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Abstract: The control of a Rotary Inverted Pendulum (RIP) is a well-known and a challenging problem 
that serves as a popular benchmark in modern control system studies. The task is to design controllers 
which drives the pendulum from its hanging-down position to the upright position and then hold it there. 
The swing up is achieved using an energy based controller. In energy based control the pendulum is 
controlled in such a way that its energy is driven towards a value equal to the steady-state upright 
position. Then a mode controller switches between the swing-up controller and stabilizing controller near 
the upright position. For stabilization control, two control techniques are analyzed. Firstly, a sliding mode 
controller (SMC) is designed to stabilize the pendulum. Secondly, a state feedback controller is designed 
that would maintain the pendulum upright and handle disturbances up to a certain point. The state 
feedback controller is designed using the linear quadratic regulator (LQR).  The responses of the LQR 
controller and SMC controller are compared in simulation. 
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1. INTRODUCTION 

Early studies of the Rotary Inverted Pendulum were 
motivated by the need to design controllers to balance the 
rockets during vertical take-off. At the instant of launching 
the rocket is extremely unstable. Similar to rocket launch, the 
inverted pendulum requires a continuous correction 
mechanism to stay upright as the open loop configuration is 
extremely unstable. Thus, the problem can be compared to a 
rocket during launching. It is also a very good model for an 
automatic aircraft landing system, aircraft stabilization in the 
turbulent air-flow, stabilization of a cabin in a ship etc. 
 
In this paper, the objective is to design controllers for 
swinging up the pendulum from its stable equilibrium 
position to the unstable equilibrium point and balancing it 
there. The swing-up can be attained using various strategies 
like pid control, iterative impulsive control as studied by 
Wang et al. (2004), energy control as shown by Astrom and 
Furuta (1996), Barbosa et al. (2011). Here a robust energy 
based controller is used which swings the pendulum to the 
upright position by utilizing the total energy of the system as 
a feedback quantity. In the upright position a stabilization 
controller is used to balance the link. Stabilization controllers 
based on sliding mode control (SMC) approach and linear 
quadratic regulator (LQR) are designed.  
 
The SMC approach is recognized as an efficient tool to 
design robust controllers for complex higher order nonlinear 
dynamic plants operating under uncertain conditions. It is a 

nonlinear control method that alters the dynamics of a 
nonlinear system by application of a high-frequency 
switching control. Anvar et al. (2010), Kurode et al. (2011), 
Khanesar et al. (2007) proposed sliding mode control for the 
stabilization of the rotary inverted pendulum. 
 
The LQR method is a powerful one for the control of linear 
systems in the state-space domain. The LQR technique 
generates controllers with guaranteed closed-loop stability 
and robustness property even in the face of certain gain and 
phase variations at the plant input/output. It was studied by 
many researchers including Akhtaruzzaman and Shafie 
(2010), Ozbek and Efe (2010) and found much superior to 
various classical techniques. Since the dynamics of inverted 
pendulum systems are inherently nonlinear, the equations of 
motion are linearized about the operating point and a domain 
of attraction is defined within which the constant gain 
controller results in local asymptotic stability.  
 
A mode-switching controller is designed to integrate swing 
up and stabilization control, which means that each time the 
pendulum reaches a certain location after it is swung up, the 
stabilizing controller is activated and ‘catches’ the pendulum 
allowing it to be balanced at the upright position.  
 
The paper is organized as follows. The mathematical model 
of the rotary inverted pendulum is presented in the Section II. 
Section III deals with the controller designs. Simulation 
results are presented in Section IV. Section V concludes the 
work. 
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2. MODEL OF ROTARY INVERTED PENDULUM 

 
2.1. Description of the System 
 
 The Rotary inverted pendulum system is shown in Fig. 1. 
The system consists of two modules – a servo module and a 
rotary module. The servo module shown in Fig. 2 consists of 
a DC servomotor with built in gearbox ratio 70:1. The DC 
servomotor, whose input is +5 V, is mounted in a solid 
aluminium frame. The motor drives a built-in Swiss-made 
14:1 gearbox whose output drives an external gear.  

 
 

Fig. 1 Rotary Inverted Pendulum 
 
The motor gear drives a gear attached to an independent 
output shaft that rotates in a precisely machined aluminium 
ball bearing block. The output shaft is equipped with a 1024 
count quadrature encoder. This gives the motor shaft 
position.  A second gear on the output shaft drives an anti-
backlash gear connected to a precision potentiometer. The 
potentiometer is used to measure the output angle. 
 
