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Abstract: A mid-course correction (MCC) policy has been shown as a practical approach 
to compensate the effects of the new disturbances on the final particle size distribution 
(PSD) in the emulsion polymerization process. However, the development of control 
model remains immature in the practical sense. In this paper, a control strategy to control 
the bi-modal particle size distribution in an emulsion copolymerization process within the 
MCC approach is presented. The strategy proposes a controlled adaptive perturbation 
(CAP) to develop the MCC control model while minimizing the off-specification batches 
generation during the perturbation. The scheme utilizes the particle size polydispersion 
index (PSPI) as the control objective to simplify the development process. In addition, it 
is also shown that the final PSD can be estimated by PLS model with an adequate 
accuracy by using on-line calorimetry-based conversion measurements as predictor. This 
eliminates the requirement of off-line analysis thus faster predictions can be made. 
Copyright © 2007 IFAC
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1. INTRODUCTION 

Emulsion polymerization is an important process for 
the production the higher value products. The 
qualities of these products are defined by several 
specific characteristics which are greatly influenced 
by the particle size distribution. Eventually, PSD has 
become an important control objective in the 
emulsion polymerization process. In emulsion 
polymerization reactions, the main process variations 
arise from different start-up conditions and changes 
in the quality of raw materials [1]. To compensate for 
the effects of these disturbances on the final product 
quality, the mid-course correction policies (MCC) 
has been proposed [2]. A specific application of 
MCC approach to control PSD in emulsion semi-
batch polymerization has been reported [1]. 

There are two important steps in the MCC approach. 
The first step is to predict the final product quality 
and the second step to invoke the control action if 
necessary. In the predicting step, it has been shown 
that with a simple energy balance, a good regression 
model could be built to predict the final average 
particle size [3]. However for predicting the final bi-
modal PSD, off-line analysis are necessary to attain a 

prediction with acceptable accuracy [1]. This results 
in a time delay (not suitable for fast process) and it is 
extremely sensitive to any sampling and 
measurement error due to a single analysis. In most 
cases, the initial condition variations will have a 
significant influence on the nucleation process and 
has a direct influence to the primary modal. 
Statistically, a normal common variation will 
produce in-state of control PSD. However, if the 
variation magnitude is quite significant, the 
nucleation rate is being affected substantially and this 
will eventually lead to out-state of control PSD. This 
substantial change in the nucleation process has a 
direct impact on the conversion rate and particle 
composition at that particular period. Therefore, if a 
good on-line conversion measurement is available, a 
fast and accurate final PSD could be predicted. 
Furthermore, it also reduces the risk of depending on 
a single analysis. In bi-modal PSD, the modal of 
larger size particles is basically shaped by the 
primary nucleation whereas the modal of smaller size 
particles is greatly influenced by the secondary 
nucleation. Therefore, with very early prediction, 
more corrective choices can be performed to reshape 
either the modals of the smaller or larger size 
particles. The intermediate analysis elimination also 
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makes MCC implementation possible for a very fast 
semi-batch process because whole analysis process 
might take a few hours from site sampling to result 
endorsing. 

In the second step, the control action will be invoked 
if the predicted PSD is statistically out of state 
control. If some significant variations are observed in 
the manipulated variables during the normal 
operation, these manipulated variables can be 
included in building the model to predict the final 
quality parameters. In another case, it can be 
assumed that the significant changes in manipulated 
variables are available which resemble empirical 
control actions taken by operators when the quality 
properties are not in target [1]. However, in practice, 
both cases are very rare. In normal operation, most 
variables are kept at specific trajectory with very 
minimal variations, whereas in the off-target product 
the quality analysis is only available at the end of the 
batch. If some changes are made by the operators, the 
changes are very random in term of timing and 
variables selected. As a result, it is less useful for a 
control algorithm development. Therefore, an 
appropriate perturbation must be carried out on some 
selective manipulated variables. Unless a good 
quantitative knowledge is available, a random 
perturbation must be avoided because it might create 
large off-specification batches. Unlike in a 
continuous process, where the effect of each 
perturbation can be promptly observed, in semi-batch 
process, its accumulative magnitude effect on the 
final quality parameters is unknown until at the end 
of the batch.  

