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Abstract: Chemical batch processes offer an attractive way of producing a variety
of specialty products in a highly flexible manner. However, such processes are
hard to control due to the absence of the notion of a steady state operation –
necessitating the use of nonlinear models– and the fact that product qualities are
only measured at the end of each batch. This paper proposes a new industrial
modeling and control strategy that allows significant batch time reductions to be
obtained, taking physical, safety and quality constraints into account. Application
to an industrial reactor shows significant improvements over classical control
strategies. Copyright ©2007 IFAC
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1. INTRODUCTION

In recent years batch processes have regained pop-
ularity due to the possibility they offer to industry
to produce relatively small quantities of a variety
of products with a large added value (Bonvin
(1998)). Examples of such products are fine chem-
icals, pharmaceutical products and certain classes
of polymers.

In many situations up to 100 or more different
products are produced in a single reactor. With
no need to guarantee product type continuity be-
tween subsequent batch runs, these reactors offer
larger production flexibility compared to continu-
ous processes. This added flexibility represents the
main advantage of batch processes and forms a
significant competitive advantage in quickly fluc-
tuating markets.

However, this flexibility directly translates into a
higher level of complexity for the modeling and
control of such processes. First of all, the tran-
sient behavior of batch processes necessitates the
use of non-linear model based control methods in

order to achieve optimal performance. Secondly,
because of the wide variety of different products
produced on a single reactor, the modeling effort is
significantly larger compared to modeling contin-
uous processes, since every product can result in
different process dynamics. Finally, because prod-
uct quality measurements are typically limited to
lab analysis of batch-end product qualities, these
measurements are not available for closing the
control loop during individual batch runs. As a
result tight control of pre-optimized temperature
profiles (batch processes) and conservative feeding
regimes (fed-batch processes) are typically used in
order to obtain acceptable batch end-quality.

Academic research has put a lot of effort in the
area of batch reactor modeling and control in
recent years. For control purposes mostly the
route of detailed mechanistic modeling is chosen in
order to fully capture process nonlinearities over
a wide operating range. These models are then
typically used to compute optimal temperature
and/or feeding profiles (e.g., Van Overschee and
Van Brempt (2000)) after which tracking control
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Fig. 1. Different types of batch reactors. Left: batch reactor with halftube jacket. Middle: Batch reactor
with external heat exchanger and condenser. Right: Fed-batch reactor with condenser and classical
jacket.

algorithms are used (e.g., Diehl et al. (2002)) to
track the computed profiles despite disturbances
and modeling errors. A good overview of the topic
can be found in Bonvin (1998), Nagy and Braatz
(2003), Smets et al. (2004) and references therein.

Industrially, very few solutions exist for modeling
and control of (fed-)batch processes and none of-
fer efficient modeling techniques for multi-product
scenarios. This paper presents a unified industrial
modeling and control framework, specifically de-
signed for multi-product (fed-)batch reactors. The
framework results in significant batch time reduc-
tions and improved quality control, as proven on
a real-life industrial process.

This paper is organized as follows. Section 2
proposes the new modeling framework for multi-
product batch reactors that lies at the basis of
the new framework. Section 3 then describes the
control strategy that is used for obtaining batch
time reductions and quality control after which
the implementation within the existing INCA®

(IPCOS Novel Control Architecture) framework
and industrial validation is discussed in Section 4.
Section 5 concludes the paper.

2. BATCH REACTOR MODELING

2.1 Disadvantages of existing methods

In chemical engineering, control-oriented model-
ing problems are typically tackled either in a
black-box or empirical way or by means of rig-
orous modeling.

Black-box techniques are often the method of
choice for continuous processes, since they avoid
the large cost of constructing fully-rigorous dy-
namic process models. However, for batch pro-
cesses, traditional linear black-box techniques re-
quire reformulation of the control algorithm, but
most significantly, require extensive on-site testing
to produce the necessary models. Batch processes

go through a trajectory of set-points and are
therefore always in transient behavior. This wide
range of operating conditions necessitates the use
of nonlinear models. This prohibits the use of
linear black-box techniques to be used from a cost
perspective and for technical reasons, since these
require the process to stay around a steady state.
When applicable however, black-box techniques
offer a way to obtain dynamical models in rela-
tively small amounts of time and with relatively
little process knowledge.

