperature, Vi−1λi−1 = Q1 is the external duty. The other
parameters are the heat capacity cp and the heat of evaporation
λi. Parameters are taken from (Coulson and Richardson, 1993,
p.632-633). To obtain a linear model, the nonlinear system (23)
is tested for 72 hours in which each input has 2% of maximum
amplitude variation. Generalized Binary Noise (GBN) input
signals are produced (Zhu, 2001) with a sampling time of 1 min
and a a switch probability of 2%. Then, both inputs and outputs
are mean centered, and normalized in the range [−1, 1]. A
MISO approach is considered to identify a linear model for
each output, using the N4SID algorithm available in the Sys-
tems Identification toolbox in Matlab (Ljung, 1999). A transfer
function model for each (nonzero) input-output pair is reported
in Table 2, which highlights the sparsity of the identified model.
We assume that the process is split into three subsystems: Sub-
system 1 has (L1,Q1,V1) as inputs and (M1,T1,χ1) as outputs;
Subsystem 2 has (L2,V2) as inputs and (M2,T2,χ2) as outputs;
Subsystem 3 has (L3,V3) as inputs and (M3,T3,χ3) as outputs.

4.2 Controllers, simulations and results

The purpose of this simulation is to steer the outputs of
the three subsystems as close as possible to given piece-
wise constant set-points. In particular we have the follow-
ing desired normalized targets: for k = 0, . . . ,4 target is the
origin; for k = 5, . . . ,239 yt1 = [0, 0, 0.07], yt2 = [0, 0, 0.1],
yt3 = [0, 0, 0.7]; for k = 240, . . . ,480 yt1 = [0, 0,−0.07], yt2 =
[0, 0,−0.1], yt3 = [0, 0,−0.7]. Three controllers are compared:
DMPC0 (§2.4); DMPC1(§3.2); DMPC2(§3.3). All controllers
are tuned with the same parameters: N = 100, ‖u‖∞ ≤ 1;
Qi =CT

i diag([0.1, 0.1, 1])Ci, for i = 1, 2, 3; R1 = 0.01I3, Ri =

0.01I2 for i = 2, 3; T1 = 105I3, Ti = 105 diag([1, 0, 1]) for
i = 2, 3; Pi for i = 1, 2, 3 is the solution of the discrete al-
gebraic Riccati equation for each subsystem; cooperative loop
is iterated until the maximum number of cooperative iteration
(qmax = 100) are reached or convergence error is less than
ε = 0.01. Simulations are performed in Matlab (version 2015b)
on a MacBook Pro (3 GHz Intel Core i7, 16 GB RAM). Figure 1
shows the cumulative distribution function (CDF) of computa-
tion times. For each time t, the CDF is defined as the fraction of
distributed MPC algorithm executions that are solved in time t
or less. We notice that DMPC2 completed 97% of its executions
in less than 1 second, while DMPC1 completed in the same

Table 1. Comparison of computational complexity
of the three algorithms.

DMPC0 DMPC1 DMPC2

Prediction model Centralized Augmented Augmented
Target calc. (TC) Embedded Embedded Separate
TC decision var. – – (xs,us,ys)
OCP decision var. (ui,x,xs,us,ys) (ui, x̄i,xs,us,ys) (ui, x̄i)

1 2 5 10 20 30
Computation Time (s)

0
0.2
0.1
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ρ
C
D
F

DMPC0

DMPC1

DMPC2

Fig. 1. Cumulative distribution function of computation time.

time about 80% of its executions. On the other hand, DMPC0
completed no executions in 1 second or less; at least it needs
about twice computation time (i.e. 2 s) to complete 82% of
its executions. From this plot we can appreciate how DMPC1
and DMPC2 are parsimonious with respect to DMPC0. Figure
2 shows the closed-loop evolution of inputs (with constraints)
and outputs with relatives desired setpoint. Results are similar
for all controllers, and DMPC0 and DMPC1 are (as expected)
identical in closed-loop performance. By using augmented state
rather than the centralized one, in the prediction model, we have
not taken out useful information from the dynamics.

5. CONCLUSIONS

We presented in this paper cooperative distributed MPC al-
gorithms for tracking piece-wise constant references, in lin-
ear systems divided into a finite number of interacting sub-
systems. The main contribution of this work is to reduce the
dimension of the prediction model used by each subsystem, by
exploiting basic concepts of graph theory, while retaining the
global optimality of the cooperative algorithm. This approach
reduces the computational and communication requirements of
the proposed algorithm(s) with respect to the currently available
ones. Two variants were considered, one with target calculation
embedded in the optimal control problem and one with sepa-
rate target calculation. A multiple effect evaporator process has
been presented, and the proposed algorithms were shown to be
significantly more effective in terms of average and worst-case
computation time.
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Table 2. Triple effect evaporator model in transfer functions (normalized inputs and outputs)

L1 Q1 V1 L2 V2 L3 V3

M1 − 0.04797
z−2.717 - − 0.0339

z−2.717 - - - -

T1 - 0.564
z−2.509 − 0.1745

z−2.509 - - - -

χ1 - - 0.009394
z−2.549 - - - -

M2
0.05726
z−2.716 - - − 0.07207

z−2.716 − 0.09465
z−2.716 - -

T2
0.008029z−0.01856
z2−4.913z+6.029

0.089z−0.02579
z2−4.913z+6.029

0.2431z−0.6396
z2−4.913z+6.029 - −0.6057z+1.451

z2−4.913z+6.029 - -

χ2 − 0.01418
z−2.604 - 0.01038

z−2.604 - 0.02976
z−2.604 - -

M3 - - - 0.07503
z−2.712 - - 0.08504

z−2.712 − 0.1255
z−2.712

T3
0.001138z+0.03875
z2−4.898z+5.986

−0.02526z+0.3423
z2−4.898z+5.986

0.06671z−0.127
z2−4.898z+5.986

0.09903z−0.2557
z2−4.898z+5.986

2.472z−6.521
z2−4.898z+5.986 - −2.895z+7.385

z2−4.898z+5.986

χ3
−0.01013z+0.01865

z2−5.241z+6.864 - 0.004064z−0.005355
z2−5.241z+6.864

−0.2224z+0.6029
z2−5.241z+6.864

0.01244z−0.02893
z2−5.241z+6.864 - 0.464z−1.249

z2−5.241z+6.864
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Fig. 2. Closed-loop evolution of inputs and outputs. Red dashed lines are used for input bounds or output setpoints.
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