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Abstract: Adequate process monitoring and optimal control of distillation columns
relies heavily on accurate and preferably on-line estimates of the product composition.
Hence, inferring the product composition from easily accessible and abundantly
available process measurements has become a key element for successful operation.
This paper compares a hybrid soft sensor approach, based on the General Distillation
Shortcut method introduced by Friedman in 1995, with a pure black box approach.
On the basis of two industrial multicomponent distillation case studies, it can be
concluded that the hybrid GDS approach outperforms the black box one if (i)
a temperature measurement is available that is sensitive for the to be predicted
concentration and (ii) if that concentration is present in a substantial amount with
respect to the other components. The black box soft sensors do not suffer from that
last drawback but, once again, their lack of extrapolative power is clearly illustrated.
Copyright c©2007 IFAC.
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1. INTRODUCTION

For adequate process monitoring and control,
an accurate estimation of the product compo-
sitions during distillation is a prerequisite. Al-
though product composition can be measured on-
line, most analyzers, like gas chromatographs and
NIR (Near-Infrared) analyzers are expensive and
difficult to maintain. Furthermore, they entail sig-
nificant measurement delays precluding in time

control actions.
Hence, inferring the product composition from
easily accessible and abundantly available pro-
cess measurements has become a key element for
successful operation. The development of such
inferential or soft sensor controllers is far from
new but remains highly relevant as witnessed by
recent publications in this domain. The type of
model on which the soft sensors rely, varies from
first principles, mechanistic models to black box

models.
As correctly formulated by Kano et al. (2000)
a first principles model is preferred as far as it
is available and provides sufficient accuracy with
reasonable computational load. Predominantly,
strategies based on Extended Kalman Filters are
proposed (e.g., (Baratti et al., 1995; Baratti et

al., 1997; Lee and Morari, 1992; Oisiovici and
Cruz, 2001)), but, more recently, also a combi-
nation of the wave propagation equation with
static mass and energy balances has been reported
(Roffel et al., 2003).
If, however, no fundamental model appropriate for
real-time use exists, an empirical model must be
derived from process data. With the huge amount
of data that is nowadays stored in computers, this
black box modeling represents a feasible challenge.
At present, techniques based on multivariate
statistics such as Partial Least Squares (PLS)
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are very popular, mainly since they can handle
the collinearity in the data very well. Numerous
applications have been described for continuous,
distillations (see, e.g., (Kamohara et al., 2004;
Kano et al., 2000; Kano et al., 2003; Kresta et

al., 1994; Mejdell and Skogestad, 1991a; Mejdell
and Skogestad, 1991b; Pannocchia and Bram-
billa, 2003; Park and Han, 2000; Shin et al., 1999))
as well as batch distillations (e.g., (Zamprogna et

al., 2004)).
Apart from these statistics based black box tech-
niques, neural networks, enabling nonlinear mod-
eling of the various relationships, are definitely
still in the running (e.g., (Bahar et al., 2004;
Baratti et al., 1997; Yeh et al., 2003)).
Unfortunately, no need for any fundamental pro-
cess knowledge to build the models, implies the
well known lack of extrapolative power. The latter
becomes prominent when one has to build a soft
sensor based on time series of regular, day to day,
available process data.
The motivation of the here presented research
was, therefore, to check whether the incorporation
of a limited amount of fundamental knowledge
can improve the extrapolability and, hence, the
quality of the composition estimators. This hybrid
approach is compared with a pure black box ap-
proach. Given the cost of dedicated experiments
in an industrial setting, the training of both types
of models has to be performed on available data
sets retrieved from regular operating conditions.
Hereto, two industrial multicomponent distilla-
tion case studies will be considered.
The structure of the paper is as follows. In Sec-
tions 2 and 3 the hybrid and the black box model
based soft sensors are introduced, respectively.
Then, in Section 4, the two industrial case studies
are discussed. Section 5 presents the obtained
results and Section 6 summarizes the main con-
clusions.

2. HYBRID SOFT SENOR BASED ON
SHORTCUT FIRST PRINCIPLES MODELS

While rigorous models based on the MESH equa-
tions, are too involved to be implemented on-
line, a shortcut first principles model will be the
starting point for the here proposed hybrid soft
sensor.

The General Distillation Shortcut (GDS) method
was developed by Friedman (1995) and involves a
short cut simulation of a section of the column,
typically a bottom half of the stripping section or
a top half of the rectifying section (Friedman et

al., 2002). The GDS method relies on Colburn’s
formulae for distillation column section perfor-
mance (Colburn, 1941), describing the ratio be-
tween tray composition and bottom (or top) com-
position as a function of the components’ volatil-
ity (K value), internal reflux, and number of trays

in the section. More specifically, the following four
equations are involved.

