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Abstract: This paper addresses the problem of the multivariable control of the quadruple-tank process 

via Iterative Linear Matrix Inequality (ILMI) approaches. Three methods are revised and compared to 

design the feedback PID gain controllers. To evaluate the performances of each approach, we consider 

the two case studies of the minimum and non-minimum phase linear time invariant models. We also 

examine the feasibility, the stabilization problem resolution and the complexity of each ILMI algorithm.  

Keywords: Iterative methods; PID control, Multivariable feedback control, Minimum phase systems; 

Stabilization.

 

Nomenclature 

hi
  : Level of water in tank i 

ia  : Area of the pipe flowing out from tank i 

 Ai : Area of tank i 

γ
1
 : Ratio of water diverting to tank 1 and tank 4 

γ
2
 : Ratio of water diverting to tank 2 and tank 3 

k1 : gain of pump 1 

k2 : gain of pump 2 

Kc  : Level sensor 

 g : gravitational constant  

ϑ1
  : voltage input 1 (pump 1) 

ϑ2
 
 : voltage input 2 (pump 2)

 

y1 : Voltage from level measurement devices of tank 1 

y2 : Voltage from level measurement devices of tank 2 

 

1. INTRODUCTION 

The PID controllers have been at the heart of control 

engineering practice over the last decades. They are widely 

used in industrial applications as no other controllers 

match the simplicity, clear functionality, applicability and 

ease of use. The PID controllers was introduced in 1910 

and their use and popularity had grown particularly after 

the Ziegler–Nichols empirical tuning rules in 1942 

(Ziegler and Nichols, 1942). This control approach is an 

online and proven method however it requires experiences 

and very aggressive tuning for the process. Several 

approaches have been reported in literature (Astrom and 

Hagglund, 2001) to tune PID parameters for SISO 

systems. In this framework, Ziegler Nichols (Astrom and 

Hagglund, 2004) and Cohen-Coon (Cohen and Coon, 

1953) are considered as the most commonly used methods. 

However, most industrial processes are of multivariable   

 

nature. MIMO PID controller is much less understood and 

developed than single variable case. Recently, several 

books and surveys reported research works about tuning 

MIMO PID controllers, see  e.g (Luan et al., 2010), 

(Vilanova and Visioli, 2012), (Rames and Panda, 2012). 

MIMO PID controllers tuning approaches can be classified 

into empirical (Zhuang and Atherthon, 1994), artificial 

intelligence (Willjuice and Baskar, 2009) and analytical 

approaches (Isakson and Graebe, 1999).  

Analytical approaches have particularly emerged to tune 

the PID parameters. The most popular techniques in this 

category are optimal methods (Yanchevsky, 1987), robust 

methods (Ho, 2003), placement pole methods (Zhang et 

al., 2002) and iterative methods (Lequin et al., 2003). On 

the other hand, Linear Matrix Inequalities (LMIs) are the 

most efficient tools in controller design in this framework. 

A great deal of LMI-based design methods have been 

proposed by (Geromel et al., 1994; Cao et al., 1999; Wang 

et al., 2007) where the Iterative Linear Matrix Inequality 

(ILMI) methods was proposed by (Cao et al., 1998) and 

later used to solve several MIMO PID controller design 

problems (Soliman et al. , 2010 ;  Bevrani et al. , 2011 ;  

Zheng et al., 2002 ; Lin et al., 2004;  He and Wang ,2006). 

The basic idea is to transform a PID controller into an 

equivalent static output feedback (SOF) controller. This 

can be realized by augmenting, using some new state 

variables, the dimension of the PID controller system. 

Established results in SOF field can be then used to design 

a multivariable PID controller for various specifications 

such as stability, H2/H∞ performances…  In this context, 

new additional matrix-valued variable can be introduced 

so that the involved stability conditions become 

conservative (sufficient but far from necessary). The 

iterative algorithm in (Zheng et al., 2002), for example, 

tried to find a sequence of the additional variables such 

that the relevant sufficient conditions are close to the 

necessary and sufficient ones. The similar idea is used in 
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the so-called substitutive LMI method in (Fujimori, 2004). 

