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Abstract: Mathematical models of biochemical reaction networks are important tools in
systems biology and systems medicine to understand the reasons for diseases like cancer,
and to make predictions for the development of effective treatments. In synthetic biology, for
instance, models are used for the design of circuits to reliably perform specialized tasks. For
analysis and predictions, plausible and reliable models are required, i.e., models must reflect
the properties of interest of the considered biochemical networks. One remarkable property of
biochemical networks is robust functioning over a wide range of perturbations and environmental
conditions. Plausible mathematical models of such robust networks should also be robust.
However, capturing, describing, and analyzing robustness in biochemical reaction networks is
challenging. First, including uncertainty in the structures, parameters, and perturbations into
the model is not straightforward due to different types of uncertainties encountered. Second,
robustness as well as system and thus model properties are often itself inherently uncertain, such
as qualitative (i.e., nonquantitative) descriptions. Finally, analyzing nonlinear models subject
to different uncertainties and with respect to quantitative and qualitative properties is still
in its infancy. In the first part of this perspective article, network functions and behaviors of
interest are formally defined. Furthermore, different classes of uncertainties and perturbations
in the data and model are consistently described. In the second part, we review frequently
used approaches and present our own recent developments for robustness analysis, estimation,
and model-based prediction. We illustrate their capabilities to deal with the different types of
uncertainties and robustness requirements.

Keywords: Biochemical reaction network; complex dynamical system; estimation; robustness;

systems and control theory.

1. INTRODUCTION

Biochemical reaction networks form the structural basis
of most cellular processes such as in metabolism, sig-
nal transduction, and gene expression. In these networks,
many species dynamically interact and are transformed by
biochemical reactions to perform and maintain biological
functions. Intertwined and possibly redundant feedback
and feedforward mechanisms give rise to complex dynam-
ical behaviors and their lack or improper functioning can
result in malfunctioning or diseases. To minimize these
risks, the biological networks must perform their tasks
reliably under various changes of the cellular environment
and conditions (Bullinger et al., 2007; Kim et al., 2006;
Kitano, 2004; Ma and Iglesias, 2002). This property is
generally called robustness and refers to the persistence of
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a behavior or the insensitivity of function characteristics
in the presence of perturbations (Trané and Jacobsen,
2008).

Typical examples of biological behaviors that are robust
to environmental changes are oscillations or multistability,
e.g., in the cell cycle or in apoptosis, respectively, or
adaptation in chemotaxis and phototaxis (Streif et al.,
2010; Alon et al., 1999). The readers are refered to (Aguda
and Friedman, 2008) for other examples and mechanisms
of cellular regulation. Robust functioning is of particular
interest in synthetic biology or metabolic engineering. One
core task in synthetic biology is the design of motifs or
building blocks that perform a function robustly when
connected into larger networks and under various pertur-
bations of the cellular environment (Purnick and Weiss,
2009). Function characteristics of interest include certain
types of dynamic input-output behavior such as the time
derivation of inputs and adaptation to persistent stimuli,
logical combinations of different inputs, or oscillatory be-
havior (Sontag, 2005).
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Besides the robustness of qualitative behaviors or func-
tion characteristics, quantitative predictions of system re-
sponses have become increasingly important especially in
therapy design, and quantitative or synthetic biology (Yor-
danov and Belta, 2011). Often mathematical models are
developed and employed to analyze and quantitatively pre-
dict, estimate, and control the response of the considered
systems with respect to applied inputs or environmental
changes (Kitano, 2002). The main challenges hereby are
not only to consider the various external perturbations of
these systems, but also to take into account the various
uncertainties that arise both in the analysis and in the
models (Sontag, 2005).

This article provides a perspective on the modeling of
biochemical reaction networks with a focus on describing,
capturing, and analyzing robustness, taking qualitative as
well as quantitative aspects into account. More precisely,
robustness analysis requires a formal specification and def-
inition of the analyzed behavior or function characteristics,
and of the uncertainties with respect to which robustness
is to be analyzed. Robustness can then be analyzed and
quantified by determining the allowable uncertainties for
which the desired system behaviors or function character-
istics are still observed. Because descriptions of biological
functions are inherently uncertain, robustness analysis is
inevitable linked to uncertainty analysis. To this end, the
following two key challenges are outlined:

(1) specification of the different types of uncertainties
encountered in the description of system behaviors,
functions, and in the data and models;

(2) methods for analyzing and quantifying robustness
under consideration of uncertainties using prediction
and estimation.

While the first challenge is mainly of a conceptual nature,
the second is still a widely open field of research once it
comes to efficient methods for analysis and predictions.

1. Challenge:
Specification of Uncertainties and System Behaviors

Mathematical models of robust biological systems should
exhibit appropriate levels of robustness when analyzed
(Kim et al., 2010, 2006; Ma and Iglesias, 2002). For ro-
bustness analysis and prediction of system responses to
perturbations and uncertainties, two crucial ingredients
are required: first, a clear description of external pertur-
bations under which the biological system (represented by
the model) should function robustly; second, a clear for-
mulation of the behavior or function characteristics that
is about to be analyzed for its robustness.

However, considering only external perturbations is far
too limited for the analysis of biological models because
already the models are the largest source of uncertainty.
This is simply due to the fact that experimental data are
sparse, limited, and incomplete and measurement tech-
niques are mostly indirect and have very low accuracy
and resolution (Rumschinski et al., 2010a; van Riel and
Sontag, 2006; Sontag, 2005). This results in large uncer-
tainties of the absolute quantities of the measured physical
or chemical entities or species. In addition, due to low
sampling times and missing normalization standards for

absolute quantification, the data are usually not quantita-
tive and time-resolved. Often, the data available for model
construction are supplemented by qualitative information
such as conditional or temporal statements or if-then ob-
servations (Samaga and Klamt, 2013; Rumschinski et al.,
2012; De Jong, 2002).

For the analysis of robustness and for prediction and
analysis, different uncertainties must be modeled and con-
sidered: first, external perturbations; second, uncertainties
in the formulation of the investigated behaviors or function
characteristics due to the qualitative character and the
uncertain measurement data; third, structural uncertain-
ties such as due to incomplete knowledge of the reaction
kinetics or intermediate reaction steps; fourth, parameter
uncertainties such as unknown reaction rate constants.
Methods must be chosen for robustness analysis, robust
prediction, and estimation that can account for the en-
countered and largely different types of uncertainties. Cur-
rently no suitable tools exist that can capture all described
uncertainties.

2. Challenge:
Robustness Analysis, Estimation and Prediction Methods

Methods for the analysis of robustness and robust pre-
diction for biochemical reaction networks should allow
nonlinearities to be taken into account. The methods
should be able to handle different types of uncertainties
and to make robust statements on network performance,
qualitative behavior, and the influence of uncertainties to
be made (see Fig. 1). In particular, we are interested in
making dynamical predictions of system outputs under
uncertainties and perturbations (left to right in Fig. 1). To
quantify robustness of function characteristics, parameter
estimation can be used (right to left in Fig. 1) where the
volume of the consistent and robust parameter set could
serve as a measure of robustness (Chaves et al., 2009).

Robustness analysis, robust estimation, and prediction
are classical topics in control engineering, see e.g. (Zhou
et al., 1995). Most existing methods are limited to lin-
ear systems, whereas realistic biochemical networks are
nonlinear. Methods that can handle nonlinear systems
are often limited or assume that the steady-state is not
affected by uncertainties or perturbations. In contrast to
most technical systems where robustness of stability is
the main objective, the robustness of instability is impor-
tant in biological systems, because instability is related to
biological behaviors such as oscillations or multistability
(Waldherr and Allgéwer, 2011; Angeli et al., 2004). The
direct application of classical systems and control methods
is therefore limited. In addition, the different types of
uncertainties encountered in biological and medicinal re-
search differ compared to technical systems. For example,
in human-made technical systems, sensors can often be
placed as wished or uncertainties can often be avoided by
a suitable design.