In this paper, a mid-course correction (MCC) policy 
is utilized to compensate the effects of the new 
disturbances on the final particle size distribution 
(PSD) with application to emulsion co-
polymerization processes. The MCC strategy is 
developed based on the particle size polydispersion 
index (PSPI) as the control objective thus simplifying 
the overall development. This strategy allows for a 
practical control model development that minimizes 
the off-specification batches generation during the 
perturbation process. In addition, it will be shown 
that the final PSD can be estimated using a PLS 
model with an adequate accuracy by using on-line 
calorimetry-based conversion measurements as a 
predictor. This eliminates the requirement of off-line 
analysis thus a faster prediction can be made. To 
illustrate the proposed strategy, a case study of 
styrene/MMA emulsion copolymerization semi-batch 
process is utilized [4]. 

2. PSD PREDICTION 

In this work, PLS is used to predict the final PSD. 
PLS has been recognized as an efficient tool to 
estimate important properties in correlated data 
environments. In addition the PLS model 
considerably robust to noises because a number of 

predictor components utilized is smaller than the 
original data dimension. The detail descriptions of 
PLS model building for regression can be referred to 
the seminal paper by Geladi and Kowalski [5].  

As in other MCC approaches, the PSD prediction 
model is developed based on the historical data of 
previous batches. In this work, the final PSD is 
predicted with an assumption that the on-line 
conversion measurements are available based on 
calorimetry approach with acceptable accuracy and 
sensitivity. Calorimetry-based conversion 
measurements have been successfully exploited in 
many emulsion polymerization applications. In [6],  
an approach had been developed to estimate the 
conversion and copolymer composition  in semi-
continuous emulsion copolymerization systems based 
on calorimetric measurements. A successful of 
composition control based on this approach had also 
been reported [7]. It had also been demonstrated, that 
the desired copolymer product were successfully 
produced by controlling the inferential conversion 
based on calorimetry [8]. Furthermore, in [9] the 
inference of the terpolymer composition from 
calorimetric measurements was studied and 
experimentally validated. In later works, the control 
of emulsion polymerization process based on 
calorimetry were carried out [10, 11]. For the specific 
case of styrene/MMA emulsion copolymerization 
semi-batch process, the development of calorimetry-
based conversion measurement is referred to the 
original publication [12].  

An emulsion polymerization process is conveniently 
divided into three intervals [13].The first interval is a 
rapid period with an increasing rate of reaction 
primary due to particle nucleation. Any significant 
variations or contamination in initial conditions will 
have significant effect on the nucleation activities. 
Thus, the conversion measurements should cover the 
interval I with as many as possible of the 
measurement samples. The actual number of samples 
is very dependent on the process reaction rate. Since 
calorimetry approaches utilize only temperature and 
flow rate measurements, which are readily available 
online, and the availability of fast computation 
engine at the present time, an adequate number of 
conversion measurements of the interval I should be 
possible.  

Let the matrix X represents a data matrix with m
number of batches and n number of conversion 
observations. The matrix Y represents a data matrix 
with m number of batches and p number of PSD 
parameters. Generally, the continuous PSD can be 
discretized into a finite number of particle sizes. In 
this case, p is the number of particle sizes classes. 
For a fixed target of bi-modal polymer product, the p
dimension can be significantly reduced by modeling 
the bi-modal PSD as two symmetric Gaussian 
distributions. If the two distributions are 
independently modeled by taking the local minima as 
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the separating point between the two, the PSD can be 
described as: 
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where p={μi, σi, ki|i=1,2} are the PSD parameters, 
that is, particle size means, variances and amplitudes, 
respectively, of the two modals. 