The merit of our work is to present the procedures of three 

new ILMI approaches and to establish a comparative 

analysis by evaluating the performances of each one. 

Comparative criteria considered are the feasibility, the 

stabilization problem resolution and the degree of the 

implementation complexity.  

The paper is organized as follows. Section 2 introduces the 

problem statement and the motivations. Section 3 details 

three ILMI based approaches for MIMO PID tuning. In   

section 4, a quadruple-tank process model is presented as a 

benchmark example to illustrate the performances of 

MIMO PID algorithms and give an efficient comparative 

analysis.  

2.  PROBLEM STATEMENT AND MOTIVATIONS 

Consider the linear time-invariant (LTI) MIMO system 

described by: 

x Ax Bu   (1) 

y Cx   

Where nx R is the state vector, mu R is the control 

vector, py R is the output vector. The matrices A, B, C 

are with appropriate dimensions. 

The problem to be solved in this paper is to design the 

feedback gain matrices m p
1 2 3F ,F ,F R  such that system 

(1) is stabilized by a PID controller of the form: 

t

1 2 3
0

dy
u F y F ydt F

dt
    

 

(2) 

Where 1F , 2F and 3F  are denoted by the proportional, time 

integral and time derivative gain matrices respectively. 

Transformation of PID controllers to SOF controllers is a 

good alternative to solve the complex control problem 

(Fujimori, 2004). Thus, the stabilization problem is 

reduced to calculate the closed-loop eigen values for the 

augmented system. Several ILMI algorithms were 

developed to find and lead to different approaches and 

methodologies. Very often, the different conditions 

derived are not readily implementable as numerical 

algorithms. Another major difficulty is due to the non-

convexity of the static output feedback solution which 

gives an important computational task. These motivate the 

present work to study new ILMI approaches and to detail 

resolution procedures.  

3. PID TUNING VIA ILMI APPROACHES 

In the following section, we present the main important 

ILMI approaches for PID tuning.  

3.1 Approach 1 (Zheng et al., 2002) 

In this approach, the problem of finding the parameters of 

MIMO PID gains is reduced to a Static Output Feedback 

(SOF) stabilization problem. Consider then the augmented 

system:   

 

z Az Bu                                                                                                                           

y Cz
                                                                                                                                      

 

u Fy  

 

 

(3) 

where  

A 0
A

C 0

 
  
 

   , 
B

B
0

 
  
 

  , 
C 0 CA

C
0 I 0

 
  
 

 and 

1 2 3F F F F     

1 1 1
3 1 3 2 3 3F (I F CB) F (I F CB) F (I F CB) F      

 
 

The original PID gain matrices can be recovered as: 

1
3 3 3F F (I CBF )   (4) 

2 3 2F (I F CB)F   (5) 

1 3 1F (I F CB)F   (6) 

The invertibility of matrix 3I CBF is guaranteed by the 

following proposition: 

Proposition 1: Matrix 3I F CB  is invertible if and only if 

matrix 3I CBF is invertible,   

Theorem: 

The system (1) is stabilizable via static output feedback if 

and only if there exist P>0 and F  satisfying the following 

matrix inequality: 

T T T T TA P PA PBB P (B P FC) (B P FC) 0       (7) 

The negative sign of the term TPBB P  makes its solution 

very complicated. This approach introduced a new variable 

X to deal with the problem. Thus, we consider a matrix Ψ 

which depends on P affinely and satisfies: 
TPBB P   (8) 

with 
T T T T T TX BB P P BB X X BB X     where X>0. 

The system (1) can be stabilized if the following inequality 

has solution for (P, F ): 

T T T TA P PA (B P FC) (B P FC) 0      (9) 

Using Schur complement, inequality (9) is equivalent to 

the following inequality: 

T T T

T

A P PA (B P FC)
0

(B P FC) I

   
 

   

 
 

(10) 

Once X is given, matrix inequality (10) can be solved very 

efficiently.  

To compute the feedback gain matrices 1 2 3F ,F ,F , the ILMI 

algorithm is presented in details in (Zheng et al., 2002) 

using the previous procedure. 
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3.2 Approach 2 (Lin et al., 2004) 

Based on system (1), a new state variable 
t

T T T T

0
x(t) [x (t), x ( )d , x (t)]    and a new output

t
T T T T

0
y(t) [y (t), y ( )d , y (t)]     are introduced.  