Outline of this Paper

In the last decade, several approaches have been developed
that can handle or overcome some of the mentioned chal-
lenges. This paper considers methods for the analysis and
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estimation of uncertain dynamical quantitative models
described by ordinary differential or difference equations
(Sec. 2). Note that we do not consider or review qualitative
or structural modeling frameworks or methods allowing
for qualitative predictions using these models. For reviews
of those methods see, e.g., (Samaga and Klamt, 2013;
Wilhelm et al., 2004; Barabasi and Oltvai, 2004; De Jong,
2002; Stelling et al., 2002). We furthermore restrict the
perspective toward methods that allow a closed form or
algebraic analysis. In particular, we do not cover methods
that employ Monte Carlo simulation or related analysis
methods. Descriptions of stochastic analysis techniques
can be found, for example, in (Schwarick et al., 2010).

Sec. 3 provides possible ways to describe and capture the
uncertainties in the models (mainly probabilistic and set-
based descriptions). Because the presented methods have
individual and different advantages and limitations and
can not all deal with all uncertainty types, it is important
to classify these different types. We discuss the selection
of suitable methods and increases the awareness of the
statements that can actually be made for the robustness
analysis and model verification.

Sec. 4 reviews classical approaches and extensions thereof.
These methods are often restricted to local or structural
analysis, but can still give valuable insight into the system.
However, these methods are not well-suited for quanti-
tative predictions and analysis in the case of large un-
certainties. Sec. 5 reviews set-based approaches that can
efficiently deal with set-based uncertainty descriptions.
Well-known and computationally efficient approaches such
as interval analysis fall into this class. Interval analysis
methods can produce results that are too conservative,
and less restrictive methods are outlined in Sec. 5.

While set-based approaches allow robust and guaranteed
statements, the results can also be conservative. This con-
servatism can be reduced by employing approaches that
provide statements in terms of probabilities and proba-
bility distributions with the premises that definite and
guaranteed statements are only possible asymptotically.
Several existing probabilistic methods are reviewed in
Sec. 6.

Sec. 7 discusses various problems that have not yet been
solved in the current literature. This section also provides
an outlook for future research.

2. BIOCHEMICAL NETWORK MODELS

This paper considers a wide class of biological systems,
including metabolic, signal transduction, and gene regu-
lation networks. Most of these processes can be formally
modeled as biochemical reaction networks.

Basically, biochemical networks have two main elements,
namely, species and reactions. The biochemical species
Xi,Xos,...,X,, represent ensembles of chemically identi-
cal molecules in a specific cell compartment. These species
are interconverted by chemical reactions of the general
form

s)

X1+ 850 Xn 4+ s X, —

sUIX1+ 88X+ 4+ sV X, (1)

s

where j = 1,2,...,n, is the reaction index, and the factors
sgfj), sg? € Ny are the stoichiometric coefficients of the

substrate and product species, respectively.

The structural information of the reaction network is

usually collected in the stoichiometric S € R™=*™ matrix

with entries given by
Sij= 5P g(®)

] 1,57

i=1,...,
For simplicity of presentation, the system’s state vector
x(t) € R™ comprises the species’ concentrations® [X;]
and is denoted by

v = ([X1],[Xa), ..., [X,]) | € R™. (3)

The kinetics of the reactions are given by rate functions,
which depend on the state z, time-invariant parameters
p € R"  and time-varying signals w(t) € R™. In the
context of biochemical networks, w(t) can represent exter-
nal inputs or stimuli, changes of the cellular environment,
or control inputs such as cooling temperature or added
nutrients or substrates in fed-batch processes.

The transformation of the species are described by reaction
rates that are given by the vector

v(x,p,w) = (Ul(ac,p,w)7 ceey Up, (m,p7w))—r eR™. (4)
Usually, reaction rates are polynomial or rational expres-
sions arising from the law of mass action or the Michaelis-
Menten mechanism (Aguda and Friedman, 2008). Some of
the analysis frameworks are restricted to certain types of
equations such as polynomial equations. In principle and
under rather mild assumptions, it is possible to convert
other nonlinearity expressions including quasi-polynomial
kinetics or non-algebraic functions into polynomial form
using state immersion (see references in (Hancock and
Papachristodoulou, 2013; Motee et al., 2012; Ohtsuka and
Streif, 2009)) or by approximation techniques such as Tay-
lor series (see references in (Kishida and Braatz, 2012)).

Outputs are often used to capture the measured variables.
However, outputs are also used to quantitatively capture
the uncertain/robust behavior, or to qualitatively charac-
terize robustness. Consider outputs of the form y(t) € R™v
that are nonlinear functions of the states, parameters, and
inputs:

y = h(z,p,w) € R". (5)

In summary, the biochemical reaction network is concisely
written as:

& = Sv(z,p,w) = f(z,p,w), (6a)
y = h(x,p,w), (6b)
where f() is introduced to simplify notation and is non-
linear in general. The rest of this section considers some

mathematical preliminaries that are needed before moving
on to the inclusion of uncertainties in the models.

A common feature in biochemical networks are conserva-
tion relations x7 among the state variables x of the form
xr; =y .5 liiri,j = 1,...,n. with non-negative coef-
ficients [;; (Heinrich and Schuster, 1996). Such relations
reduce the degrees of freedom and usually the system of
differential equations is treated in its reduced form with
ng — N, state variables.

3 Concentrations are always greater than or equal to zero.



IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

4+ loss of function or

specification violation

surface
/\/ prediction
)

Di

'
L4

Pj

ou‘[putA

ps O —
estimation/
0 quantification

enclosure of
consistent
system outputs

time

0 1

Fig. 1. Robustness analysis and quantification is closely related to prediction of uncertainty propagation and estimation.
Prediction can be used to analyze the influence of uncertainties and perturbations on the model outputs/response.
Estimation can be used to determine, e.g., parameter uncertainties (gray shaded areas in the figure on the left)
such that certain qualitative or quantitative specifications of system behaviors or properties are satisfied (light blue
shaded areas on the right). Robustness of system behavior can be either quantified with respect to some nominal
parameters pss and the distance dp; from the surface where the specifications are no longer satisfied, or the volume
of the consistent parameter set or some approximation of it such as the dashed box. Note that, in this figure, only
the set-based description is shown for easier presentation. The ideas are transferable to probabilistic uncertainties
and predictions. In this case, constraint violation is formulated in terms of probabilities.

The discrete-time version of the continuous-time system
(6) is employed in later sections. To account for implicit
and explicit integration schemes, we use the representation

0= F(a(k+1),2(k), p,w(k)), (7a)
where k£ € N is the time index with associated time points

ti. The functions F'(-) and H(-) represent the discrete-time
versions of f(-) and h(:), respectively.

For several subsequent analyses, the linearization of the
nonlinear dynamical system (6) at a steady-state will be
used. To shorten the notation, the steady-state will be
written as

gss = (xss,pssa wss)a (8)
where the parameter values p = pss and constant pertur-
bations w = wss. The steady-states are given by solving

f(&ss) = 0. 9)
The linearization of (6) around (8) is then given by

d& = Adz + B,0w + B,op, (10a)
dy = Céx + D,0w + D,dp, (10b)
where the matrices A = % , By = % , By =
555 SSS
of oh ._ Oh ._ Oh
ap s %|§557 Dw = 3w I Dp = op are

58 ss

evaluated at the steady-state &,s. This formulation also
considers perturbations of the nominal parameter values
Dss by dp, through the matrices B, and D,,.

3. UNCERTAINTY DESCRIPTIONS AND
ROBUSTNESS SPECIFICATIONS

Robustness is typically analyzed and quantified by deter-
mining the allowable uncertainties for which a desired sys-
tem behavior or function characteristic can be guaranteed
(see Fig. 1). Thus robustness analysis is inevitably linked
to uncertainty characterization. In addition, uncertainty

can enter the analysis from many sources such as the quan-
titative or even qualitative description of the robustness
property or function characteristic. Other sources include
limited structural knowledge and data uncertainties. Note
that we use the term data uncertainty in a rather broad
sense. By this term, we refer not only to the sparse and
uncertain measurement data, but also to qualitative ob-
servations and information from expert knowledge. Model
uncertainties are simply considered here as a consequence
of data uncertainty, as explained in the next subsection.

