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Abstract: In this paper, a closed-loop subspace identification approach through an
orthogonal projection and subsequent singular value decomposition is proposed.
As a by-product of this development, it explains why some existing subspace
methods may deliver a bias in the presence of the feedback control and suggests a
remedy to eliminate the bias. Furthermore, as the proposed method is a projection
based method, it can simultaneously provide extended observability matrix, lower
triangular block-Toeplitz matrix, and Kalman filtered state sequences. Therefore,
using this method, the system state space matrices can be recovered either from
the extended observability matrix/the block-Toeplitz matrix or from the Kalman
filter state sequences.
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1. INTRODUCTION

Identification of the subspace matrices from closed
loop data has received an increasing attention
by a number of researchers. It is found that
the regular open-loop subspace identification al-
gorithm yields a biased estimate when applied
to closed-loop data(Ljung and McKelvey, 1996).
Several modified algorithms have been proposed
(Overschee and Moor, 1996; Ljung and McK-
elvey, 1996; Ljung and McKelvey, 1996). Another
class of subspace system identification is called
the instrument variable methods (Chou and Ver-
haegen, 1997; Wang and Qin, 2002). In the class
of the instrument variable methods, the effect of
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disturbances is eliminated by appropriate selec-
tion of the instrument variables that are inde-
pendent of disturbances. Under the framework of
MOESP, (Chou and Verhaegen, 1997) developed
an instrument variable subspace identification al-
gorithm. They claimed that the algorithm worked
for closed-loop systems provided there is at least
one sample time delay in the controller, which may
be restrictive in practice. Aiming at solving the
open-loop error in variable (EIV) identification
problem, (Wang and Qin, 2002) developed an in-
strument variable subspace identification method
via principal components analysis, which may be
applicable to closed-loop identification but only
under certain conditions.



In this paper we develop a closed-loop subspace
identification algorithm through an orthogonal
subspace projection, and then use either the ex-
tended observability matrix/lower block-Toeplitz
matrix or the Kalman filter states resulting from
the projection to extract system models (Due to
the space limit, we will not discuss the procedure
to recover the model from the Kalman filter state
sequence). Since the model is obtained using pro-
jections of subspace, as is the case in most other
subspace identification algorithms, it has certain
additional properties compared to the instrument
methods. It is further shown that the existing
instrument subspace identification via PCA, al-
though works well for open-loop EIV systems,
yields a biased solution in closed-loop under cer-
tain conditions. A remedy to eliminate this bias is
also proposed in this paper.

The remainder of this paper is organized as fol-
lows. Several subspace notations adopted through-
out this paper are revisited in Section 2. Our
main results, the proposed subspace closed-loop
identification approach and a solution to an ex-
isting instrument subspace identification method
for closed-loop identification, are discussed in Sec-
tion 3. Simulation results are presented in Sec-
tion 4, followed by concluding remarks in Sec-
tion 5.

2. SUBSPACE IDENTIFICATION

Consider a state space model in the innovation
form

xt+1 = Axt + But + Ket (1)

yt = Cxt + Dut + et (2)

where xt ∈ Rn, ut ∈ Rp, yt ∈ Rq, and et ∈ Rq is
white noise innovation sequence with covariance
Σe.

Following the standard subspace notation, one
can derive, through the iterative substitution of
Eqs(1) and (2), the subspace matrix equations as

Yf = ΓiXf + Hd
i Uf + Hs

i Ef (3)

Yp = ΓiXp + Hd
i Up + Hs

i Ep (4)

Xf = AiXp + ∆d
i Up + ∆s

i Ep (5)

where subscript p stands for the “past” and f
for the “future”. All notations used in Eqs(3)-
(5) are standard and can be found in most of
subspace identification literatures. Γi is extended
observability matrix, ∆d

i and ∆s
i are reversed ex-

tended controllability matrices for process input
and disturbance input respectively, Hd

i and Hs
i

are the lower triangular block-Toeplitz matrices

for process input and disturbance input respec-
tively. The past and future input block-Hankel
matrices are defined as

Up
4
= U0|i−1 =




u0 u1 · · · uj−1

u1 u2 · · · uj

· · · · · · · · · · · ·
ui−1 ui · · · ui+j−2


 (6)

Uf
4
= Ui|2i−1 =




ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j

· · · · · · · · · · · ·
u2i−1 u2i · · · u2i+j−2


(7)

where Up, Uf ∈ Rpi×j . Note that, in Eqs(6) and
(7), the row dimension of Uf is allowed to be
different from that of Up, which would provide an
extra freedom to tune the identification algorithm.