(1) Bubble point equation:
∑

i

Kixi = 1 (1)

with Ki the equilibrium constant between
the fluid fraction xi and vapor fraction yi of
component i.

(2) Dew point equation:
∑

i

xi

Ki

= 1 (2)

Normally, this equation should be written in
terms of the vapor fraction yi instead of the
fluid fraction xi but here it is assumed that
the vapor fraction yi at a certain position
in the column equals the fluid fraction xi

somewhere else in the column.

(3) Colburn relation:
∑

i

xiRi = 1 (3)

In the original contributions of Friedman,
the R-factor in the Colburn relation is only
provided for the bottom section (for brevity,
subscript i referring to component i is omit-
ted), i.e.,

Rbottom =
UN+1 − 1

U − 1
(K − 1) + 1

with U [-] being equal to
K · V

′

L
′

in which

V
′

[mole/hr] represents the internal va-
por stream in the bottom section and L

′

[mole/hr] the internal liquid stream in the
bottom section. N is the number of plates
up to the sensitive plate (starting from the
bottom).

A similar expression has here been derived
for the R-factor of the top section:

Rtop =
(
1

U
)N+1 − 1

1

U
− 1

(
1

K
− 1) + 1

with U [-] being equal to
K · V

L
in which

V [mole/hr] represents the internal vapor
stream in the top section and L [mole/hr]
the internal liquid stream in the top section.
N is the number of plates up to the sensitive

plate (starting from the top).

(4) Sum equation:
∑

i

xi = 1 (4)
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A number of variables remain to be specified such
as the equilibrium constant K and the internal
vapor and liquid streams.

Equilibrium constant K. Since fugacity and
activity coefficients are hard to obtain for a
mixture, also the equilibrium constant Ki has
to be approximated. Hereto, the ratio of the
vapor pressure P vap over the column pressure
P turned out to be more reliable than the ap-
proximation based on the internal vapor and
liquid streams (for the heavy and light key com-
ponent). Hence, the equilibrium constant Ki is
implemented as

Ki =
P vap

P

in which the vapor pressure P vap is approxi-
mated by the relation of Antoine

ln(P vap) = A −
B

T + C

In this work, the A, B and C coefficients are
taken from (Prausnitz, 1977).

Internal vapor and liquid streams. For the cal-
culation of the internal vapor and liquid streams,
the assumption of a constant molar overflow

is adopted which is fairly valid for components
from the same homologous series. The internal
flows, i.e., V

′

and L
′

in the top section and
V and L in the bottom section, can then be
calculated as described below

V
′

=
QR

∆Hv

V = V
′

− F
cF

∆Hv

(T b
F − TF ) = V

′

− (q − 1)F

L = R(1 +
cR

∆Hv

(T b
R − TR))

L
′

= L + F (1 +
cF

∆Hv

(T b
F − TF )) = L + qF

with

q = 1 +
cF

∆Hv(T b
F − TF )

and
QR [J/hr] being the reboiler duty, ∆Hv [J/mole]
the vaporization heat, F [mole/hr] the feed flow,
R [mole/hr] the reflux flow, cF [J/mole/K] the
heat capacity at constant pressure of the feed,
cR [J/mole/K] the heat capacity at constant
pressure of the reflux stream, TF [K] the tem-
perature of the feed, TR [K] the temperature
of the reflux stream, T b

F [K] the boiling tem-
perature of the feed and T b

R [K] the boiling
temperature of the reflux stream.

Reboiler duty. Given the general design equa-
tion for the reboiler duty

QR = (Hvap +cp,steam · (Tin,steam −Tout,steam)) ·F

the observer will rely on the equation

QR = k · F

with

k = Hvap + cp,steam · (Tin,steam − Tout,steam)

Since the variation in reboiler duty is dominated
by the variations in feed flow, it has been tested
whether k can be approximated by a constant
value, inferred from the data.

A considerable advantage of the GDS method is
that the composition of the feed does not have to
be known. Disadvantage is that, by solving four
equations, the method seems only appropriate for
a mixture of maximum four components. While
Friedman himself has tested this hybrid approach
(to which he refers to as a first principles ap-
proach) already on several industrial case studies,
with results ranging from acceptable to excellent,
the performance was never compared with the
nowadays more popular black box approaches.