To be able to make correct statements and predictions
despite these uncertainties, it is important to choose suit-
able methods that can capture and handle uncertainties.
Suitable methods are presented in the Sections 4-6. In this
section, the required formulation of the different uncer-
tainties (see Fig. 2) and analysis questions are presented.
Furthermore, we illustrate the uncertainties with some ob-
served biological behaviors and state commonly considered
analysis questions (see Fig. 3).

8.1 Model Uncertainties:
Uncertainties

Hypotheses and  Structural

It is often unclear whether relevant species or reactions and
interaction between species have been missed in the con-
struction of a model for a biochemical reaction network.
The structure of the models is uncertain in the sense that
either the stoichiometric coefficients in S are not precisely
known, some reactions v(-) might be absent or present,
or the mathematical expression of the reaction rates (i.e.,
involved species and reaction kinetics) are unknown.

The uncertain structure often leads to different model
hypotheses that need to be compared against the data.
Models with structures that are inconsistent with the data
can then be ruled out or may indicate that further circles
of iterative modeling and tests of consistency are required.

Methods to test model consistency while taking uncertain-
ties into account are presented in Sec. 5. Obviously, such
tests require the comparison of model outputs with data.
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Fig. 2. Different quantitative data uncertainties at time points 0,1, ...
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measurements at the time points. The curves show the effect of a parameter perturbation on the system output
Ynom (t) resulting in ype,¢ (t). (b) Set-based or worst-case uncertainty description, which in this case was derived from
(a) by the minimum and maximum measurement values. Different trajectories (gray solid curves) are consistent with
the measurements. (c) If the number of samples is sufficiently large and under certain conditions, the probability
density of the underlying uncertainty distribution may be assumed or derived.

For comparison purposes, it is important to formulate
the uncertain data such that a comparison can be made
based on unbiased tests. These criteria can be formulated
mathematically as constraints, see details below.

3.2 Set-Based Uncertainties

Due to limited measurement precision, low sampling fre-
quency, and low number of experimental replicates (see
Fig. 2a), it is not always possible to make any conclu-
sion with respect to the actual probabilistic uncertainty
distribution. Therefore, error bars, as depicted in Fig. 2b,
derived from standard deviations or worst-case approxima-
tions, can be helpful. Such data correspond to uncertainty
intervals or more generally, uncertainty sets. This set-
based uncertainty description is also encountered when
parameter values cannot be specified exactly. Indeed, pa-
rameters are usually highly uncertain and possible ranges
can span several orders of magnitude.

Interval Uncertainties.  Often uncertainties in the vari-

ables are described by an upper and lower bound (see

Fig. 2). Such bounds on uncertain parameters p or un-
certain initial conditions x( are represented by

Bi S Di S 237,'7 1

Lo 4 < Z0,i < Zo,i, 1

=1,...,n.. (11)
Interval uncertainties are a special class of set-based un-
certainties.

To describe such uncertainties more generally, assume that
the variables such as parameters or measurements y(tj) at
time points ¢ take values from a set defined by possibly
nonlinear inequalities g;(§) > 0, i.e.,

Ee{€:¢9:(6)>0,i=1,2,...,n,} CR", (12)

where ¢ := (z,p,w).* This description also allows for the
next type of data.

Parameter or Data Relations.  This special class of set-
based uncertainties is encountered when there are known
relations between measurements of different outputs or
of the same output at different time points. A common
example is when an observed peak of a biological output
is known to be twice as high after a stimulus compared

4 Equalities can be handled by introducing g;(¢) > 0 and —g; (&) >
0.

to its value before the stimulus. In general, this results in
relations between (unknown or uncertain) variables and
can be represented as a manifold, which can be implicitly
expressed by (12).

Methods to deal with set-based uncertainty descriptions
are presented in Sec. 5.

3.3 Probabilistic Uncertainties

The set-based uncertainty description only describes the
possibility for a parameter value, but does not make any
statements about the probability that a particular parame-
ter value is taken. For certain cases, a set-based description
is reasonable and less assumptive especially if only few
replicates are available to make meaningful statements
on probabilistic measurement uncertainties or parameter
distributions. However, due to rapidly improving measure-
ment and high-throughput techniques, statistics and thus
probabilistic descriptions become more and more available.

In case meaningful statistics or distributions can be de-
rived, as in Fig. 2c, these uncertainties are referred to as
probabilistic uncertainties, which often can be character-
ized as in

& ~ Prob(E(§). B, ). (13)

where Prob(+) is a specified probability distribution with
specified expected values and moments E(-), which are
related to such properties as mean and variance (§; is an
element of the vector &).

Chance constraints are another way of handling proba-
bilistic uncertainties (Ben-Tal et al., 2009; Prékopa, 1994),
which can be formalized by

Prob(gi(€) > 0) > vy,

where vy, is the confidence level associated with a con-
straint g;(-).

(14)

Methods that can handle probabilistic uncertainties are
presented in Sec. 6.

8.4 Qualitative Information on System Behavior

Very often the system behavior of interest is not described
by quantitative measures or values. Instead, so-called qual-
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itative information® is available on how the system be-
haves (see Fig. 3). To analyze robustness of these kind
of system behaviors requires a different definition, which
is given in this subsection. A thorough formulation and
description can be found in (Rumschinski et al., 2012). In
many cases, the qualitative data directly follows from the
lack of data and that absolute and quantitative measure-
ment techniques are either not available or too expensive.

Steady-state Location.  Due to lack of affordable mea-
surement techniques for fast sampling and time-consuming
experiments, only measurements of the steady-state before
and after a perturbation or stimulus might be available
(see Fig. 3a). This can result in a particular qualitative
pattern of (some) outputs. Because quantification stan-
dards might not be available, the data are normalized,
typically with respect to the maximum. Different levels
are then defined such as high or low (see Fig. 3a) to
verbalize the qualitative system behavior as, for instance,
gene activation patterns (De Jong, 2002).

This information can be written similarly as (12):

s ELE F(E) =0,055(6) >0},5 =1,...,n5s.  (15)
The first constraints f(-) are the steady-state conditions,
cf. (8), gss,;(-) > 0 is the location information, and ng
is the number of steady-states. Alternatively, probabilistic
uncertainties as in (13) could be used.

Stability, Instability, and Oscillation. In addition to
the steady-state location, the dynamical properties of the
biochemical reaction network are of interest. Typically,
biological functions are related to certain qualitative dy-
namical behaviors such as multistability, i.e., the existence
of several stable steady-states, limit cycle oscillations, or
non-periodic oscillations (see Fig. 3b). Examples are the
cell cycle, apoptosis, or circadian rhythm (Aguda and
Friedman, 2008; Sontag, 2005). From a dynamical systems
point of view, bistability, multistability, and sustained
oscillations are related to stability and instability of an
equilibrium point.

A steady-state &, is locally stable if all eigenvalues of the
Jacobian A (see also (10)) have negative real parts. Here
stability is meant in the sense of Hurwitz or asymptoti-
cal stability, which can be checked by the characteristic
equation:
nCC
q(s,&ss) = det (SI - A(«SSS)) = Zci(fss)s’ =0. (16)
i=0
The question then is whether the family of polynomials
q(s,&ss) with coefficients ¢;(€ss) is (robustly) stable for
all uncertainties &5 € X5, where £, € X, is a subset
of R™¢ of interest. Answering this question is equivalent
to assessing whether ¢(s,&s) # 0 for all s € C with
Real (s) > 0.

Other ways besides (16) exist to check Hurwitz stability,
e.g., see (Horn and Johnson, 1991). For nonlinear systems,
various conditions exist that can be used for the analysis of

stability of nonlinear systems, e.g., see standard textbooks
such as (Khalil, 2002).