The system (1) is then transformed into the following SOF 

control system:                                                                                                                

Ex(t) Ax(t) Bu(t)   

y(t) Cx(t)  

u(t) Fy(t)  

 

(11) 

where  

n

n

I 0 0

E 0 I 0 ,

0 0 0

 
 


 
  

n

n n

n

0 0 I

A I I 0

A 0 I

 
 


 
  

0

B 0

B

 
 


 
  

,  

C 0 0

C 0 C 0

0 0 C

 
 


 
  

 , 1 2 3F F F F    .

 
Theorem : 

The system (11) is admissible if and only if there exist 

matrices P and F  such that  

T TE P P E 0   (12) 

T T T T T T TA P P A P BB P (B P FC) (B P FC) 0     

 

 (13) 

Remark: 

Equations (12) and (13) can be combined to a single LMI. 

Let 𝐸𝐿 = [0,In] which is a maximum left annihilator of E  . 

Then the conditions in (12) and (13) are equivalent to the 

following LMI: 

T T T
i i L i

T T
i L i

(B (Z E E Y ) FC)

B (Z E E Y ) FC I

0

   
 

    



 

 

(14) 

For additional matrices iZ 0 and n 3n
iY R  where 

T T T T T T
i i L i i L i i i L iA (Z E E Y ) (Z E E Y )A X BB (Z E E Y )      

T T T T T T T
i L i i i i i i L i(Z E E Y ) BB X X BB X 2 E (Z E E Y )       

Indeed, (14) implies (12) and (13) by letting 
T

i i L iP Z E E Y   ; and conversely, (12) and (13) ensure (14) 

by noting that 
iP can be decomposed as T

i L iZ E E Y with 

 i i11 nZ diag P ,I 0   and i i21 i22Y [P ,P ] . 

Note that P has the following form: 

11

21 22

P 0
P

P P

 
  
 

 , 2n
110 P R   , 

n
22P R  is invertible . 

The system Ex(t) Ax(t) is called admissible if it is 

regular, impulse-free and stable. The ILMI algorithm is 

detailed in (Lin et al., 2004). 

 

3.3 Approach 3 (He and Wang, 2006) 

The following assumption is made for this approach:       

(A, B) is stabilizable and (C, A) is detectable. 

Theorem: 

 If 

TP(A+BFC) (A+BFC) P P 0    (15) 

holds, the closed-loop system matrix A+BFC has its 

eigenvalues in the strict left-hand side of the line / 2  in 

the complex s-plane. If a 0   satisfying (15), the SOF 

stabilization problem is solved. 

The key point of this approach is to divide the problem 

into two steps: the first one is to find an initial P; the 

second step is to stabilize the system and thus compute the 

PID gains matrices. The ILMI algorithm corresponding to 

this approach is detailed in (He and Wang, 2006). 

4. APPLICATION  

To derive a comparative analysis between the three 

methods based on ILMI approaches, we consider a 

quadruple-tank process as a benchmark for minimum-

phase system. 

4.1 The quadruple-tank process 

The quadruple-tank process (Johansson, 2000; Gatzke et 

al., 2000; Rusli E. et al., 2002) is a multivariable process 

which consists of four interconnected water tanks and two 

pumps. The system is shown in figure 1. The output of 

each pump is split into two using a three-way valve. The 

inlet flow of each tank is measured by an electro-magnetic 

flow-meter and regulated by a pneumatic valve. The level 

of each tank is measured by means of a pressure sensor. 