3. BLACK BOX SOFT SENSORS

The black box model based soft sensors are built
with the PRESTO tool (IPCOS (Belgium)). Since
collinearity of the data is reflected as a lack of
excitation which limits the accuracy and increases
the sensitivity of the model parameters, PRESTO,
as a tool, applies a Partial Least Squares (PLS)
transformation on the plant data in order to ob-
tain the main directions of variability of the plant
which are correlated with the estimated variable.
It is up to the user to decide the number of direc-
tions (number of components) taken into account
to build the model.
This transformation is used directly to construct
linear static models, since they are linear regres-
sions over the input parameters using the PLS
method. When the process data used for soft
sensor design exhibits dominant dynamic effects,
mainly caused by mixing effects on the plates,
reflux drum or bottom of the column, state space
models are exploited. The user is able to define
the order of these state space models.
In addition, PRESTO can estimate nonlinear static
models and nonlinear dynamic models. For his
purpose the user can define a special type of
fuzzy model called GNOMO (Generalized NOnlinear
Model) in PRESTO. This model has very interest-
ing features including monotonicity and limited
nonlinear mapping which are very important to
guarantee the safe and robust operation of the soft
sensor. The user can define the complexity of the
model and the degree of nonlinearity.

4. INDUSTRIAL CASE STUDIES

Two industrial case studies are considered. For the
first case study, referred to as the LPG plant, a
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total of three soft sensors has to be developed, i.e.,
a sensor for the residual concentration of ethane
(C2) at the bottom of the first column, a sensor
for residual propane (C3) in the bottom of the
second column and a sensor for residual butane
(C4) in the top of the second column. Historical
data (comprising, e.g., temperature and pressure
information) of five months are available with a
sampling rate of one minute. GC analyzer data for
the composition of the top and bottom streams is
available every 30 minutes (with spline interpola-
tion for data alignment). Although a lot of data is
available, the data of at most one month will be
used as training data (and the remaining months
as validation data) since it is advantageous if the
soft sensors can be built on a restricted historical
data set.
The second case study deals with a styrene (SM)
production plant. Again three soft sensors have
to be developed for (the first) two distillation
columns of the treatment train: a soft sensor is
needed for (i) the top ethylbenzene concentration
(EB) in the first column (pure ethylbenzene is
recycled to the reaction part of the plant), the
bottom toluene concentration (TOL) for the first
column and (iii) the bottom ethylbenzene con-
centration in the second column. The available
historical data is spread over one month of one
year and six weeks in the next year. The former
will be used as training data while the latter will
serve as validation data. Also here GC analyzer
data is available (sampling periods of 15 minutes).

5. RESULTS

5.1 Optimization criterion

To identify the missing parameter values in the
hybrid soft sensors the root mean square crite-
rion is adopted. The performance of the resulting
models will, however, be graphically illustrated.

5.2 LPG case study

Due to space limitations, only the first soft sensor
will be discussed, the performance of the remain-
ing two soft sensors being comparable.

5.2.1. GDS soft sensor: C2 at the bottom of the

first column. Since a temperature measurement
before as well as after the reboiler is present, all
four GDS equations can be exploited. Only one ex-
tra temperature in the bottom section is available
(plate 3) turning this temperature automatically
into the sensitive one. As can be seen from Figure
1, with training data of one week, quite accurate
results (grey line) when compared with the an-
alyzer data (black line) can be obtained for the
component that has to meet a certain specification
there.
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Fig. 1. LPG case study: training results (one week) of the

GDS C2 sensor (grey line). Analyzer measurements:

black line.
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Fig. 2. LPG case study: validation results of the GDS

(left) and PRESTO (right) C2 sensor. Model trained

with 1 month (grey line, top), 1 week (grey line,

center) and 1 day data (grey line, bottom). Analyzer

measurements: black line.

The other components, especially the butane (C4)
and pentane (C5) concentrations, are less well
predicted since the selected sensitive temperature
is probably not sensitive for these components at
that location in the column.

Validation on the data of the remaining months
indicates a robust performance of the soft sen-
sor for the ethane (C2) concentration prediction.
Moreover, even validation with a model that is
trained on one day data, performs satisfactorily
as can be seen from Figure 2 (left).

5.2.2. PRESTO soft sensors. As mentioned be-
fore, with the PRESTO tool, several types of mod-
els can be built. In this study the focus was on
static linear, dynamic linear and static nonlinear
models. With respect to the optimal type of soft
sensor, no clear conclusion can be drawn. A repre-
sentative result is depicted in Figure 2 (right) for
the C2 sensor at the bottom of the first column.
When comparing the performance of the black
box soft sensors with the hybrid GDS sensors,
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Fig. 3. SM case study: training results of the GDS (grey

line, left) and PRESTO (grey line, right) top EB con-

centration (top), bottom TOL concentration (cen-

ter) and bottom EB concentration (bottom) sensors.