5 Mixed classes of qualitative and quantitative data are also often
encountered.

Adaptation and Inverse Response.  Besides stability- and
instability-related behaviors, the qualitative dynamical re-
sponses to perturbations of external conditions or stimuli
are of interest (Fig. 3c). Most prominent examples where
robustness has been observed in vivo and in silico are exci-
tation and adaptation in bacterial chemotaxis (Alon et al.,
1999; Barkai and Leibler, 1997) and archaeal phototaxis
(Streif et al., 2010). In this context, adaptation denotes
the property that an observed output initially changes in
response to a stimulus, but then returns to the value before
the stimulus, even though the stimulus persists. Adapta-
tion is important to keep cells fit in changing environments
by maintaining homeostasis under perturbations, or by
expanding the dynamic range of sensory receptors. From a
systems theoretic point of view, the conditions for exact (or
perfect) adaptation have been extensively investigated (see
(Waldherr et al., 2012; Sontag, 2003; Yi et al., 2000) and
references within): if a system adapts to a class of input
signals, then it necessarily contains a subsystem that is
capable of generating signals of this class, which is known
under the term internal model principle.

For constant inputs, adaptation is obviously related to
the steady-state gain of the system. The relation between
the output deviation from steady-state and the stimulus
deviation from steady-state in the Laplace domain is
characterized by the transfer function G(s) = C(sI —
A)~"'By, + D, (assuming p = 0 and D,, = 0) as computed
from the matrices in (6), with the complex variable s € C.
A system with scalar input w(t) and output y(¢) has
perfect local adaptation at &, if and only if G(s) = 0
for s = 0. This condition is equivalent to

A By,\
det(c 0>0

and A has nontrivial eigenvalues.

(17)

In a similar manner, inverse response behavior (see
Fig. 3d) could be analyzed at the linearization and is
related to unstable zero dynamics, i.e., zeros of the transfer
function G(s) in the right half plane. However, to the best
of our knowledge, inverse response behavior has so far only
be reported once (Hartmann and Oesterhelt, 1977). From
a systems theoretic perspective, inverse response behavior
is not unlikely, though. This raises the question of whether
measurement data showing such inverse response behavior
have simply been trashed by experimentalists, because an
inverse behavior was counterintuitive and unexpected.

Robustness or invariance of concentrations of particular
species despite the variations of the concentrations of
other species is another important class that has been
considered, e.g., in (Steuer et al., 2011) and (Shinar and
Feinberg, 2010). Robustness or invariance of concentration
can be more general and can also refer to invariance
of the considered concentrations on short or long time
scales. In contrast, adaptative system behavior is usually
associated with an initial excitation, i.e., large changes of
the concentrations of one or several species.

Conditional and Temporal Observations.  Very often,
only a limited amount of quantitative and temporally
resolved data is available for model construction and
estimation. Instead, only qualitative statements such as
if a stimulus is given, then the concentration increases
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Fig. 3. Qualitative biological system behaviors. (a) Steady-state pattern in the presence or absence of inputs, i.e.,
stimuli. (b) Stable oscillations like a cell cycle or circadian rhythm. (¢ and d) Qualitatively different transient
system outputs. In both cases, a persistent stimulus is applied as an input. In (c¢), the output transiently increases
and then decreases again to converge versus the prestimulus level even though the stimulus persists, which is called
adaptation in biology. Due to a low sampling frequency, the time when the maximum occurs may not be known,
which then corresponds to temporal uncertainties as shown by the horizontal bar. In (d), the output increases to
an elevated steady-state level without (solid line) and with (dashed line) initial inverse response behavior.

transiently, before returning to its prestimulus level even
though the stimulus persists. Such information is often also
provided by experts and experimentalists from biological
insight or knowledge. Such constraints can be formally
captured using conditional statements such as

IF (ga(§) > 0 AND gp(§) > 0) OR
(9c(€) >0 AND...) OR ...
THEN (gx(€) > 0 AND ...). (18)

Generally, the conditions can be constraints involving dif-
ferent variables or the same variable at different time
points, which allows the formulation of temporal uncertain-
ties, i.e., where the time point when an event happens is
not exactly known. This is illustrated in Fig. 3¢ where the
time point when the transient response peaks is temporally
uncertain.

As shown in (Rumschinski et al., 2012), such a formula-
tion allows the capture of many qualitative observations,
biological knowledge, and data using Boolean logic (Rizk
et al., 2011; Karaman et al., 2008; Bemporad and Morari,
1999). Note that robustness of such qualitative behaviors,
such as having oscillations or not, is most often of interest.

3.5 Problem Statements for Robustness Analysis

Robustness analysis can be informally stated as quantifica-
tion of the perturbations that a system can tolerate before
loosing a specific function (Kim et al., 2006; Kitano, 2004;
Stelling et al., 2004; Ma and Iglesias, 2002; Morohashi
et al., 2002). More formally, the remainder of the paper
considers the question of robustness analysis as (see also
Fig. 1):

(1) Quantification of robustness by estimation of parame-
ter sets or distributions that are consistent with un-
certain data (sections 3.2-3.3) and qualitative speci-
fications of system behavior (Sec. 3.4).

(2) Prediction of uncertainty propagation and how uncer-
tainties affect robustness and output specifications.

The volume of the consistent parameter set is an immedi-
ate measure of robustness. As illustrated and discussed in
(Chaves et al., 2009), however, a large volume of the robust
parameter set does not imply large robustness because

the set might be very thin with a small perturbation
into one direction of the parameter space leading to a
loss of function, while the system can still be robust for
perturbations in other directions (see also Fig. 1). Thus,
the geometry and topology of the robust set contains very
important information on robustness (Chaves et al., 2009).

Sections 4-6 present different methods to tackle these
questions for quantitative dynamical models of biochemi-
cal reaction networks. Monte Carlo sampling and related
algorithms that do not provide conclusive results are not
discussed due to their high computational cost compared
to alternative methods. Our main focus is on set-based
methods that provide guarantees, and methods that allow
probabilistic statements with reasonable computational
cost.

4. ANALYSIS OF LOCAL PERTURBATIONS AND
NETWORK STRUCTURES

This section reviews methods from systems and control
theory that are well-suited to analyze the influence and
propagation of uncertainties in biochemical reaction net-
works. In particular, local perturbations of variables such
as the parameters are considered, which then lead to per-
turbations of the nominal system behavior. The term local
refers to being either small or infinitesimal perturbations
that can lead to a different output trajectory yper¢(t) as
illustrated in Fig. 2.

The presented methods allow a characterization of steady-
state solutions and a quantification of robustness by the
distance between nominal parameters and the parameters
for which constraints on the qualitative or quantitative
behavior are violated (see Fig. 1). While these methods are
conceptually simple and well-known, their applicability for
the analysis of the usually large uncertainties is limited,
because they focus on nominal points that are often
assumed to be invariant to the perturbations, or because
the methods rely on linearizations that requires small
perturbations.

In addition, methods are reviewed that allow statements
about the qualitative behavior to be drawn from the nom-
inal network structure or its perturbation. These methods
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are, at least to a large extent, independent of parameters.
Due to this fact, the methods are well-suited for qualitative
analyses, but are limited for quantitative predictions.

4.1 Sensitivity Analysis

One robustness analysis question is how the nominal dy-
namical system behavior or the steady-state changes in
response to perturbations of the parameters, which then
can be used to quantify robustness (see Fig. 2a). The
analysis of the influence of the parameters is denoted as
parametric sensitivity analysis, which has been used for
many purposes such as the identification of targets for the
design of drugs and therapies, or the identification of lim-
iting steps in a metabolic network to achieve a maximum
yield of a product. For reviews of applications and the
general methods, see, e.g., (Zi, 2011; Streif et al., 2009;
Ingalls, 2008; Saltelli et al., 2000). Sensitivity analysis
provides a good starting point to identify the parameters
and corresponding key factors that have strong impact on
the output. This analysis can provide valuable insights
about how robust the biological responses are with re-
spect to parameter changes. In general, sensitivity analysis
methods can be classified as local and global as detailed
further below. The sensitivity with respect to probabilistic
uncertainties is addressed in Sec. 6.