The regulation problem aims to control the water levels in 

the lower two tanks with two pumps. The two pumps 

convey water from a basin into the four tanks. The tanks at 

the top (tanks 3 and 4) discharge into the corresponding 

tank at the bottom (tanks 1 and 2, respectively). The three-

way valves are emulated by a proper calculation of the set-

points of the flow control loops according to the 

considered ratio of the three-way valve. The positions of 

the valves determine the location of a zero for the 

linearized model.  
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Fig. 1. Schematic diagram of the quadruple tank process 

The nonlinear model of the process is described by 

(Gatzke et al., 2000):  

31 1 1 1 1
1 3

1 1 1

2 2 4 2 2 2
2 4

2 2 2

3 3 2 2 2
3

3 3

4 4 1 1 1
4

4 4

adh a k
2gh 2gh

dt A A A

dh a a k
2gh 2gh

dt A A A

dh a (1 )k
2gh

dt A A

dh a (1 )k
2gh

dt A A

 
   

 
   

  
  

  
  

 

Let note by 
T

1 2 3 4x h h h h    the state variable 

vector,  
T

1 2u    the control vector and 

 
T

1 2y y y  is the output vector. The linearized model 

around the equilibrium points 0 0 0 0 0 0 0 0
1 2 1 2 3 4 1 2u ,u ,h ,h ,h ,h , y , y  

can be expressed as in (1) (Rusli et al., 2002):  

31

0 0
1 11 3

2 4

0 0
2 22 4

3

0
3 3

4

0
4 4

aa g g
0 0

A A2h 2h

a ag g
0 0

A A2h 2h
A

a g
0 0 0

A 2h

a g
0 0 0

A 2h

 
 
 
 
 
 
 
 

 
 
 
 


 
 

 

1 1

1 2 2

2

2 2

31 1

4

0k

A k

A0
B

(1 )k0

A(1 )k

A 0

 
 

 
 

  
  

  
 
  

c

c

k 0 0 0
C

0 k 0 0

 
  
 

   

The parameters of the quadruple–tank process are 

presented in (Johansson, 2000). The eigenvalues of the 

open-loop system are - 0.0159, - 0.0111, - 0.0419 and        

- 0.0333. The system has two multivariable transmission 

zeros, which are determined by the zeros of its 

determinant: 

1 2 1 2 1 2 1 2
3 44

1 2
i

i 1

T T k k (1 )(1 )
det G(s) (1 sT )(1 sT )

(1 sT )


      
    

  
 

                                                                                        (16)         

Thus, the zeros can be computed analytically: 

2
3 4 3 4 3 4

1
3 4

(T T ) (T T ) 4T T
z ( )

2T T

     
   

 

(17) 

2
3 4 3 4 3 4

2
3 4

(T T ) (T T ) 4T T
z ( )

2T T

     
 

 

(

(18) 

 

where  

1 2

1 2

(1 )(1 )
[0, [

   
   

 
 

The adjustable multivariable zero 1z  given by (17) can be 

set to a left or the right-half plane. The valves position 

adjustment determines if the system is minimum-phase or 

non-minimum phase. The results can be written in terms of 

the flow ratios 1  and 2  as shown in table 1.  

 

Table 1: Location of zeros on the linearized system as a 

function of the flow ratios 1  and 2   

 
1z  2z  System 

behavior 

1 21 2      negative negative Minimum 

phase 

1 2 1     zero negative Boundary 

1 20 1      positive negative Non minimum 

phase 

 

4.2 MIMO PID via ILMI 

In this section, we will apply the three ILMI approaches to 

design the feedback gain matrices of the MIMO PID 

controllers of the quadruple-tank process. Sedumi and 

Yalmip Toolbox (Lofberg, 2004) are used to solve the 

numerical problem. Simulation results for the two cases of 

minimum and non-minimum phase case studies are 

presented in table 2 and table 3, respectively.  
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Table 2: PID controllers for minimum phase process 

Approach Feedback matrices Poles 

1 

1

0.6073 0.0204
F

0.2294 0.4300

  
  

  

2

0.0033 0.0004
F

0.0018 0.0016

  
  

  
 

3

0.1227 1.1891
F

1.2754 0.1068

 
  

  
 

- 10.0175 

- 6.1201 

- 0.0166 

- 0.0598 

-0.0615±0.0149i 

 

2 

1

2

3

0.2284 0.1725
F

0.3656 0.1502

0.0013 0.0013
F

0.0025 0.0008

0.1493 2.1896
F

2.9234 0.2977

  
  

  

  
  

  

 
  

  

 