3. CONTROL OBJECTIVES 

In a typical operation, under a common variation, the 
product PSD is rather distributed around the target 
PSD than exactly a fixed value. Based on the good 
previous batches, the normal PSD region can be 
developed. If the continuous PSD is discretized into p
number of particle sizes classes, the lower and upper 
limits of each class can be statistically calculated. 
When the predicted PSD and the limits are plotted on 
the same plot, a good visual interpretation on the 
predicted PSD can be made. To justify whether a 
corrective action is necessary or not, a control region 
need to be defined. Based on historical good batches, 
PCA is performed on the final PSD measurement. 
Two principal components are considered adequate 
to summarize the final PSD space [1]. In this work, 
the particle size polydispersity index (PSPI) is 
proposed to characterize the final PSD and will 
become the central focus in the whole strategy. PSPI 
has been successfully utilized as control objective in 
controlling the PSD in emulsion polymerization [4, 
14]. The utilization of PSPI simplifies the control 
objective to a single parameter. In addition it 
provides a directional description which is very 
useful in the development of the control model as 
shown later. 

The PSPI indicates the spread of the distribution 
which can be estimated as follows: 

2
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where �� 2r  is the mean squared radius. For future 
batches, as similar to other MCC approaches, a 
corrective action is only invoked if the predicted 
PSPI is not within the normal control limit. The 
lower and upper control limits of predicted PSPI can 
be estimated by using the t-distribution as follows: 

Limits = stx N 1,2/ −± α  Eq. (3) 

4. CONTROL MODEL DEVELOPMENT 

A good control model that relates the relevant 
measurements of the predicted parameters and 
manipulated variables is the key element in the 
successfulness in controlling the final PSD towards 
the targeted values. In most cases, perturbation is 

inevitable in building the control model. In the semi-
batch emulsion polymerization process, the 
accumulative effect of any change during the process 
on the final quality parameters is hardly observed 
until a test is performed on the final sample at the end 
of the batch. Thus, a random perturbation is not 
preferable unless a good quantitative knowledge is 
available. A good controlled perturbation can be 
performed if there is an indicator or objective 
function that provides a quantitative summary of 
final PSD. The indicator must be simple and possess 
a directional property. In addition, the perturbation 
must be performed within the normal variation limits 
to avoid off-specification batches. At end, the 
developed control model should have an 
extrapolation capability in order to be practically 
applied in controlling the off-specification predicted 
PSD. 

In this work, a controlled adaptive perturbation 
(CAP) which utilizes PSPI as the controlled indicator 
or objective function is proposed to build the control 
model. In CAP, the manipulated variables are 
perturbed to move the predicted PSPI to a new target 
value but remains in the controlled limit as 
prescribed by the Equation (3).  The magnitude of 
perturbation is derived from a function/model that 
relates a change between the PSPI and the 
manipulated variables. However, for the first batch, a 
reasonable guess must be made since the model is not 
available. For the second and subsequent batches, the 
perturbation magnitudes are estimated from the 
model and the model is re-fitted after each batch 
completion. This CAP procedure will minimize the 
off-specification batches and a fast accurate model 
can be developed. In order to maximize the 
perturbation magnitude, dual PSPI target values are 
utilized rather than a single PSPI target. For PSPI 
mean and controlled limits described by Equation 
(3), the targets PSPI (PSPIt) are set as follows: 
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where k is a constant between 0 and 0.5 and PSPIp is 
the predicted PSPI of the final PSD. If k is set to 
zero, it reduces the dual target to a single target (the 
PSPI mean).  

5. CASE STUDY 

To illustrate the proposed methodology, a simulation 
case study of styrene/MMA emulsion 
copolymerization semi-batch process is utilized [4]. 
Following our previous work, the objective of the 
process in our formulation is to produce a polymer 
product with a bi-modal PSD under a known recipe 
and operating profiles. The process simulations are 
conducted for 6900 sec run with seeded in the first 
1500 sec. The system temperature is controlled at 
70oC throughout the run. The control objective is to 
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control the secondary modal PSD relatively to the 
primary modal PSD such that the final overall PSD is 
within the desired shape under initial condition 
disturbances. 