Local Sensitivity Analysis.  Local sensitivity analysis
concentrates on a nominal point in the parameter space,
such as a nominal operating condition or steady-state &s;.
To approximate the perturbed output trajectory ynom(t)
(see Fig. 1) in the case of a small perturbation dp; of
parameter pj, the first-order sensitivity system can be used
that is obtained from the linearization (10) of (6) in which
the input perturbation dw is set to zero:

d Oz ox

%67])] = A(gnom (t)) 87])] + Bpj (fnom (t))a (19&)
oy Ox
@ - C(gnom (t)) aipj + Dpj (é-nom (t)) . (19b)

The sensitivity equations (19) describe a linear time-
varying system of ordinary differential equations in which

the matrices A(gnom(t))v Bpj (fnom(t))7 C(gnom(t)) and
Dy, (§nom(t)) are evaluated along the nominal trajectory

nom

The sensitivity % of the steady-state £s5 can be obtained
J
from the steady-state solution of (19) if A is Hurwitz:

Ox 4 dy 1

@ = —A Bp]. and 871)] = —CA Bp]. + Dp].7
where the matrices are evaluated at 5. The latter equa-
tion can then be used to determine the shift of the steady-

state output for finite perturbations dp;:

by = (~CA™'B,, + Dy, )op;.

Pss,j Ox

Often, scaled or normalized sensitivities = 5 are more
ss j

meaningful to measure the changes of the steady-state
(Saltelli et al., 2000).

Besides these classical approaches, several extensions have
been presented, such as for oscillating systems (Zi, 2011;
Wilkins et al., 2009; Taylor et al., 2008).

Local sensitivity analysis, also known as metabolic control
analysis, provides a first-order approximation of the effect
of parameter perturbations. However, the local parametric
sensitivity analysis results should be used with care for the
prediction of large perturbations. For this reason, higher-
order sensitivities (e.g., (Streif et al., 2007; Hwang, 1983;
Cascante et al., 1991)) and global sensitivity methods have
been considered. The latter are described next.

Global Sensitivity Analysis.  Global sensitivity analysis
aims to predict model behavior either for larger parameter
values, or for local sensitivities averaged over a domain
in parameter values. Often statistical methods are used
to guide the sampling of values from within the specified
domains in the parameter space. An introduction to global
sensitivity analysis can be found in (Marino et al., 2008).

In (Streif et al., 2009, 2006), a global sensitivity analysis
method was presented based on an input-output control
engineering view. The idea employs a combination of
observability and controllability Gramians (see also (Singh
and Hahn, 2005)), the so-called cross Gramian, and an
empirical extension for nonlinear systems. Even though
this approach allows larger parameter perturbations to be
considered, the statements are still made with respect to
a nominal operating point.

4.2 Bifurcation Analysis

Bifurcation analysis based on numerical continuation has
often be used to measure robustness in cases when only
few parameters are assumed uncertain and varied (Kim
et al., 2006; Ma and Iglesias, 2002; Morohashi et al., 2002).
As discussed in (Waldherr and Allgéwer, 2011), a major
limitation is that bifurcation surfaces (see Fig. 1) can
usually not be computed explicitly in a high-dimensional
parameter space. In addition, continuation methods may
miss parts of the bifurcation surface, even if only one or two
parameters are uncertain. To deal with multi-parametric
uncertainty, it was suggested to use the structured singular
value as an analysis tool (Shoemaker and Doyle, 2008; Kim
et al., 2006; Ma and Iglesias, 2002). However, a significant
problem with the approaches based on the structured
singular value is that the uncertainty in the location of the
steady-state due to parameter variations usually cannot be
taken into account directly. For more detailed discussion
see (Waldherr, 2009).

Moénnigmann and Marquardt (2002) use normal vectors
on manifolds of critical points to measure the distance
between these manifolds and equilibrium solutions. This
approach allows the characterization of an equilibrium
solution by their parametric distance to manifolds at
which the behavior of the system changes qualitatively,
i.e., bifurcation points, or points at which state variable
constraints or output constraints are violated. Statements
are only made with respect to a nominal operating point.

4.8 Kinetic Perturbations

A kinetic perturbation is a modification of the network’s
reaction rate vector from v(:) to 0(-). The key restriction
is that the steady-state reaction rates should remain un-
changed, i.e., v(s5) = U(&ss). Thus, kinetic perturbations
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change the slope of the reaction rates at a steady-state,
but leave the nominal steady-state and the stoichiometric
matrix unchanged. Defining a suitable perturbation matrix
A € R" "= the change in the slope of the reaction rate
at steady-state &, is given by

0V 0 -
50 = T2 (Eus) — o (€)= cling (0(620)) A v (€00) "

Considering the linear approximation (10) of the network
at steady-state, the Jacobian is

A(6v) = S%(éss) + diag (9(&,5)) Adiag (€55) .

Using the notion of kinetic perturbations, Waldherr et al.
(2009) studied the robustness problem of finding a pertur-
bation dv such that A(dv) has eigenvalues on the imaginary
axis, i.e., where the qualitative behavior of the system
changes.

In a similar approach, Waldherr et al. (2012) investigated
the adaptation problem for a network with scalar input
and output. Then the adaptation problem is to find A
such that (17) is satisfied and A(dv) is Hurwitz. Both the
robustness and adaptation problem are solved by robust
control techniques (Zhou et al., 1995).

4.4 Qualitative Behavior and its Dependence on Network
Structure and Feedback Loops

In principle, using parametric sensitivity (see previous
subsections) as a measure of robustness is based on the
assumption that the underlying model structure is exactly
known and that all relevant perturbations can be rep-
resented by changes in the model parameters. However,
model structures are in general uncertain due to incom-
plete knowledge of the reaction kinetics, neglected interme-
diate reaction steps, and unmodeled transport phenomena
such as diffusion and delays (Jacobsen and Cedersund,
2005).

A large number of methods exist to analyze the robustness
of the qualitative system behavior with respect to pertur-
bation or addition or removal of interactions between the
species in the network. Below is a review of a selection of
methods for structural network analysis.

Structural Robustness.  In (Jacobsen and Cedersund,
2008; Trané and Jacobsen, 2008; Jacobsen and Ceder-
sund, 2005), linear systems analysis, transfer functions,
and structured singular values are used to analyze per-
turbations that affect the model structure. In (Jacobsen
and Nenchev, 2011), structural uncertainty is particularly
considered as unmodeled dynamics and transfer function
analysis is used to compute robustness with respect to
structural changes in reaction networks. In addition, it
was shown that robustness analysis can be used to val-
idate/invalidate a hypothesized model structure and to
detect structural fragilities.

Monotone Systems.  For certain classes of biochemical re-
action networks, model structures (or reaction structures)
can be related to dynamical system properties such as
multi-stability. In (Craciun et al., 2011), for monotonic
reaction rates, analysis of the associated graphical models
is used to characterize structures of biochemical reaction

networks in terms of dynamical properties including multi-
stability and convergence to an equilibrium point. Mono-
tonicity of reaction rates means that, for the reaction
network dynamics (6), the nonlinear function v(z,p) cor-
responding to a reaction rate vector satisfies the relations

dvi(w,p) _ [>0if s >0, Vi=1,...,n,
O =0ifs” =0, Vj=1,...,n,

for all p.5 These results follow from extensive studies of
monotone systems (Enciso and Sontag, 2005; Angeli et al.,
2004; Angeli and Sontag, 2004).

A finding in (Kim et al., 2012; Venkatesh et al., 2004) is
that existence of positive and negative feedback loops in
a reaction network plays a key role in robustifying a dy-
namical reaction network system against both parametric
and structural perturbations.

5. SET-BASED UNCERTAINTIES AND ANALYSIS

The methods presented in Sec. 4 allow the analysis of
perturbations of single or few parameters, and do not
easily allow the consideration of more general set-based
uncertainties. In the analysis of biochemical networks,
however, it is important to consider simultaneous pertur-
bations and uncertainties in all parameters, and to derive
rigorous enclosures of all solutions for iterative modeling or
classification of motifs. This section presents methods that
can deal with set-based uncertainties and provide bounds
on all solutions (see Fig. 2b), as well as how to employ
set-based approaches for robustness analysis.