Models trained with 1 month data. Analyzer mea-

surements: black line.

it can concluded that the GDS sensors are more
robust since their validation performance does not
deteriorate significantly when the training data
set reduces from one month, over one week to
one day which cannot be said of the PRESTO soft
sensors. This statement holds also for the other
soft sensors of this case study.

5.3 Styrene case study

5.3.1. GDS soft sensor: EB at the top of the

first column. Since the feed contains 22 com-
ponents of which only four can be estimated,
only the three dominant species are considered,
i.e., toluene, ethylbenzene and styrene while the
other components are grouped into a fictitious
rest component. Hence, only three GDS equations
will be considered: the dew point equation in the
top, the Colburn equation and the sum equation.
The latter does not sum up to one but to (1-
xrest), a value that is identified from the data. As
illustrated in Figure 3 (top left) the performance
of the soft sensor with one month training is very
satisfying for ethylbenzene.

In validation, the performance of the soft sensor
is corroborated (Figure 4 (left)).

5.3.2. GDS soft sensor: TOL at the bottom of the

first column. While the relative concentration
of ethylbenzene at the top of this column approx-
imates 65%, the to be predicted toluene concen-
tration at the bottom is much smaller (0.089%).
Not taking into account the concentration of the
19 other components has, therefore, a highly neg-
ative impact on the performance (Figure 3 (center
left)).

5.3.3. GDS soft sensor: EB at the bottom of the

second column. Again, only the three dominant
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Fig. 4. SM case study: validation results of the GDS

(grey line, left) and PRESTO (grey line, right) top EB

concentration. Models trained with 1 month (top),

1 week (center) and 1 day (bottom) data. Analyzer

measurements: black line.

components are taken into account, i.e., ethyl-
benzene, α-methyl styrene and styrene. Unfortu-
nately, also here, the to be predicted ethylbenzene
concentration at the bottom is very low, preclud-
ing a proper estimation (Figure 3 (bottom left)).

5.3.4. PRESTO soft sensors. For the EB sensor at
the top of the first column, results are compared
between one month, one week and one day train-
ing. For the remaining soft sensors, one month
of training is imposed. As evidenced by Figure
3 (right), the black box soft sensors (the best
of all investigated types is shown) perform much
better for the cases where the GDS soft sensors
failed, i.e., at very low concentrations of the com-
ponent under consideration with respect to the
other concentrations. If the latter’s concentration
is, however, high enough with respect to the other
components, the GDS soft sensor performs better.
Turning our attention towards validation, it is
clear that, if a well performing GDS soft sensor is
obtained during training, this soft sensor is quite
robust since the validation (even if only trained
with one day data) remains of high quality, while
in this case study the validation of the black box
soft sensors fails completely (Figure 4 (right)).
The model that was trained with one day data
performs so badly that the prediction does not
even fit the figure window (bottom right plot).
Reason is the well known lack of extrapolative
power. Indeed, the validation data set is quite
different from the training data set since the top
pressure was changed (from 160 to 137 mbar)
inducing different flows, refluxes and temperature
profiles (e.g., a top temperature of 66◦C instead
of orginally 71◦C).

6. DISCUSSION AND CONCLUSIONS

In this paper, a hybrid soft sensor, based on the
General Distillation Shortcut method introduced
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by Friedman, is proposed and compared with pure
black box soft sensors to infer the composition
of the top and bottom flows in multicomponent
distillation columns. The GDS soft sensor exploits
the bubble point, dew point, Colburn and sum
equations while different types of black box mod-
els (static linear, dynamic linear as well as static
nonlinear) are tested.
As evidenced in this work, the incorporation of a
limited amount of mechanistic knowledge (or pro-
cess specific knowledge) improves the robustness
of the sensor.
Since the GDS soft sensor is based on four equa-
tions, at most four concentrations can be esti-
mated. If the mixture contains more than four
components, the dominant components should
be selected while the other components must be
grouped in one rest component. Following this
procedure (for the second case study), it can be
concluded that the GDS soft sensor does not per-
form well if the to be predicted concentration is
present in very low concentrations. It is, however,
unclear at this moment whether this is due to
the large amount of rest components or to the
fact that these rest components are not known.
The black box soft sensors do not suffer from
this drawback and perform very well in training.
If, however, the working conditions of the plant
change, the validation performance of the black
box soft sensors is extremely low.
Hence, in general, if the (relative) concentration
of the to be predicted component is not too small
and if there is a temperature available that is
sensitive to it, the GDS soft sensor exhibits a high
quality performance. In addition, the required
training data set is very limited (one week or
even one day) while no dedicated experiments are
needed.
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