0 

0 

-0.9389 

-0.9909±0.0496i 

-1.0125 

-0.0229±0.0170i 

-0.0147±0.0023i 

-0.0008 

-0.0049 

3 

1

2

3

0.1874 6.3471
F

6.4080 2.1746

1.3596 2.6713
F

2.5197 2.3161

30.5335 12.9082
F

9.5872 18.7263

 
  

 

 
  

 

 
  
 

 

-0.2394± 0.5675i 

-0.1667± 0.3093i 

-0.0585 

-0.0172 

 

 

For the approach 1 and 3, LMIs (10) and (15) solved via 

the ILMI algorithms are found feasible. For the approach 

2, the LMIs (12) and (13) using the appropriate ILMI 

algorithm are also found feasible since the system (11) is 

regular, impulse-free and has all its roots in the left-hand 

side of the complex plane.  

Considering the stabilization problem, approach 1 and 3 

solved the problem since the eigenvalues of the closed-

loop system are in the left-hand side of the complex plane. 

However, the approach 2 can’t solve the stabilization 

problem since we can observe that two zeros for the 

eigenvalues of the closed-loop system are given. 

In terms of complexity of the ILMI implementation, 

approach 1 and 2 are complex as they need the 

introduction of additional variables, leading to higher 

dimension of the LMIs. Approach 3 seems to be simpler as 

it avoids the introduction of the additional variables. 

However it requires the convergence of two independent 

algorithms. The first one must find an initial matrix P and 

a second algorithm, using the initial matrix P, must 

compute the gain matrices 1 2 3F ,F ,F .  

 

 

 

 

 

Table 3: PID controllers for non-minimum phase process 

Approach Feedback matrices Poles 

1 

1

2

3

0.6047 0.0241
F

0.2320 0.4205

0.0033 0.0004
F

0.0018 0.0016

0.1287 1.1966
F

1.2915 0.1105

  
  

  

  
  

  

 
  

  

 

-1.4903 

-0.3065 

-0.0228 ± 0.0083i 

-0.0130 

-0.0173 

 

2 

1

2

3

0.2284 0.1725
F

0.3656 0.1502

0.0013 0.0013
F

0.0025 0.0008

0.1493 2.1896
F

2.9234 0.2977

  
  

  

  
  

  

 
  

  

 

0 

0 

-0.9398 

-0.9909±0.0496 

-1.0125 

-0.0229±0.0170i 

-0.0147±0.0023i 

-0.0008 

-0.0049 

3 

1

2

3

2.6115 0.9588
F

1.9941 1.7539

0.3353 0.2650
F

0.3331 0.2992

41.0167 1.6633
F

0.3142 58.9080

 
  
 

 
  
 

 
  
 

 

-1.5317±2.3132i 

-0.1042 

-0.0009±0.0124i 

-0.0663 

 

 

 

Tuning parameters, for each approach, exposed in table 4, 

can be also considered as an important comparative 

criterion since a suitable choice of each tuning parameter is 

required to lead to good performances.  

Table 4: Convergence rate, synthesis and tuning 

parameters of each approach 

 

Approach 

  i  Synthesis 

parameters 

Tuning 

parameters 
     MP NMP 

1 -0.0333 -0.025 
i i iP ,F ,  0Q ,  

2 7.62*

10−6 

7.62*

10−7 
i i i iZ ,L ,F ,

 

1X ,  

3 1.1895 

* 10−7 

2.88 * 

10−4 
i i i

i 1 2

P ,F , ,

L ,V ,V


 

1 2, ,    

 

After intensive simulation results, we are able to conclude 

that the approach 1 is very sensitive to the variation of the 

tuning parameters where approach 2 and 3 are less 

sensitive. 

5. CONCLUSION 

In this paper, three new ILMI approaches have been 

exposed for designing feedback gain matrices for MIMO 

PID controllers. A benchmark of a minimum/non 
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minimum phase process has been used to illustrate the 

comparative analysis between the three approaches. This 

note succeeds not only to study existing ILMI approaches 

for MIMO PID design but mainly to propose an efficient 

comparative analysis which open some horizons to give a 

number of extensions for existing results by dealing with 

their advantages and disadvantages. 
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