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Abstract: Constraints on state variables are commonly encountered in dynamic
state estimation in the form of algebraic equality and/or inequality constraints. For
weakly nonlinear systems, the extended Kalman filter (EKF) has found numerous
uses as a suboptimal state estimator. Unfortunately the structure of the filter
does not include constraints on the states. The failure of unconstrained EKF is
frequently cited as motivation for moving horizon estimation (MHE) methods for
constrained state estimation. However, work on actually imposing the constraints
in the existing EKF framework is scarce. This paper presents analytical solutions to
the state constrained EKF (CEKF) for a class of linear constraints. It is possible
to implement the CEKF efficiently with little additional computation cost and
avoid expensive online optimization in MHE. The MHE is a general suboptimal
strategy to impose constraints on states, noise processes and inputs, but for a class
of state constraints, the proposed CEKF is sufficient. The performance of CEKF is
illustrated with a simulation study of a nonlinear batch reactor. Copyright c© 2007
IFAC.
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1. INTRODUCTION

Process measurements typically contain errors
due to inherent limitations posed by measurement
equipment and stochastic characteristics of the
process. State estimation is the task of reducing
errors from measurements in an optimal manner.
It is an important task since other operations
tasks such as, fault detection, supervisory control,
scheduling and planning depend on the estimated
states. The extended Kalman filter (EKF) is a
suboptimal recursive solution to dynamic esti-
mation problems. It is computationally efficient
but often fails to achieve desired accuracy and
is known to diverge for even simple nonlinear
systems. Estimation in nonlinear dynamic systems

1 E-mail: s.ungarala@csuohio.edu

has received a great deal of attention since the
development of the EKF (Jazwinski, 1970; Jang
et al., 1986; Liebman et al., 1992).

Dynamic state estimation must also frequently ac-
count for constraints on state variables and inputs
of the process. For instance, mole fractions are
nonnegative and sum of fractions must be equal
to one. Until recently, methods of state estimation
for both linear and nonlinear dynamic systems ei-
ther ignored the constraints or incorporated them
in an ad hoc manner. The EKF estimates are not
constrained in any way, which is often a cause for
the filter’s instability.

The arrival of optimization based state estimation
methods widened the scope of the problem. The
lack of constraints in the EKF formulation has
been cited by numerous researchers as motiva-

Preprints Vol.2, June 6-8, 2007, Cancún, Mexico

63



tion for many variants of the popular moving
horizon estimation (MHE) methods (Robertson
et al., 1996; Vachhani et al., 2004b; Haseltine and
Rawlings, 2005). In fact the MHE class of esti-
mators have become the natural choice whenever
there are equality and/or inequality constraints
and nonlinear system dynamics. However, we find
that work on actually imposing the constraints in
the existing EKF framework is scarce.

In this paper we show the development of a con-
strained extended Kalman filter (CEKF) for a
class of linear constraints. We first show the nec-
essary results for imposing constraints on a linear
estimation problem. The treatment of CEKF is
similar to the derivation of the EKF based on
the Kalman filter. The importance of this result
may be appreciated by comparing it with online
optimization based moving horizon formulations.
The CEKF analytical solution can be efficiently
implemented compared to expensive optimization
in MHE. The utility of the MHE as a general
purpose suboptimal estimator is not questioned
here. For instance, to impose strict inequality con-
straints or constraints on inputs, the MHE is the
preferred formulation. However, for imposing a
class of state constraints considered in this paper,
the proposed CEKF is shown to be sufficient.

The performance of CEKF is demonstrated with
a simulation study of a nonlinear batch reactor,
for which earlier researchers have argued against
the EKF citing its inability to impose constraints
(Vachhani et al., 2004a; Haseltine and Rawlings,
2003). We show that the CEKF provides more
accurate and robust estimation results with con-
straints than the EKF. Moreover, performance
similar to that of MHE is achieved at a fraction
of the computation cost of MHE.

2. CONSTRAINED LINEAR ESTIMATION

Consider the following measurement equation,
where y ∈ Rm is the measurement vector of a
linear combination of process state variables x ∈
Rn, with an additive independent identically dis-
tributed (iid) random vector ν ∈ Rm, distributed
according to N(0, R), representing Gaussian mea-
surement errors,

y = Cx+ ν. (1)

While it is desired to estimate the process states
from the measurements, the states may be subject
to additional linear constraints of the form,

Fx = b. (2)

where b ∈ Rp, and rank(F ) = p < n. State
estimation is posed as,

min
x̃

νTR−1ν, (3)

s.t. y = Cx+ ν,

Fx = b,

which minimizes the errors in a least squares
sense. The solution is the minimum variance or
maximum likelihood estimator given by an ex-
tension of the Gauss-Markov theorem. We state
the following theorem without proof for brevity
(Ungarala and Bakshi, 2001).