In order to build a normal reference batch set, 50 
batch runs are simulated. Since the actual mechanism 
of initial variation is not fully known, the variation 
effects are simulated by randomly charging the 
monomers, surfactant and initiator around the recipes 
values. It is assumed that the initial charges are 
normally distributed around the recipe values with 
some variances. For the normal reference batch set, 
the variances are set at 10% of the recipe values. 
Figure 1 shows the 50 batches of the normal 
reference set. In a typical PSD measurement, the 
continuous PSD is usually discretized into some 
particle sizes classes. Therefore, the lower and upper 
limits of each class can be statistically calculated 
which give a pictorial boundary of the normal PSD 
set as shown by the bold dash line. With 99% 
confidence level, almost all the PSDs reside within 
the limits.  
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Figure 1: PSD of the reference set 

From these reference batches, a PLS model is 
developed to predict the final PSD from conversion 
measurements. To bear a resemblance to actual 
measurements, a random noise with zero mean is 
added. The variance is set at 1% of the measurement 
span [0-1]. The final PSD is modeled as two normal 
distributions by taking local minima as the separating 
point between the two modals as given by the 
Equation (1). A major function of the model is to 
make a good prediction under higher variations. In 
other word, in order the model to be useful for a 
control purpose, it must have a good extrapolation 
capability. Thus, additional 4 batches are randomly 
generated with higher variance setting (20%) for the 
surfactant and initiator initial charges. This set is 
called set B. Figure 2 shows the PSD plots of set B 
against the reference PSD limits. The comparison 
plots between the actual and predicted final PSD for 
this set are shown in Figure 3a-b. For a medium 
deviation (Figure 3a), the model extrapolation 
capability is considerably adequate in predicting the 
final PSD. However, for a very high deviation 
(Figure 3b), it has a mild extrapolation capability.  

Next, the control model is developed under 
controlled adaptive perturbation, in which the PSPI is 

exploited as the objective function. Based on the 
reference set, a basic statistical analysis of PSPI 
needs to be performed. Table 1 shows the basic 
statistics of the reference set. To evaluate whether the 
predicted PSPI can be sufficiently utilized in CAP, 
the residual statistics between the predicted and 
actual PSPI must be performed. Table 2 shows the 
mean and standard deviation of the residuals for the 
50 batches. The most important aspect here is to 
compare the predicted PSPI standard deviation to the 
residual standard deviation. This ratio is equivalent to 
the process capability index which if bigger is better. 
From Table 1 and 2, the standard deviation ratio is 
1.15 which is equivalent to medium relative 
capability. 
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Figure 2: PSD of set B 
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Figure 3a-b: Comparison between the actual and 
predicted PSD of set B  

Table 1: The PSPI statistics 
Parameters Actual 

PSPI 
Predicted 

PSPI 
Min 1.227 1.198 
Max 1.25 1.288 
Mean 1.241 1.243 

Std. Dev 0.00533 0.01821 
Interval range 

(95% CL) 
1.231-
1.251

1.207-
1.279

Table 2: The residual statistics 
Mean 0.0026 

Std. Dev 0.0158 
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The PSD of copolymer product can be controlled by 
manipulating some potential variables such as the 
reaction temperature and the surfactant, initiator and 
monomer feed rates. In an earlier work, the control 
actions of the MCC approach was restricted to 
manipulate surfactant to control the PSD in styrene 
emulsion polymerization [1]. However, it has been 
found that the monomer feed rate has strong affects 
on PSD and can be used as a practical manipulated 
variable to control the PSD in the emulsion 
polymerizations [4, 14]. Along these lines, for our 
case study, we propose to employ two manipulated 
variables: the surfactant and monomer feed rates. For 
the monomer feed rates, an equal magnitude of 
adjustment is performed on both the styrene and 
MMA monomer feed rates to maintain an equal ratio 
of the monomers composition in the polymer 
product. The perturbations of these two flowrates are 
sequentially performed to minimize the off-
specification products. The first perturbation set is to 
develop a control model which relates the surfactant 
flowrate changes to the PSPI changes as given by the 
below simple equation.