5.1 Interval Analysis

Interval analysis was introduced by Moore (1966) as an
approach to bound rounding and truncation errors in
mathematical computations. Due to its general simplicity
and computational efficiency, as well as many sophisticated
improvements, interval analysis has gained much atten-
tion. Several reviews have been published (Moore et al.,
2009; Hijazi et al., 2007; Jaulin et al., 2001), with many
discussing applications to robust prediction, estimation
and control.

In interval analysis, interval uncertainties (11) are con-
sidered. These uncertainties result in different possible
output trajectories. Guaranteed bounds Y, SYi S Yt =
1,...,ny, on the outputs can be computed using interval
functions and interval arithmetic. Interval arithmetic is a
logical extension of standard arithmetic. Operations like
addition and subtraction are simply defined by operations
on the lower and upper bounds.

Though a simple idea, interval analysis is a very power-
ful technique with numerous applications in mathemat-
ics, computer science, and engineering (see reviews cited
above). However, the computation of the tightest possible
interval solution set that completely contains all solutions
is difficult, primarily due to dependence or correlations
among uncertain variables. This difficulty is discussed in
more detail in the next section.

6 Since monotonicity of reaction rates are required for all p in the
set, this property might be called robust monotonicity.
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Stability Analysis Using Interval Matrices. — Stability and
instability are related to many biological functions as high-
lighted in Sec. 3.4. Consider a system (6) with box-shaped
parameter uncertainties P := [p1,P1] X ... X [Pn,,Pn,]

as defined in (11). A standard approach for robustness
analysis of nonlinear systems in the presence of such para-
metric uncertainties is to examine the linearization (10)
and its associated characteristic equation. In mass action
networks, the parameter uncertainties appear affinely in
the entries of the Jacobian A, denoted by A(p), and con-
sequently multi-affinely in the coefficients ¢;(p) of the each
term of the characteristic equation (16).

A common approach is to relax the polynomial dependen-
cies and assume each ¢;(p) as an independent uncertainty
interval. Lower and upper bounds for ¢;(p) can then be
computed using interval arithmetic and the polynomial
becomes consequentially an interval polynomial. In 1978,
Kharitonov proposed a theorem on robust Hurwitz sta-
bility of interval polynomials that reduces the stability
analysis to the stability of four deterministic polynomials,
where each polynomial corresponds to a certain combina-
tion of extreme values ¢;(p) and ¢;(p) of each coefficient

(Kharitonov, 1978).

Interval polynomials and the well-known Kharitonov the-
orem is thus an approach for the stability analysis of
biochemical reaction networks with interval uncertainties.
Albeit this approach is elegant, a drawback is that it
neglects the parameter correlation in each coefficient ¢;(p).
In general, algorithms that are based on positivity of the
Hurwitz determinant associated with (16) suffer from the
fact that the order of the polynomials ¢;(p) grow polyno-
mially in the number of states, n,, and in the order of the
entries in A(p). This approach can lead to high-order poly-
nomials ¢;(p), and neglecting the parameter correlations
by an overapproximation using interval analysis is a rough
approximation. Because of this, Kharitonov’s theorem can
introduce conservativeness when it comes to the stability
problem of the original nonlinear dynamical system.

It is therefore important to apply other appropriate meth-
ods that take care of the dependence of the parameters to
remove conservativeness due to correlation of the uncer-
tain parameters whenever possible (for specific numerical
examples, see (Goh et al., 2012) and citations therein).
Root locus is a general method but too computationally
expensive when the number of parameters is large. Gen-
eralized Kharitonov (Barmish, 1989) methods are more
generally useful but still only apply to limited parame-
ter dependencies. Numerous other approaches for robust
Hurwitz stability that handle more general polynomial pa-
rameter dependencies have been presented in the systems
and control communities, see e.g., (Zettler and Garloff,
1998) and references within. The next section presents
other set-based approaches that are useful not only for
stability analysis, but also for addressing other questions
stated in Sec. 3. These methods reduce this conservatism
by improved relaxations.

5.2 Linear and Semidefinite Relaxations

The general idea behind the methods presented next is
to construct a feasibility problem (or sometimes called a

10

constraint satisfaction problem) and to derive the entire set
of solutions, i.e., not only a single solution. This feasibility
problem is a set of nonlinear equations and inequalities,
concisely written as:

find &

subject to ¢;(§) >0, i=1,...,n4
where the vector ¢ contains all time-variant and time-
invariant variables that appear in the problem. The con-
straints g;(&) are used to represent the nonlinear dynamics
(6) after a suitable time discretization on a finite-time
horizon tg,t1,...,ts,, as well as all set-based uncertainties
and relation of variables and other information on the
outputs in the form of (12).

(20)

Due to nonlinearities and hence nonconvexities, the so-
lution set of (20) cannot be derived directly. Therefore,
relaxations into linear and semidefinite feasibility problems
are applied. In plain words, the basic idea of relaxations
are to replace nonlinearities with simpler expressions. For
example, a linear relaxation introduces variables that are
linear in the relaxation (or lifting) variables. The resulting
relaxed problems can be solved efficiently, and due to this
relaxation procedure, each solution of the original non-
linear feasibility problem is also a solution of the relaxed
feasibility problem. The converse is, however, not true.

Interval analysis (see Sec. 5.1) follows the same idea and
relaxes a nonlinear expression by overapproximating it by
an interval. As discussed, interval-based relaxations can
be quite conservative. The following approach produces,
in our experience, tighter bounds (Streif et al., 2012).

With the assumption of real-valued 7, bounded, and non-
negative® variables &, as well as polynomial or rational
expressions? g;(¢€) > 0. Under the outlined assumptions,
the constraints g;(-) in (20) can be reformulated in terms
of a matrix X composed of monomials needed to represent
the inequalities. This new representation allows to capture
the present nonconvexities in form of a rank-one condition
on X. By relaxing this rank condition, a convex semidefi-
nite program (SDP) is obtained, i.e., X > 0 as a relaxation
of rank(X) = 1. To deal with larger biochemical reaction
networks with more constraints and variables, the SDP can
be relaxed to a linear program (LP) by replacing X > 0 by
the weaker constraints X > 0 and by assuming symmetry
of X. More details can be found elsewhere (Streif et al.,
2012; Rumschinski et al., 2012; Streif et al., 2009).

The relaxed SDP or LP contains information about the
model dynamics (6) and the set-based uncertainties (12).
In general, this approach is very flexible and allows dif-
ferent robust analysis questions to be tackled as done
further below. Formulation of feasibility problems with
associated constraints on data and models with set-based
uncertainties, the involved relaxation steps, and the re-
spective solution of the problems by outer approximations

7 Sec. 5.3 shows that mixed real and integer valued variables can
be handled if qualitative (e.g., conditional and temporal) constraints
are needed.

8 Due to the boundedness of the variables, the non-negativity of
the variables poses no limitation and can be obtained by suitable
translation.

9 Assuming polynomial expressions poses few limitations, because
different solutions exist to convert the rational and transcendental
into polynomial form, see Sec. 2.
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can be performed in ADMIT, which is a freely available
toolbox (Streif et al., 2012).

Structural Uncertainties and Model Invalidation.

To prove that a model hypothesis, reformulated as a fea-
sibility problem (20), is inconsistent with some qualitative
behavior or with output constraints despite set-based un-
certainties, it is necessary to determine if a solution for
the feasibility problem (20) exists. An efficient approach
(Rumschinski et al., 2012) in this case is to consider the
Lagrangian dual formulation of the semidefinite or linear
relaxation. The weak duality theorem and the relaxation
process guarantee that, if the objective of the dual program
is unbounded, then (20) does not admit a solution, hence
is inconsistent. This approach enables entire families of
models to be ruled out and thus deals efficiently with
structural uncertainties.