Theorem 1: Given y = Cx + ν, constraints
Fx = b, C of full column rank, F of full row rank,
the least squares estimate x̄ and covariance P̄ are

x̄= (I −GF )JCTR−1y +Gb,

P̄ = (I −GF )J,

J =
(
CTR−1C

)−1
, G = JFT

(
FJFT

)−1
.

In many estimation problems, additional informa-
tion may be available as a priori knowledge of the
process states gained from historical or multiple
data sets. The prior information is cast as the a
priori state estimate x̃ and the associated error
covariance P̃ .

The available information is now written as,[
y
x̃

]
=
[
C
I

]
x+

[
ν
ρ

]
, (4)

where ρ ∼ N(0, P̃ ) to give the following form

y = Cx+ v, (5)

where C is of full column rank and v is zero mean
noise with a block diagonal covariance matrix
R = diag(R, P̃ ). When Theorem 1 is applied to
equation (5) it yields the constrained maximum a
posteriori (MAP) state estimates as viewed from a
Bayesian perspective for linear Gaussian systems.

The following extension to Theorem 1 is stated
without proof for brevity, which is based on a
result from constrained maximum likelihood es-
timation (Lewis and Odell, 1971).

Theorem 2: For C of any rank, the least squares
estimate is

x̄=HCTR−1y + (I −HCTR−1C)F+b,

P̄ =H,

H =
(
(I − F+F )CTR−1C(I − F+F )

)+
where (·)+ is generalized inverse.
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3. CONSTRAINED EXTENDED KALMAN
FILTER

3.1 Equality constraints

Consider the following nonlinear process model
and measurement equations,

xk = f(xk−1) + wk−1,

yk = h(xk) + νk

where f and h are nonlinear vector valued func-
tions and wk and νk are iid Gaussian noise
processes distributed according to N(0, Q) and
N(0, R) respectively. The knowledge about the
initial condition is summarized as the estimate x̃0

with covariance P̃0. First we first consider strict
equality constraints on the states,

Fxk = b (6)

The linearized version of this estimation problem
falls under the purview of Theorem 1. The re-
sult of Theorem 1 can be split into two separate
stages where the states are estimated from the
measurements and subsequently corrected with
constraints. The prior information is propagated
in time using a time-varying linearized process
model. Now we can write the constrained ex-
tended Kalman filter algorithm in the standard
form as follows (see Figure 1):

Algorithm 1: CEKF for equality constraints

(1) Time update

x̃k = f(x̄k−1),

P̃k =AP̄k−1A
T +Q, A =

∂f

∂x

∣∣∣∣
x̄k−1

.

(2) Measurement update (from Theorem 1)

K = P̃kC
T (CP̃kC

T +R)−1, C =
∂h

∂x

∣∣∣∣
x̃k

,

x̂k = x̃k +K(yk − h(x̃k)),

P̂k = (I −KC)P̃k.

(3) Constraints update (from Theorem 1)

G= P̂kF
T (CP̂kF

T )−1,

x̄k = x̂k +G(b− Fx̂k),

P̄k = (I −GF )P̂k.

3.2 Inequality constraints

We consider inequality constraints on the states
to be of the form,

Fx ≤ b. (7)
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+ _

+ +

+

_

+
+
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Fig. 1. Constrained extended Kalman filter

Of the p inequality constraints, a subset may
be active at the optimal solution, which act as
equality constraints,

ΛFx = Λb, (8)

where Λ = diag(λ1, λ2, . . . , λp) and λi = 1 or
λi = 0 if the constraint is active or inactive
respectively. If the subset of active constraints
are known a priori, the analytical solution for the
equality constrained problem shown in Theorem 1
and the CEKF in the previous section are clearly
applicable. However, if the active constraints are
not known an iterative solution strategy is needed.

The inequality constraints are rewritten using
non-negative slack variables as follows,

Fx+ s = b, s ≥ 0. (9)

Now the available information is,[
y
x̃

]
=
[
C 0
I 0

] [
x
s

]
+
[
ν
ρ

]
, (10)

[
F I

] [ x
s

]
= b s ≥ 0, (11)

which are in the form of,

y = C̄x + v, (12)

Fx = b, x(i) ≥ 0; i = n+ 1, . . . , n+ p.(13)

The matrix F is of full row rank but C̄ is not of
full column rank, hence the result of Theorem 2
is applicable, provided, the non-negativity condi-
tions are ignored to estimate both states and the
slack variables.

If the estimate x̂ satisfies the non-negativity con-
ditions in Eq. 13 then x̂ is clearly the inequal-
ity constrained estimate. However, in general the
non-negative conditions will not be satisfied since
they were not imposed in Theorem 2. The follow-
ing iterative algorithm is used to compute inequal-
ity constrained MAP estimate.

65



Algorithm 2: CEKF for inequality constraints
BEGIN

(1) Calculate [x̄k, s̄k]T (Theorem 2) and the set:
V (s̄k) = {i : sk(i) ≤ 0}.