The output and innovation block-Hankel matrices
Yp, Yf ∈ Rqi×j , Ep, Ef ∈ Rqi×j , respectively, are
defined conformably with Up, Uf .

The states are defined as

Xp
4
= X0 =

(
x0 x1 · · · xj−1

)
(8)

Xf
4
= Xi =

(
xi xi+1 · · · xi+j−1

)
(9)

where Xp, Xf ∈ Rn×j .

In subspace identification literature, the following
short-hand notation is often used:

Wp =
(

Yp

Up

)

The following two projections are frequently used
throughout this paper.

Orthogonal projection: The orthogonal projec-
tion of the row space of A onto the row space of B
is denoted by A/B and can be calculated through

A/B = AB+B

where B+ is the pseudo inverse of B.

Oblique projection: The oblique projection of
the row space of A ∈ Rp×j along the row space
of B ∈ Rq×j on the row space of C ∈ Rr×j are
defined as A/BC and can be calculated via (using
MATLAB matrix index notation)

A/BC = A

(
C
B

)+

(:, 1 : r)C

Two important properties of the oblique projec-
tion are often used and they are

A/AC = 0 (10)

A/BA = A (11)

These two properties are straightforward results
by the definition of the oblique projection.



3. CLOSED-LOOP IDENTIFICATION

3.1 A preliminary solution

Let’s now revisit Eq(3)

Yf = ΓiXf + Hd
i Uf + Hs

i Ef (12)

The essential system information is contained in
the extended observability matrix Γi or in the
state Xf . That is, the first term on the right hand
side of Eq(12) deserves our main attention. To
calculate, for example, Γi from Eq(12), one has to
get rid of the terms containing Uf and Ef . If Ef is
independent of past input Up, past output Yp (or
equivalently their combination Wp), and future
input Uf , then one can easily achieve the above
objective by performing an oblique projection of
Eq(12) along the row space Uf onto the row space
of Wp, i.e.

Yf/Uf
Wp = ΓiXf/Uf

Wp + Hd
i Uf/Uf

Wp

+Hs
i Ef/Uf

Wp (13)

It is easy to see that the last two terms of
Eq(13) are zero, Uf/Uf

Wp = 0 by the property
of the oblique projection, Eq(10); Ef/Uf

Wp = 0
and this is based on the assumption that future
disturbance is independent of past input/output
and future input. This assumption holds under
the open-loop condition. Thus Eq(13) can be
simplified to

Yf/Uf
Wp = ΓiXf/Uf

Wp (14)

This result indicates that the column space of Γi is
the same as the column space of Yf/Uf

Wp, which
can be calculated by the SVD decomposition of
Yf/Uf

Wp. Similarly, the row space of Yf/Uf
Wp is

the same as the row space of Xf/Uf
Wp, which

is Kalman filter state solution with Xp/Uf
Wp as

its initial condition (Favoreel, 1999). Therefore,
the Kalman state sequence can also be calculated
from the SVD decomposition of Yf/Uf

Wp. Subse-
quently, the system state space matrices can be
recovered either from the extended observability
matrix or from the Kalman state sequence. This
is the solution to open-loop subspace system iden-
tification.

The situation becomes more complex for closed-
loop identification where the future disturbance
Ef is no longer independent of the future input
Uf due to the feedback. The implication of this
dependency is that the oblique projection of Ef

along Uf onto Wp is no longer zero although the
orthogonal projection of Ef onto Wp is zero.

To solve this problem, by adopting the EIV struc-
ture, we move the term related to Uf into the left
hand side of Eq(12) as it would be a troublesome
term if left in the right hand side of the equation.

This yields a new equation with both input and
output variables in the same side of the equation.