 
  
 
 

 
 
 

Fig. 2 Servo Module 
 

The Rotary module shown in Fig. 3 consists of two links: a 
horizontal link called the rotating arm and a vertical link 
called the pendulum. The DC motor rotates the stiff arm at 
one end of the horizontal plane. The opposite end of the arm 
is instrumented with a joint whose axis is along the radial 
direction of the motor. The pendulum is attached to the joint. 
The flat arm is instrumented with an encoder at one end such 
that the encoder shaft is aligned with the longitudinal axis of 
the arm. This encoder measures the pendulum angle. 
 
 
 
 
 
 
 

Fig. 3 Rotary Module 

 
2.2. Mathematical Model 
 
The schematic representation of the system is shown in Fig. 
4. The Lagrangian method is used to obtain the equations of 
motion of the rotary inverted pendulum system. The 
generalized co-ordinates for the system are the angular 
displacements of the rotating arm (θ) and the pendulum angle 
(α).  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Schematic representation of the plant 
 

The general form of Lagrange function L of the system is 
given as L = Total Kinetic Energy (T) – Potential Energy (V) 

Taking the horizontal plane where the arm lies as the datum 
plane, the only potential energy in the mechanical system is 
gravity, i.e. 

cos( )V mgl= α                             (1) 

The kinetic energies in the system arise from the moving hub, 
the velocity of the point mass in the x- direction, the velocity 
of the point mass in the y-direction and the rotating pendulum 
about its centre of mass 

2 21 1 1
[( cos( ) ( sin( ) ]

2 2 2eq BT J m r L L J2 2= θ + θ − α α) + − α α) + αɺ ɺ ɺ ɺ ɺ

   
2 2 2 21 2

( ) cos( )
2 3eqJ mr mL mLr= + θ + α − α θαɺ ɺɺ ɺ             (2) 

 
The Lagrangian can be formulated as L T V= −  

2 2 2 21 2
( ) cos( ) cos( )

2 3eqL J mr mL mLr mgL= + θ + α − α θα − αɺ ɺɺ ɺ

              (3) 
Once the Lagrange function of the system is known, the 
mathematical model of the system is found in the form 
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Substituting (3) into (4), we obtain the equations of motion of 
the system as  

24
cos( ) sin( ) 0

3
mLr mL mgL− α θ + α − α =ɺɺ ɺɺ  

2 2( ) sin ( ) cos ( )eq output eqJ mr mLr mLr T B+ θ + α α − α α = − θɺɺ ɺɺ ɺɺ  

              (5) 
The output torque (Toutput ) of the driving unit on the load 
shaft is 

( )m m g
output m g t g

m

V K K
T K K

R

− θ
= η η                            (6) 

Substituting (6) into (5), we obtain the nonlinear model of the 
system as follows 

cos( ) sin( )

cos( ) sin( ) 0

ma b b e fV

b c d

2θ − α α + α α + θ =

− α θ + α − α =

ɺɺ ɺɺɺ ɺ

ɺɺ ɺɺ

                               (7)                                  

 Where 
 
 
 
 
 
 
 
 
 
 
 
Equation (7) represents the nonlinear model of the system. 
Linearizing (7) under the assumption that � =0 and 0α =ɺ , we 
get the linearized model as follows:  

0

ma b e fV

b c d

θ − α + θ =

− θ + α − α =

ɺɺ ɺɺɺ

ɺɺ ɺɺ

                                                              (8) 

Defining                          [y Τ= θ  α]  mu V=  linearizing 

about the upright position, that is 0α = , and substituting the 
system parameters as given in Table 1, we obtain the state 
space representation of the system as                       
x Ax Bu= +ɺ            
y Cx=                                         (9)

       

Where  

0 0 1 0

0 0 0 1

0 41.68 15.47 0

0 84.05 14.89 0

A

 
 
 =
 −
 − 

  

             

0

0

27.12

23.13

B

 
 
 =
 
 
 

 

To get some sense about how well the linearized model 
represents the original nonlinear system, the dynamics of the 
system is simulated using both linear and non-linear models. 

The simulation verifies the linear model and also establishes 
a threshold on � of the linear model. 
 