IF V (s̄k) = Ø
STOP (x̄k is constrained estimate).

ELSE
GO TO step 2.

(2) FOR each i ∈ V (s̄k),
(a) SET s̄k(i) = 0, reduce states by one
(b) GO TO step 1.

(3) FOR each i ∈ V (s̄k),
FOR each j ∈ V (s̄k), i 6= j,

(a) SET s̄k(i) = s̄k(j) = 0, reduce states by
two

(b) GO TO step 1.
(4) REPEAT step 3 for triples, 4-tuples, ..., p-

tuples of V (s̄k).

END
The time update equations remain the same using
the inequality constrained estimate.

4. SIMULATION EXAMPLE

Consider the gas-phase irreversible reaction in a
well mixed, constant volume, isothermal batch
reactor (Haseltine and Rawlings, 2003),

2A k=0.16−→ B. (14)

The following nonlinear ODEs describe the dy-
namics of the partial pressures,

d

dt

[
pA

pB

]
=
[
−2kp2

A

kp2
A

]
. (15)

The measurements are generated by sampling at
∆t = 0.1 min according to the the reactor pressure
measurement equation,

Pk = [1 1]
[
pA

pB

]
k

+ νk, (16)

with νk ∼ N(0, 0.12). The initial conditions are
pA0 = 3 and pB0 = 1. The following discrete-time
process model is available to the state estimators,

[pi]k = [pi]k−1 +

k∆t∫
(k−1)∆t

[ṗi] dτ + wk, (17)

which is integrated using ode45 in MatLab with
wk ∼ N(0, 0.0012I2). The estimators are initiated
with p̃i0 = [3, 1]T and P̃0 = I2. To be physically
meaningful, the pressures cannot be negative, i.e.,
the states must obey the following inequality
constraint

[pi]k > 0. (18)

Note that the strict inequality constraint can be
used only in the MHE framework. Since the prior
information is known well, the performance of the
EKF is generally acceptable in most simulation
runs and the estimates do not violate the con-
straints. However, often the EKF convergence is
slow as shown for two sample paths in Figure 2.

A CEKF can be implemented by considering a
new state space model of mole fractions as the
state variables and relating them to total the
pressure. The aim is to estimate mole fractions
and total pressure and then to compute partial
pressures. The dynamic model for the mole frac-
tions is,

d

dt

[
xA

xB

]
=
[
−αkx2

A

αkx2
A

]
(19)

and the mole fractions are related to pressure as,

Pk =
α

xAk
+ 2xBk

+ νk (20)

where the constant α = pA0 +2pB0 = 5. The states
must now obey the following constraints,

xAk
+ xBk

= 1,
[
xAk

xBk

]
k

≥ 0, (21)

which are useful for the implementation of the
CEKF. The discrete-time mole fractions model
experiences noise from wk ∼ N(0, 0.0012I2). The
prior information is adapted from the partial
pressures prior into x̃i0 = [0.75, 0.25]T and P̃0 =
0.022I2. For the same data sets for which EKF
performed poorly in Figure 2, the CEKF is shown
to yield superior estimates in Figure 3.

Now consider a case where the prior information
is poorly known, p̃i0 = [0.1, 4.5]T and P̃0 = 62I2.
Previously it was shown that without imposing
the non-negativity constraints on the states, the
extended Kalman filter fails to estimate the par-
tial pressures from total pressure measurements
(Haseltine and Rawlings, 2003). Figure 4 displays
two examples of typical EKF failure with negative
pressures and wrong steady states.

An MHE using strict inequality constraints on
partial pressures readily corrects the estimates,
however the improvement is achieved with high
computational cost. Results of CEKF on the same
data sets is shown in Figure 5. The performance is
summarized in Table 1 with averages for 100 runs.
For good initial guess, the MHE does not neces-
sarily improve upon EKF because the constraints
are not violated. It is possible to improve MHE
estimates by using large horizons, which smooth
the estimates. For bad initial guess, the MHE
is clearly superior. However, greater accuracy is
achieved by CEKF with little computational load
over the EKF.
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Fig. 2. Estimates of partial pressures using EKF (good prior) for two random sample paths.
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Fig. 3. Partial pressures from mole fractions estimates using CEKF (good prior)

Table 1. Average MSE of partial pres-
sure estimates and CPU time to process

101 measurements.

MSE×105 MSE×103 CPU sec
(good prior) (bad prior) (2.5GHz G5)

EKF 367 5277 0.33

MHE (N=3) 405 143 293

CEKF 4 14 0.35

5. CONCLUSIONS

An analytical solution for a constrained extended
Kalman filter is presented in this paper. For a
class of linear equality and inequality constraints,
the moving horizon estimation methods are shown
to be unnecessarily burdensome because greater
accuracy is obtained by CEKF at a small fraction
of the cost of MHE.
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Fig. 4. Estimates of partial pressures using EKF (bad prior) for two random sample paths.
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