Uncertainty Propagation and Parameter FEstimation.
The feasibility approach also enables the derivation of
outer approximations of consistent parameter sets or state
variable sets. It can therefore be used to address the
robust estimation of states and parameters. Outer ap-
proximations of uncertain variables can be obtained if the
feasibility problem is replaced by an optimization problem
in which the single variables are minimized or maximized.
A tighter lower bound of variable &; can be obtained by
the formulation

min §&;

subject to ¢;(§) >0, i=1,...,ng. (21)

followed by application of the same relaxations as above.
In this way, box-shaped outer approximations can be easily
determined on state variables of parameters.

Outer approximations provide an intuitive measure of
robustness—the larger the volume of the outer approx-
imation, the more robust the system is. As discussed
in Sec. 3.5, however, volume-based robustness measures
should be not over-interpreted because the shape of the
robust set contain important robustness information. A
better description of the robust set can be obtained by the
following approach or by so-called inner approzimations
as presented in Sec. 5.3.

Besides such box-shaped outer approximations, the so-
lution sets of (20) can be approximated by partitioning
the initial uncertainties into regions for which it is then
checked whether they contain a solution or not. With suit-
able recursive algorithms, this approach allows the deriva-
tion of an outer approximation of consistent parameter
values as in Fig. 4 and as shown in the following example
(Streif et al., 2013b).

Consider the enzyme-catalyzed reaction
S +EZ=C, B P+E
P2

52+E\pﬁ402
ps

(22)

Here, enzyme E and a substrate S; reversibly form a
complex C7 that is converted into product P. Furthermore,
the enzyme is bound by a second substrate Ss forming
the inhibitory complex C5. The parameters p1,pa, ..., D5
denote the uncertain reaction rate constants. The reaction

1"
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Fig. 4. Outer (blue boxes) and inner (white boxes) approx-
imation of parameter sets. Valid samples are given by
the black dots. Image was taken with permission from
(Streif et al., 2013b).

mechanism (22) is modeled in discrete time (fixed step size
ta) by

z1(k+1) = 21(k) + ta (prza(k)zs (k) — (p2 + p3)zi(k))
zo(k+1) = z2(k) + ta (pazs(k)ze (k) — psza(k))
w3(k+1) = z3(k) + ta(psz1 (k).

with the conservation relations: xr4 = za(k) + z1(k) +
x3(k), xr5 = v5(k) + x1(k) + 22(k), 16 = x6(k) + 22(k).
The variables 1 (k), z2(k), x3(k), z4(k), x5(k), and zg(k)
represent the concentrations of Cy, Cy, P, S1, E, and S,
respectively.

Now consider the capability of the set-based method to
provide guaranteed predictions despite set-based uncer-
tainties. To this end, introduce artificial measurements
of the product P from the simulation of the system
with nominal initial condition [z1(0),22(0),25(0)]"
[0.10,0.10,0.05] T for a step size of to = 0.1 hours, and all
parameter values set to 2. To simulate data uncertainties,
an absolute error of 5% was added. Initial parameter
uncertainties were assumed as 0.1 < p; < 10. Fig. 4 shows
an outer approximation of the parameter sets consistent
with the uncertain output data. The outer approximation
was obtained by invalidating different regions in parameter
space.

Stability and Instability.  Biological networks should per-
form their functions robustly despite uncertainties. To
check robustness of stability- and instability-related be-
haviors, (16) and its associated Hurwitz determinant could
be used to test asymptotic stability, similar as for the inter-
val analysis approach. However, this approach suffers from
similar conservatism problems as the interval polynomial
approach.

In an approach that also employs linear programming uses
a feedback loop-breaking approach to obtain conditions for
non-existence of local bifurcations under a parametric un-
certainty (Waldherr and Allgower, 2011). The conditions
are checked computationally by applying the Positivstel-
lensatz, which is relaxed into a linear program similar as
above. A solution to the linear program yields a robustness
certificate for the considered dynamical behavior and lower
robustness bound corresponding to a level of parametric
uncertainty up to which no local bifurcations can occur.
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5.8 Mized-Integer Linear Relarations

Semidefinite and linear relaxations enables the determi-
nation of outer approximations of parameters and state
variables consistent with formulated quantitative robust-
ness constraints. The methods presented in this subsection
use mixed-integer programming '© and allow the determi-
nation of inner approrimations and to analyze qualitative
information (discussed in Sec. 3.4).

Inner Approzimations. Robustness can be quantified by
volume of the outer approximation of the consistent sets.
However, this measure can be misleading for two reasons.
First of all, the outer approximation is conservative and
usually contains inconsistent parameterizations. Second,
even if the outer approximation is tight, the consistent
parameter set might not be simply connected such as
discussed in (Chaves et al., 2009) (see also Sec. 3.5). It
is therefore important to find inner approximating sets for
which it is guaranteed that all parameter combinations
from this set lead to consistent solutions. This determina-
tion will then help to elucidate the geometry and topology
of the consistent parameter set.

Streif et al. (2013b) proposed a method to determine
inner approximations. The two basic ideas are, first, to
reformulate the constraints g;(£) > 0 in (12) by associating
a binary variable b; with each constraint such that each
binary variable is constrained to be true if and only if
the associated inequality is satisfied. This approach leads
to an equivalent mixed-integer nonlinear programming
problem. An inner approximation is then obtained by
adding a logical combination using OR-statements and
by checking if the feasibility problem has a solution or
not. Sets of parameters or initial conditions for which
the feasibility problem provides no solution then gives
an inner approximation. The relaxation of the mixed-
integer nonlinear feasibility problem into a mixed-integer
linear feasibility problem allows the inner approximations
to be determined efficiently. Inner approximations for the
example (22) are shown in Fig. 4 and the union of the
boxes gives a robustness measure.

0.8 T T T

0.6

0.4

0.6 0.8 1

time

Fig. 5. Inner approximation of parameter sets that lead
to guaranteed satisfaction of constraints. Blue trajec-
tories result from parameter samples taken from the
inner approximation. Red trajectories are inconsistent
samples from the outer approximation. Figure taken
from (Streif et al., 2013b).

10This approach also allows for discrete state, input, or parameter
variables.

12

Including Qualitative Information in Robustness Analysis.

Rumschinski et al. (2012) considered qualitative, tempo-
ral, and conditional statements of the general form given
in Eq. (18). In general, AND combinations of constraints
(e.g., ga(&) > 0 AND gp(§) > 0) do not pose any prob-
lem because they can simply be added to the feasibility
problem. However, OR-combinations (e.g., g4(§) > 0 OR
gp(§) > 0) have to be treated specially. Similar to the
inner approximation idea, one approach is to introduce
binary variables (e.g., bs) and imposing constraints on
them such that they are true (i.e., equal to 1) if a condition
(e.g., ga(&) > 0) is satisfied. By suitably combining the
binary variables in linear constraints, the statement A OR
B (associated with g4 and gg) can be enforced to be true,
which then allows the estimation of consistent parameters.

This approach is computationally demanding, but very
versatile. By suitable formulation of qualitative informa-
tion and statements, using Boolean algebra and reformu-
lation in terms of the mixed-integer program, and allows
many different types of uncertainties to be considered, such
as temporal uncertainties (i.e., either A is true at time ¢,
OR at time t; OR ...), or conditional statements (A OR
B is true if C' is true). This approach has been used for
the robust analysis of adaptation networks (Rumschinski
et al., 2012).

5.4 Methods for Continuous-Time Dynamical Systems

A possibility to address continuous-time systems within
the presented framework is by discrete-time approxima-
tions, e.g., obtained by numerical integration. Due to
the discretization error, the consistent parameter sets of
continuous-time and discrete-time model do not neces-
sarily overlap and, thus, wrong conclusions on model ro-
bustness are possible (Rumschinski et al., 2010b). One
assumption that still allows the direct application of the
presented methods is to assume that the time derivatives
of the state variables are available as measurements (Fey
and Bullinger, 2010), but this is not often the case.