Table 1 Parameters of Rotary Inverted Pendulum 
 

Symbol Description Value Unit 

m  Mass of the pendulum .125 Kg 

L  Half length of pendulum 16.75 cm 

r  Length of the rotating arm 21.5 cm 

g  Gravitational acceleration 9.81 m/s^2 

mR  Armature resistance 2.6 Ω 

mK  Motor voltage constant 0.0076 V-s/rad 

tK  Motor torque constant 0.0076 N-m/A 

gK  SRV02 system gear ratio 70  

eqB  Equivalent viscous 
f r i c t i o n   

0.004 Nm/ 
(rad/s) 

mη  Motor efficiency due to 
rotational loss 

0.87  

gη  Gearbox efficiency 0.85  

mV  Motor input voltage 6 Volts 

eqJ  Equivalent inertia 0.0023 Kg m2 

 
Fig. 5 shows that the linear model quite accurately describes 
the system for the first 25 degrees and then begins to diverge 
from the actual motion. 
 
 
 
 
 
 

 
 
 

Fig. 5 Overlapped plots from linear and nonlinear models 
 

3. CONTROL SYSTEM DESIGN 
 
The control objective is to bring the pendulum from 
downward position to vertically upright position and 
maintain it there. Control strategies for swing up and for 
stabilization are presented in this paper. The swing-up 
controller drives the pendulum from its suspended downward 
position to the vertical upright position, where the balance 
controller can then be used to balance the link. A mode-
switching controller is also designed to switch over from 
swing up control to stabilization control when the pendulum 
reaches a certain location after it is swung up. 
 
 
 

[x Τ= θ  α  θ  α]ɺ ɺ

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

656



 
 

     

 

3.1. Swing-Up Control 
 
 Swing-up is attained using an energy controller. The energy 
based approach attempts to swing the pendulum upright by 
utilizing the total energy of the system as a feedback quantity. 
The pendulum is controlled in such a way that its energy is 
driven towards a value equal to the steady-state upright 
position. Neglecting friction and assuming pendulum as a 
rigid body, the equation of motion of the pendulum is 

sin( ) cos( ) 0pJ mgL muLα − α + α =ɺɺ         (10) 

where g is acceleration of gravity and u(=ng)  is the 
maximum acceleration of the pivot. The parameter n is 
dimension free. Normalized variables are useful to 
characterize the properties of a system. We introduce 

0
p

mgL

J
ω = which is the frequency of small oscillations 

around the downward position. The equation of motion is 
then characterized by two parameters only. We choose the 
energy of the system as zero in the upright position, and 
normalize it by mgL , which is the energy required to raise 

the pendulum from the hanging down position to the 
horizontal position. The normalized energy can be then  
written as 

2

0

1
{ ( ) cos( ) 1}

2
E mgL

α= + α −
ω
ɺ

         (11) 

Computing the derivative of E with respect to time 

sin( cos( )p
dE

t J mgL muL
dx

= αα − α α) = − α αɺ ɺɺ ɺ ɺ         (12) 

It follows from the above equation that it is easy to control 
the energy.  The system is simply an integrator with varying 
gain. Now, the controller should drive the system to the 
desired value. Let the desired energy be E0. The following 
control is a simple strategy for achieving the desired energy 

0( ( ))sgn( cos )ngu sat k E E= − α αɺ          (13)  

where k is a design parameter. The function ngsat denotes a 

function which saturates at ng. This strategy is essentially a 
bang-bang strategy for large errors and a proportional control 
for small errors. 
 
3.2. Mode Control 
 
The mode controller determines when to switch between the 
two controllers. Once we have attained acceptable amplitude 
of the pendulum oscillations, we want to start stabilizing the 
controller at the right time. 
 
The pendulum can be stabilized when it is about 20 degrees 
from the vertical and not moving faster than 200-deg/sec. 
Also, the energy of the system should be smaller than a small 
positive value, �.  To avoid switch bouncing (oscillation), the 
value of � is important, but easily obtainable by trial-and-
error method. This simple mode control helps achieve good 
global stabilization. 
 
 
 
 

 
3.3. Stabilization Control 
 

1) LQR Controller:  
 
A linear quadratic regulator (LQR) was used to regulate the 
system about the upright equilibrium point. The LQR 
controller requires a linear system for which it will generate 
constant gains for full state feedback to make the equilibrium 
point globally asymptotically stable. So the equations of 
motion are linearized about the operating point and a domain 
of attraction is defined within which the constant gain 
controller results in local asymptotic stability. With the 
realms of Matlab, a full state feedback LQR controller is 
developed by solving the Algebraic Ricatti Equation based 
upon an effort weighting matrix and a state penalty matrix. 
The nonlinear dynamical equations written in the linear state 
space format are used for this.  
 