[
I −Hd

i

] (
Yf

Uf

)
= ΓiXf + Hs

i Ef (15)

Using the short-hand notation

Wf =
(

Yf

Uf

)

Eq(15) can be simplified to
[
I −Hd

i

]
Wf = ΓiXf + Hs

i Ef (16)

Performing an orthogonal projection of Eq(16)
onto the row space of Wp yields
[
I −Hd

i

]
Wf/Wp = ΓiXf/Wp+Hs

i Ef/Wp (17)

The last term of Eq(17) is an orthogonal projec-
tion of the future disturbance (white noise) onto
the row space of past input and output matrix Wp,
which is zero. Therefore, Eq(17) can be simplified
to

[
I −Hd

i

]
Wf/Wp = ΓiXf/Wp = ΓiX̂f (18)

Remark 1. Eq(18) is a natural result through the
projection as is often done in subspace system
identification literature. The orthogonal projec-
tion of Eq(16) onto the row space of Wp results
in Eq(18), which includes a multiplication term
between the extended observability matrix Γi and
non-steady state Kalman state X̂f . On the other
hand, (Wang and Qin, 2002) used an instrument
variable method to arrive an equation as

[
I −Hd

i

]
WfWT

p = ΓiXfWT
p (19)

where the instrument variable is the past input
and output Wp. This equation is derived by mul-
tiplying Eq(16) by WT

p and noticing the indepen-
dency between Wp and Ef .

The projection method may also be mathemati-
cally regarded as an instrument variable method
where the instrument is WT

p (WpW
T
p )−1Wp. How-

ever, by using the projection, it results in a multi-
plication term between the extended observability
matrix and the Kalman filtered state, which pro-
vides some additional feature and performance.
We shall call the proposed projection method as
the subspace orthogonal projection identification
method, abbreviated SOPIM, while the subspace
identification method via PCA of (Wang and
Qin, 2002) is abbreviated as SIMPCA.

Now multiplying both sides of Eq(18) by the
orthogonal column space of Γi, denoted by Γ⊥i ,
yields

(Γ⊥i )T
[
I −Hd

i

]
Wf/Wp = 0 (20)

Denoting Z = Wf/Wp, the problem is trans-
ferred to finding the orthogonal column space of
Z, which should equal to the column space of(
(Γ⊥i )T

[
I −Hd

i

] )T
.



Perform SVD decomposition of Z as

Z =
(
U1 U2

)(
Σ1

0

)(
V T

1

V T
2

)
(21)

where, in practice, Z is not singular and one has to
determine its rank by checking its singular values.
In theory, its rank should be pi + n(Wang and
Qin, 2002) assuming that the external excitation
is persistent excitation. The rank determination is
equivalent to the determination of system orders.

With Eq(21), one can easily find the orthogonal
column space of Z, which is U2. Therefore

(
(Γ⊥i )T

[
I −Hd

i

] )T
= U2M (22)

where M is any constant matrix. Partition

U2M =
(

P1

P2

)

Then Eq(22) can be written as
(

(Γ⊥i )
−(Hd

i )T Γ⊥i

)
=

(
P1

P2

)
(23)

Therefore,

Γi = P⊥1 (24)

−(P1)T Hd
i = PT

2 (25)

The remaining problem is to solve for Γi and
Hd

i , and then to extract the system matrices
A,B, C, D from Γi and Hd

i . Many methods are
available for this purpose, for example, (Wang and
Qin, 2002).

Can SOPIM and SIMPCA work under closed-
loop conditions? Up to now, it appears that there
should be no question for both to work under
closed-loop conditions as the input Uf , the cor-
relation of which with the future disturbance Ef

is the key problem in closed-loop identification, is
not involved in the projection or in the instrument
variable. Both equations (18) and (19) appear to
be able to uniquely determine the process model
irrespective of open or closed loop. However, sim-
ulation results indicate that this is not the case
although both work for open-loop systems.

3.2 The problem and the solution

The problem must have resulted from the con-
troller since they both work well under the open-
loop condition. Without presenting a full version
of analytical derivation due to the space limit, in
this section, we will make a heuristic analysis of
the problem and then present our solution.