Rigorous models, on the other hand, include a
very detailed description of the process and can
involve hundreds of state variables and kinetic
parameters. Due to the complexity, rigorous mod-
eling is very expensive in terms of human effort
and expertise. The modeling costs are often pro-
hibitively high for a model-based control project.
However, such models most often have a wider
validity range than black-box models, enabling
the design of more reliable and flexible model-
based controllers.

In this section a new modeling methodology is
introduced, called hybrid batch modeling, which
aims to combine the advantages of both ap-
proaches. Hybrid batch modeling allows reliable
dynamical batch models with good extrapolation
properties to be obtained in a fast way. In this
new approach the part of the complex mechanistic
model that can be constructed with little effort is
kept or mapped in a new set of simplified first-
principles equations, whereas the reaction kinet-
ics, which are harder to model rigorously, are
condensed in an empirical nonlinear function, re-
sulting in an observable low-order model that can
be used for control purposes.

It should be noted that the hybrid batch model-

ing approach considered in this paper is not to
be confused with the more classical meaning of
hybrid modeling, which involves discrete-valued
states (e.g., Potočnik et al. (2004)).
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symb. meaning unit

Ac condenser area m2

Aj internal reactor contact area m2

Cpf specific heat of feed kcal kg−1 K−1

Cpr specific heat of react. content kcal kg−1 K−1

Ff feed flow rate kg s−1

mr mass of reactor content kg
Qc condenser duty kcal s−1

Qf feed flow heat content kcal s−1

Qj jacket cooling/heating duty kcal s−1

Qr chemical reaction heat kcal s−1

Tc condenser wall temperature °C
Tf feed flow temperature °C
Tj cooling jacket temperature °C
Tr reactor content temperature °C
Uc condenser heat transfer coeff. kcal m−2 s−1 K−1

Uj jacket heat transfer coeff. kcal m−2 s−1 K−1

nm conversion mole/mole

Table 1. Explanation of the symbols
used in Section 2.2.

2.2 Hybrid Batch Modeling

Since most batches are operated mainly based on
temperature measurements, while product prop-
erties (concentrations, quality parameters) are
most often not measured during the batch, the
main aim of the new hybrid batch modeling strat-
egy is to accurately model reactor temperatures
based on energy balances.

This energy balance is constituted of several com-
ponents. In most cases, the reactor is jacketed
and a thermal fluid is used to control the tem-
perature inside the reactor. In some cases the
reactor is equipped with a condenser, which often
can absorb more heat than the jacket, but which
cannot be used for heating. On the other hand,
the reaction energy of the process and the energy
content of the feed flow (in fed-batch reactors) are
other important components in the overall energy
balance. The overall temperature model can hence
be written as follows:

mrCpr

dTr

dt
= Qj + Qc + Qf + . . . + Qr. (1)

By including or excluding certain components at
the right hand-side of the equation a wide variety
of batch processes (see Fig. 1) can be captured
with this model structure. Other contributions
might enter the equation depending on the reactor
environment, the batch recipe, . . . For the sake of
brevity, we refer to Table 1 for the meaning of the
different symbols used in this section.

The different subcomponents Qj, Qc, . . . are mod-
eled separately, whereby an appropriate choice is
made between rigorous and black-box modeling,
based on the following criteria:

(1) minimization of number and intrusiveness of
required reactor experiments,

(2) easy adaptation of existing models towards
new products on the same reactor.

Fig. 2. Hybrid batch model structure.

Therefore the thermodynamics of the reactor,
for which the physical relations are well known
and understood, are modeled in a mechanistic
way. This reduces the need for experiments and
eliminates remodeling of these components for
each new product. The chemical reactions taking
place during the process, are mostly not well
understood and the kinetics of it are unknown.
This part of the process is therefore modeled
empirically. Figure 2 gives a schematic depiction
of the hybrid modeling approach.

In what follows, a brief overview of the different
rigorous submodels is given:

• Qj represents the heat exchanged through the
jacket wall and is given by UjAj(Tj − Tr).
Depending on the jacket configuration, non-
linear dependencies on the cooling flow rate
can also be incorporated.

• Qc denotes the heat exchanged via the con-
denser and is given by the similar expression
UcAc(Tc − Tr).

• Qf represents the energy contribution of the
feed flow to the reactor and is given by
FfCpf(Tf − Tr).

These submodels can be constructed based on
physical knowledge of the reactor, historical data
and simple, non-intrusive reactor experiments and
in general guarantee reliable extrapolation beyond
the operating range within which calibration data
is available.