In the Matlab, the program for LQR is executed and the gain 
values are obtained as K1 = -2.2361 V/rad for θ . K2 = 20.774 

V/rad for α. K3 = -2.0004 V/(rad/sec) for θɺ  K4 = 2.8137 
V/(rad/sec) for αɺ . 
 

2) Sliding Mode Control 
 

      The design approach using sliding mode control 
comprises of two steps: i) Design of a sliding surface in the 
state space ii) Synthesis of the control law such that the 
trajectories of the closed loop motion are directed towards the 
surface. The state space equation of the system is given by: 
x Ax Bu= +ɺ             (14) 

Where [x = θ  α  θ  α]ɺ ɺ , A is the system matrix and B is the 

input matrix. The sliding surface is defined in state space as:  
T

es C x=            (15) 

Where TC  is a [1 x 4] matrix and ex is the error state vector 

i.e. error in [θ  α  θ  α]ɺ ɺ . If dx is the desired state vector and x  
is the actual state vector then  

e dx x x= −            (16) 

Gao’s power rate reaching law which guarantees finite time 
reaching is 

sgn( )s k s s
α= −ɺ            (17) 

Differentiating the equation of the sliding surface we get: 
T

es C x=ɺ ɺ             (18)      

Substituting for exɺ we get, 
T T

ds C x C x= −ɺ ɺ ɺ              (19)  

Putting the value of xɺ ,  
T T T

ds C Ax C Bu C x= + −ɺ ɺ                  (20)         

Substituting for sɺ  we get 

sgn( ) T T T
dk s s C Ax C Bu C x

α− = + − ɺ                               (21)       

Solving for u we get,  
1( ) ( sgn( ) )T T T

du C B C Ax k s s C x
α−= − + − ɺ                      (22)        

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

657



 
 

     

 

The desired state vector dx  is [ ]0 0 0 0 and its derivative 

dxɺ is also [ ]0 0 0 0 . Thus, the synthesized control law 

becomes 
1( ) ( sgn( ))T Tu C B C Ax k s s

α−= − +                     (23) 

This is the stabilization control for the rotary inverted 
pendulum. 
 

4. SIMULATION RESULTS 
 

The control strategy of an RIP system is composed of the 
swing up control, mode switching and stabilizing control of 
the pendulum. For swing-up, energy based control method is 
compared with a conventional proportional-derivative control 
strategy. The energy based approach is found to swing-up the 
pendulum much faster than the PD controller. The PD gains 
used are: P = 0.5 D = 0.0001, Kp = 24.7 and Kd = -1.5. The 
parameters used in energy control method are:    E0 = -0.1, k 
= 50 and n = 2.6 
 
 
 
 
 

 
 
 
 

Fig. 6 Swinging-up of the pendulum using PD and Energy controller 
 
For stabilization control, the performance of LQR and SMC 
controller are compared. The design parameters used for 
sliding mode control are:  α = 0.5, s = [16.95 −80.96 7.29 
−12.35] ex , k = 10. The settling time and overshoots are less 

for LQR controller. Sliding mode controller provides 
excellent disturbance rejection capabilities. In case of sliding 
mode control we are able to use the non-linear system model, 
whereas in case of LQR we are using the linearized system 
model 
 
 
 
 
 
 

 
 

Fig. 7 Stabilization of the pendulum angle � 

 
 
 
 
 
 
 
 
 

Fig. 8 Evolution of the control signal u. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Stabilization of � in presence of step disturbance 

  
 
 
 
 
 
 
 
 
 
 

Fig. 10 Evolution of control signal in presence of step disturbance 
 
 

 
 
 
 
 
 
 

 
 
 

Fig. 11 Swing-up and stabilization of the pendulum 
 

 
 
 
 
 
 
 
 
 
 

Fig. 12 Evolution of control signal during swing-up and stabilization 
 
 

5. CONCLUSION 
 

 This paper compares the performance of different control 
techniques on a rotary inverted pendulum system. Both swing 
up and stabilization problems have been studied. Two control 
schemes are elaborated for stabilization, namely, linear 
quadratic control and sliding mode control. Energy based 
control is used for swinging up the pendulum. According to 
the results much faster swing up of the pendulum is obtained 
using energy based control.  For stabilization, smoother 
control signal is produced by the linear quadratic controller. 
But sliding mode control provides more robustness against 
parameter uncertainties. Chattering is eliminated to a great 
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extent using fractional order reaching law approach in sliding 
mode control. 
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