To find the problem, let’s consider that the con-
troller is described by the following state space
model:

xc
t+1 = Acx

c
t + Bc(rt − yt) (26)

ut = Ccx
c
t + Dc(rt − yt) (27)

where r is the setpoint excitation. Using subspace
notations, we should have the controller expressed
as

Uf = Γc
iX

c
f + Hc

i (Rf − Yf ) (28)

Up = Γc
iX

c
p + Hc

i (Rp − Yp) (29)

where Rp and Rf are data Hankel matrices of
the setpoint, Xc

p and Xc
f are the state matrices

of the controller, Γc
i is the extended observability

matrix, and Hc
i is the lower triangular block-

Toeplitz matrix, of the controller.

Eq(28) can be re-arranged to give
[
Hc

i I
]
Wf = Γc

iX
c
f + Hc

i Rf (30)

Projecting Eq(30) to Wp yields
[
Hc

i I
]
Wf/Wp = Γc

iX
c
f/Wp + Hc

i Rf/Wp (31)

Comparing Eq(31) with Eq(18), one can find
the overlap of two subspaces represented by the
two equations, one for process model subspace
and the other for controller model subspace, if
Hc

i Rf/Wp → 0 or RfWT
p → 0 (in the case of

SIMPCA). This situation can occur, for example,
when Rf is white noise excitation.

Our solution to this problem (omitting details due
to space limit) is: for closed-loop identification,
one should replace Wp by Wpr according to Eq(32)

Wpr
4
=

(
Rf

Wp

)
(32)

This will guarantee Hc
i Rf/Wp 6= 0 or RfWT

p 6= 0.
With the modification, all the computation pro-
cedures discussed in the last section are valid for
closed-loop identification after replacing Wp by
Wpr, and then both SOPIM and SIMPCA can be
truly applied to closed-loop data. We shall call the
modified algorithms as closed-loop SOPIM (ab-
breviated as CSOPIM) and closed-loop SIMPCA
(abbreviated as CSIMPCA), respectively.

Remark 2. From the above discussion, one can
see that the undesired effect of the feedback con-
trol on the identifiability of open-loop instrument
and/or projection subspace methods may also be
alleviated if the setpoint rt “stays away” from
whiteness, i.e. if they are (strongly) autocorrelated
or colored. But this “non-witeness” is ambiguous
and there is no a priori indication on how Rf/Wp

or RfWT
p will be different from zero even if rt is

not white. In addition, the effect of whiteness or
non-whiteness on the identifiability also depends
on the controller in the feedback and the distur-
bances that are affecting the process. For example,
if the output can not follow the setpoint closely



due to large disturbances, then Wp can have a
little correlation with Rf even if the setpoint is
not white, resulting RfWT

p → 0 in SIMPCA or
Rf/Wp → 0 in SOPIM. Consequently, Wp may
not be suitable to be an instrument in this case
even though the external excitation is non-white.

4. SIMULATION

In this section, we will use a benchmark problem
to evaluate the proposed approach and compare
it with other existing subspace identification algo-
rithms. We will apply the following representative
subspace algorithms in the literature: closed-loop
algorithm by (Overschee and Moor, 1996), closed-
loop algorithm by (Verhaegen, 1993), closed-loop
algorithm by (Ljung and McKelvey, 1996), and
the two classical subspace algorithms, N4SID,
MOESP and two versions of CVA, i.e. MATLAB
N4SID with CVA weighting and CVA according
to (Larimore, 1990). To comply with the stan-
dard practice in subspace identification literature
(Overschee and Moor, 1996), we will perform
Monte-Carlo simulations and the averaged Bode
magnitude plot from the Monte-Carlo simulation
will be used to represent bias error while the
scatter plot of estimated poles will be used to
represent the variance error of the estimation.

The system to be considered(Verhaegen, 1993;
Overschee and Moor, 1996), expressed in the in-
novation state space form (Overschee and Moor,
1996), is given by Eqs(1) and (2) with the follow-
ing numerical values

A =




4.40 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0
−4.00 0 0 0 1
0.86 0 0 0 0




, B =




0.00098
0.01299
0.01859
0.0033
−0.00002




,

CT =




1
0
0
0
0




,K =




2.3
−6.64
7.515
−4.0146
0.86336




The state space model of the feedback control has
the following values:

Ac =




2.65 −3.11 1.75 −0.39
1 0 0 0
0 1 0 0
0 0 1 0


 , Bc =




1
0
0
0




C =
(−0.4135 0.8629 −0.7625 0.2521

)

with Dc = 0.61. The simulation conditions exactly
resemble those used by (Overschee and Moor,
1996): et is a Gaussian white noise sequence
with variance 1/9; the reference signal rt is a

Gaussian white noise sequence with variance 1,
injected after the controller and before the plant.
Each simulation run generates 1200 data points.
We generate 100 data sets, each time with the
same reference input rt but with a different noise
sequence et.