Fig. 3. Example of estimated function fQ(nM, Tr).
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Fig. 4. Cooperation between inter- and intra-batch observers and controllers for batch time reduction
and end-quality control.

As mentioned above and depicted in Figure 2,
the reaction energy Qr is modeled empirically. In
most cases reaction kinetics strongly depend on
temperature as dictated by Arrhenius’ law. Also,
depending on the specific reaction taking place,
the reaction energy can be strongly dependent
on the conversion (representative of the progres-
sion of the chemical reaction). Therefore the heat
generation can be expressed as a function of the
conversion and temperature:

Qr = fQ(nM, Tr).

This function can be estimated based on readily
available historical data of the batch process and
limited additional experiments. The above rela-
tionship also allows easy estimation of the instan-
taneous reactant excess, which facilitates end-of-
batch quality control, as will be clarified in the
next section.

3. BATCH REACTOR CONTROL

This section describes how the hybrid batch models

that are described in the previous section are
used to develop an advanced model based batch
control strategy. The benefits of advanced process
control for batch processes consist of batch time
reductions resulting in increased production ca-
pacity together with reduced process variability
(i.e., better batch reproducibility) resulting in im-
proved batch-end product quality.

Batch time reduction and reduced process vari-
ability are obtained by means of intra-batch con-
trol, while after each batch an inter-batch con-
troller updates process operation parameters (set-
points, constraints) in order to obtain optimal
product qualities despite changing feed stocks and
other disturbance factors. This approach is illus-
trated in Fig. 4.

First, we give a brief introduction to Model
based Predictive Control (MPC, see e.g., Qin and
Badgewell (2003)) .

3.1 Model based Predictive Control

Model based Predictive Control (MPC) is an op-
timization based control paradigm that computes

an optimal sequence of future control actions at
every sample instant, based on a dynamical plant
model. Only the first control action of this com-
puted sequence is applied to the process after
which the optimization is repeated at the next
sample instant. MPC has become the de facto
industrial standard for Advanced Process Control
(APC) in the last few decades (Qin and Badgewell
(2003)) and has also attracted widespread atten-
tion from academia. In its most general form,
MPC uses non-linear state space models:

xk+1 = f(xk, uk), (2a)

yk = g(xk), (2b)

where uk, xk, yk respectively denote the control in-
put, the state and output (measurement) vectors
of the dynamical system. At every sample time k,
based on a dynamical model of form (2), a MPC
controller computes an optimal control sequence
uk, . . . , uk+Nc−1, by solving an optimization prob-
lem of the following form:

min
uk,...,uk+Nc−1

Nc−1∑

i=0

‖uk+i − uk+i,ref‖
2
R

Np∑

i=1

‖yk+i − yk+i,ref‖
2
Q, (3a)

subject to

uk+i ≤ uk+i ≤ uk+i, i = 0, . . . , Nc − 1, (3b)

y
k+i

≤ yk+i ≤ yk+i, i = 1, . . . , Np, (3c)

with Nc and Np respectively denoting the con-
trol and prediction horizon, uk+i,ref , yk+i,ref de-
noting input and output reference signals and
uk+i, uk+i, yk+i

, yk+i representing lower and up-

per bounds on inputs and outputs at time k + i.
Relations between inputs and outputs within the
optimization are given by model equations (2),
leading to non-linear optimization.

Although the above formulation has become rel-
atively standard in academia, industrial imple-
mentations most often still use impulse or step
response models or linear state space models.
Neural net based models have been implemented
in recent years but these models still belong to
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Fig. 5. Integration of the control framework within
the INCA® Product Suite.

the black-box category. For batch control, where
a wide range of operating conditions is typically
encountered within a single batch run, the use of
non-linear process models is required to obtain
stable process operation when applying model-
based control.

3.2 Intra-Batch Control

At this control layer, a MPC controller based on
the hybrid batch model is employed, called the
intra-batch controller. Based on process measure-
ments (temperatures, flows, . . . ) the intra-batch

observer estimates the current state of the system,
after which the intra-batch controller computes
an optimal control action to be applied to the
batch process. The cost function of the MPC
optimization problem (3) is tuned such that the
batch is operated as fast as possible (with the
aim of obtaining batch-time reductions) within all
constraints. In order to allow a computationally
feasible on-line implementation, the optimization
problem (3) is solved approximately in the follow-
ing two-step procedure:

(1) a non-linear prediction is performed, using
the full non-linear hybrid batch model and
the optimal control sequence computed at
the previous sample time,

(2) a dynamic optimization is performed using
linear time-varying (LTV) dynamical models,
based on linearizations of the hybrid batch

model.