bSaPSPI +Δ=Δ 3  Eq. (5) 

where ΔPSPI=PSPIfinal -PSPIpredicted and ΔS is the 
perturbation magnitude. a and b are the fitting 
coefficients. The model is adapted by refitting after 
each run until the model errors is reasonably 
minimized. The nonlinear relationship is employed 
rather than a linear relationship to improve the model 
accuracy as the system is expected to be highly 
nonlinear. The perturbation is only performed 
starting from 3300 sec as the secondary nucleation in 
this particular case study is observed taking place 
from 3500 to 5000 seconds. Because the control 
model is not available initially, the perturbation 
magnitude of the first batch is set at 15% of the 
nominal value. The second and subsequent 
perturbation will be calculated based on the control 
model which is adapted from the preceding 
perturbation batches. From equation (4), dual PSPI 
target values are utilized to maximize the 
perturbation magnitude as below: 
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where PSPIp is the predicted PSPI.  

Once, the effect of surfactant on PSPI has been 
adequately modeled (results are not shown), the 
monomer perturbation can be performed. In this case, 
the surfactant flowrate is adjusted (based on the 
previously developed model) to bring the final PSPI 
to some random values between the normal PSPI 
ranges. Then, the monomers perturbation magnitude 
is calculated to bring the final PSPI to 1.24. This 
approach is to ensure the randomness in the direction 
and magnitude for both surfactant and monomer 

perturbations while maintaining the final PSD on the 
specification. As similar to the surfactant control 
model, a simple nonlinear model is utilized to relate 
between the monomers changes to the PSPI changes 
as follow: 

cSbMaPSPI +Δ+Δ=Δ 33  Eq. (7) 

where ΔPSPI=PSPIfinal –PSPIpredicted and ΔM and ΔS
are the monomers and surfactant perturbation 
magnitudes, respectively. a, b and c are the fitting 
coefficients. The first monomers perturbation 
magnitude is set at 5% of the monomers nominal 
flowrates values. Similarly, the model is adapted by 
refitting after each run until the modeling errors are 
reasonably minimized. 

Figure 4 shows the final actual PSPI for 20 batches 
under the monomers and surfactant perturbations. 
Except for the first, fourth and fifth batches, all final 
PSPI are within the typical normal PSPI range (1.23-
1.25). The corresponding final PSD are shown in 
Figure 5. All PSD are within the normal reference 
limits except for the three batches. This clearly 
illustrates the functionality of PSPI in the proposed 
CAP strategy to minimize the off-specification 
products during the control model development. 
Since the fourth and fifth batches are outside the 
normal range, there might be a significant error in 
predicting the PSPI. Therefore, their information will 
not be included in fitting the control model.  
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Figure 4: PSPI of perturbed batches  
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Figure 5: PSD of perturbed batches 

Currently, we have one control model and two 
manipulated variables. In order to have a unique 
solution, an additional control model is required. This 
second model can be easily fitted from the above 
perturbation data. Based on equation (2), instead of 
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using PSPI the control objective, the position of the 
primary modal peak is selected as follow: 

cSbMaP +Δ+Δ=Δ 33  Eq. (8) 

where ΔP=Pfinal-Ppredicted is the change in the primary 
modal peak positions. 

To assess the performance of the two developed 
control models, they are tested on set B. Figure 6 
shows the final controlled PSD for the 4 batches. 
Comparing to figure 2, in all cases, there are 
significant improvements in the PSD with respect to 
the normal reference limits. For the first three 
batches, they may be considered as the good 
products. However, for the fourth batch, the PSD 
remains outside the normal reference limits. It seems 
to indicate, that for a very high variation in the initial 
condition, controlling the generation of the secondary 
modal only is not adequate to have a relative control 
of the two modals and a proper adjustment on the 
generation of the primary modal would be necessary. 
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Figure 6: PSD of set B under surfactant and 
monomers control 

6. CONCLUSION 

The development of a control strategy to control a bi-
modal particle size distribution for an emulsion 
copolymerization process within the mid-course 
correction policy approach has been proposed. The 
strategy utilizes the PSPI as the objective function to 
develop the perturbation scheme which minimizes 
the off-specification products during the perturbation 
stage. In estimating the final PSD, a PLS model using 
on-line calorimetry-based conversion measurements 
as predictor was developed. The strategy was 
illustrated with an application to the styrene/MMA 
emulsion copolymerization process. 
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