(Overschee and Moor, 1996) used this example
to compare several closed-loop identification al-
gorithms. The conclusion from their simulations
was that algorithm 1 of Van Overschee and De
Moor is superior to other algorithms in terms of
performance. However, the algorithms proposed in
(Overschee and Moor, 1996) required the precise
information of at least first i Markove parameters
of the controller model, while others did not.

In this simulation, we will reproduce the results
of (Overschee and Moor, 1996) and compare them
with the most representative algorithm proposed
in this paper, CSOPIM. The simulation results are
shown in Fig.1. From this figure, we can see that
the proposed algorithm CSOPIM has an almost
identical performance as that of algorithm Van
Overschee and De Moor in both bias and variance
aspects. However, the proposed algorithm has the
advantage over algorithm Van Overschee and De
Moor in the sense that the proposed algorithm
does not need any knowledge about the controller
model while algorithm Van Overschee and De
Moor does. To see the further advantage of the
proposed algorithm, we consider EIV case by
adding white noises to measurements of both ut

and yt. We do two Monte-Carlo simulations for the
EIV case, one with measurement noise variance
0.2 and the other 0.5. The comparison results
are shown in Fig.2. From this figure, one can see
that the proposed algorithm performs better than
algorithm Van Overschee and De Moor in the
presence of measurement noises.

To appreciate closed-loop subspace identification
algorithms, we have also applied classical sub-
space algorithms, N4SID, MOESP, two CVAs
(CVA according to (Larimore, 1990) and MAT-
LAB N4SID with CVA weighting) to closed-loop
data. Our results indicate that N4SID, MOESP
and MATLAB based CVA deliver essentially the
same performance and all are biased in the pres-
ence of feedback control. The CVA programmed
according to (Larimore, 1990) gives some im-
proved performance compared to the MATLAB
N4SID with CVA weighting but the bias error
remains.

5. CONCLUSION

In this paper, by adopting the EIV model struc-
ture, a subspace orthogonal projection identifi-
cation method (SOPIM) is proposed. It, how-
ever, yields a bias for closed-loop identification
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Fig. 1. Closed-loop Monte-Carlo simulations. The
left column is Bode magnitude plots; the
dotted lines are the true values and the solid
lines are the estimated values averaged from
100 runs. The right column is the scatter
plots of the eigenvalues of the estimated A
matrix.
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Fig. 2. Closed-loop Monte-Carlo simulations for
the EIV system. The left column is Bode
magnitude plots; the dotted lines are the true
values and the solid lines are the estimated
values averaged from 100 runs. The right
column is the scatter plots of the eigenvalues
of the estimated A matrix.

at least under the condition that the external
excitation is white. Through analysis of the bias
error of SOPIM under closed-loop conditions, it
is discovered that other existing instrument sub-
space methods in the literature may also suffer
from the same bias error and therefore, these
methods only yield a partial solution to closed-
loop identification. Motivated by this discovery,
a remedy is derived to eliminate bias error for
SOPIM as well as for one of the existing in-

strument subspace identification algorithms, SIM-
PCA, for the sake of closed-loop identification.
As a result two new subspace closed-loop iden-
tification algorithms CSOPIM and CSIMPCA,
named after SOPIM and SIMPCA, respectively,
are developed. In addition, the orthogonal pro-
jection method proposed in this paper provides
both extended observability matrix and Kalman
filter state sequence. Therefore, system models
may also be recovered from the estimated Kalman
state sequence. Simulations based on a benchmark
problem compare the performance of the proposed
algorithms with a number of well-known subspace
identification algorithms and verify the feasibility
and closed-loop applicability of the proposed al-
gorithms.
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