In this way the MPC optimization problem (3) is
solved in an SQP fashion, making optimal use of
the structure present in this dynamic optimization
problem.

3.3 Inter-Batch Control

At the top control layer, an inter-batch controller

is employed to guarantee optimal product quali-
ties. These qualities are only known at the end of

each batch run and can therefore not be used at
the intra-batch control level. Therefore, after each
batch run, the inter-batch controller updates the
set-points or constraints of the MPC controller in
order to stay within the imposed product speci-
fications. For example, this can be done by up-
dating the maximum temperature constraint, for
processes where temperature-dependent reaction
specificities (Berber (1995)) influence the produc-
tion of undesired byproducts. In other cases a
constraint can be imposed on the reagent excess,
which is easily predicted based on the hybrid

batch model, limiting the production of byprod-
ucts formed in second order reactions. Based on
lab results obtained at the end of each batch, these
constraints and set-points are updated to com-
pensate the influence of unmeasured disturbances
and influences such as catalyst activity, feed stock
quality, reactor cleanliness, etc.

In parallel with the inter-batch controller, an
inter-batch observer is used to update the model
parameters based on process measurements of the
previous batch run. In this way the model is kept
up to date when reactor dynamics change due
to fouling, wear, season-dependent cooling condi-
tions, etc. . .

4. INDUSTRIAL IMPLEMENTATION AND
VALIDATION

The control approach described in this paper was
implemented at a production facility where an
amine catalyst product is produced via a fed-
batch reaction. The reactor configuration is simi-
lar to the batch reactor with halftube jacket shown
in Fig. 1. The reaction utilizes a pre-fed reaction
catalyst, multiple feed streams, and internal heat
transfer coils. Since this is a production facility, it
was critical that testing for model development be
minimized, the controller work well when first im-
plemented, and the controller seamlessly integrate
into the existing control system architecture.

The framework described in this paper was imple-
mented within the INCA® (IPCOS Novel Control
Architecture) environment as depicted in Fig. 5.
Process measurements and PID set-points are ex-
changed with the on-site DCS through an OPC
connection. The different subcomponents of the
framework are implemented in an extended ver-
sion of the INCA® Suite that allows improved
integration with the non-linear hybrid batch mod-
els.

The INCA® batch controller is seamlessly inte-
grated in the batch sequencing system (also called
the batch recipe manager by some vendors). When
each batch is scheduled, the operator specifies if
the batch will be controlled by the INCA con-
troller and the controller reads the requisite batch
parameters such as maximum temperature. The
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Fig. 6. Qualitative view of the control behavior of the INCA® batch controller on the batch process at the
Air Products and Chemicals Inc. plant. Cooling and quality constraints are depicted as dash-dotted
lines.

INCA controller automatically assumes control
of the batch when the batch reaches the correct
phase. At the end of each batch run, the lim-
iting impurity is measured and adjustments are
made to the controlling constraint. Eventually,
this functionality will be automated via the inter-
batch observer. The plant LIMS system will au-
tomatically forward the batch-end quality mea-
surements to the DCS and then into the INCA
control suite. This functionality will permit the
production rate to be maximized as the catalyst
ages and the reactor fouls.

This implementation of the INCA® Batch Con-
troller resulted in significant batch reaction time
reductions and thus delivered substantial benefits
for this product. Fig. 6 shows qualitative control
behavior on this process. The intra-batch con-
troller maximizes the feed flow while satisfying the
imposed constraints; different constraints can be
active at different points in time.

5. CONCLUSIONS

In this paper an industrial approach towards mod-
eling and control of batch processes is presented.
The framework is based on hybrid batch models,
that consist of rigorous and empirical submod-
els, which are combined with non-linear MPC
to obtain significant batch time reductions and
improve process variability. Product qualities are
controlled in an inter-batch fashion by updating
constraints or set-points of the MPC control layer
based on batch-end quality measurements. The
new approach is integrated within the existing
in-house developed INCA® software environment
and allows seamless integration with the batch
sequencing system and the LIMS system. This
implementation has been validated on an indus-
trial process, creating significant benefits for the
customer.
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