Interval analysis methods that can deal with continuous-
time dynamics rely on higher-order Taylor approximations
and are usually termed verified integration (see e.g., (Lin
and Stadtherr, 2007; Nedialkov et al., 1999; Berz and
Makino, 1998)). The tightness of the overapproximations
produced by these methods heavily depend on the under-
lying integration algorithms. Especially for large times, it
can easily happen that the overapproximation explodes.
Verified integration can easily be used for prediction of
uncertainty propagation, but considering e.g., stability or
output constraints can be difficult.

Other methods employing semidefinite programming and
the related Sum-of-Squares approach exist, such as bar-
rier certificates (Anderson and Papachristodoulou, 2009;
Prajna, 2006; Prajna and Rantzer, 2007) and occupa-
tion measures (Streif et al., 2013a). These approaches
allow the continuous-time dynamics to be considered di-
rectly without numerical integration and allow the cer-
tification of parameter regions as inconsistent with data
and model. Occupation measures have been used recently
(Streif et al., 2013a) to derive both polynomial inner- and
outer-approximations of the consistent parameter sets for
continuous-time nonlinear systems.
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An advantage for approaches based on barrier certifi-
cate and occupation measure is that these approaches
directly incorporate the right-hand side of the differential
equations between the measurement points without using
any approximation by time discretization. However, both
approaches are computationally demanding for realistic
systems and the number of decision variables required for
this construction increases polynomially with the number
of variables and relaxation order (see discussion and refer-
ences in (Streif et al., 2013a)).

5.5 Robustness Analysis via Skewed Structured Singular
Values

For rational systems, the system’s parameter set and
output set can be related by the skewed structured singular
value along with the scaled main loop theorem (Ferreres,
1999; Zhou et al., 1995). This theorem states that the
maximum norm of the linear fractional transformation
(LFT) over an uncertainty set is the corresponding skewed
structured singular value. The advantage of using the
skewed structured singular value is that it can handle very
general parameter dependencies, which usually reduces the
conservativeness.

As stated in Sec. 2, many biochemical reaction networks
can be written in terms of polynomial or rational func-
tions. Such systems together with parametric uncertain-
ties, noise, and disturbances can be expressed in the form
of an LFT assuming that the function is well-defined at
the nominal system (Zhou et al., 1995). The resulting LFT
consists of two terms: a term for the nominal system and
a term for the uncertain/varying portion of the system.

To find a parameter set that is consistent with the given
specification of the system output/response, two steps are
required after expressing the system as an LFT. The first
step is to decide the shape of the box of the allowable
uncertain set (e.g., the ratio of dp; and dps in Fig. 1).
The shape can be chosen based on the relative expected
variations in the parameters, the magnitude of the nominal
parameters, or other methods (Kishida and Braatz, 2012).
This step is necessary because the skewed structured
singular value gives only one value, and cannot compute
multiple values at once. In the second step, the skewed
structured singular value is used to stretch or shrink the
chosen box equally in all directions to find a maximum
volume uncertain set that guarantees that satisfaction of
the specification on the system output/response (Kishida
and Braatz, 2012).

To see how the parametric uncertainties propagate in
the output, consider a discrete-time system with a scalar
output (7), which corresponds to continuous-time system
(6). In order to derive lower and upper bounds on the
output variables y(k), an LFT is constructed with a con-
stant matrix and a perturbation matrix A that contains
information on the interval uncertainties, respectively. '*
For systems with parametric uncertainties, A is a block-
diagonal matrix where each block is a scalar times the
identity matrix.

1 For systems with ellipsoidal uncertainties, the skewed spherical
structured singular value should be used instead of the skewed
structured singular value (Kishida and Braatz, 2013).
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By using the main loop theorem, the bounds on uncer-
tainty propagation can be determined from

y(k) = —va(Ni) + M, (23a)
y(k) vA(N,) — M, (23b)
where N; and N, are constant matrices and M > 0 is
any large enough scalar value. Variations that balance the

conservativeness and computational complexities of the
algorithm can be found in (Kishida et al., 2011).

In applications, it is desired to employ an LFT of min-
imal order, whose construction is equivalent to a multi-
dimensional realization and non-trivial. For this purpose,
order reduction algorithms such as (Marcos et al., 2007;
D’Andrea and Khatri, 1997; Russell and Braatz, 1998)
are available. Once the system is written in LFT form,
the computational difficulty and robustness is the same as
for computing lower /upper bounds on structured singular
values, which can be computed in polynomial time. For
further discussions, see e.g., (Kishida et al., 2011).

6. PROBABILISTIC UNCERTAINTIES AND
ANALYSIS

As more measurements can be made for biochemical exper-
iments as a result of technological advancements, param-
eters are more often reported in probabilistic form, which
increases the importance of methods that analyze the
influence and propagation of probabilistic uncertainties
(see Fig. 2¢). Two classes of methods for the propagation
and analysis of probabilistic uncertainties are summarized
in this section. The first class of methods uses an ap-
proximation of Liouville’s Equation and its solution using
the Fokker-Planck equation. The second class of methods
employs Polynomial Chaos Theory. The latter expands
system responses to probabilistic uncertainties in appro-
priate polynomial basis functions, which are determined
by the uncertainty distributions. Approximating system
responses by these polynomial chaos expansions (PCEs)
has the advantage of decreasing computation time com-
pared to Monte Carlo simulation that requires the solution
of the system equations for each sample.
the Fokker-Planck

6.1 Approximate Analysis

Fquation

using

Analysis of the effects of randomness (i.e., probabilistic un-
certainty) of the initial concentrations and kinetic reaction
parameter variations can be studied by solving a partial
differential equation (PDE) known as the Fokker-Planck
or Liouville equation for a given probability distribution
of initial concentration profiles and kinetic parameters. A
difficulty of this problem is the hardness of computing
an exact solution for such PDEs, and there have been
made many efforts to either avoid solution of the PDE or
compute an approximate solution instead. Such methods
for stochastic stability analysis and sensitivity analysis are
described next.

Stochastic Stability Analysis. El Samad and Khammash
(2004) analyzed the stochastic stability of two gene regu-
latory networks that has been built and analyzed in the
biological literatures. They specialized some standard the-
orems on in the literature (Lasota and Mackey, 1994) that
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enable the analysis of stochastic stability using Lyapunov
functions, which is much simpler than direct analysis of
the Fokker-Planck equation for the probability distribu-
tion. Kim et al. (2012) characterized the dynamics of
a motif consisting of interlinked fast and slow positive
feedback loops, which regulate polarization of budding
yeast, calcium signaling, Xenopus oocyte maturation, and
other processes (Brandman et al., 2005). Interest in this
motif as a component in synthetic genetic networks is that
it provides a dual-time switch that can be rapidly and
reliably induced while being relatively insensitive to noise
in the stimulus (Brandman et al., 2005). Kim et al. (2012)
discussed how the expressions derived from this approach
can be used to design robust biological gene switch cir-
cuits that perform programmed desired behaviors in the
presence of intrinsic and extrinsic perturbations.

Sensitivity Analysis.  Horenko et al. (2005) applied the
method called the Trapezoid Rule for Adaptive Integration
of Liouville dynamics (TRAIL) to analyze the propagation
of randomness (distribution) in nonlinear dynamical sys-
tems. This technique consists of two steps: (a) prediction,
in which linear ordinary differential equations (ODEs)
corresponding to reaction dynamics and the associated
Fokker-Planck equations are used, and (b) correction, in
which nonlinear effects are treated to refine the accuracy.

In (Elf and Ehrenberg, 2003), the reaction dynamics
(called macroscopic dynamics) was linearized with respect
to a steady-state, and the covariance of a solution of
the corresponding Fokker-Planck equation was computed
in terms of a solution of Lyapunov equations. It was
shown that the method can be used to efficiently estimate
sensitivity criteria such as the Fano factor and analyze the
effects of elimination of fast variables (i.e., removing fast
subsystems, which corresponds to unmodeled dynamics).

6.2 Polynomial Chaos Theory

This section considers a stochastic spectral method of un-
certainty propagation and quantification called polynomial
chaos including its generalization. The approach belongs
to the class of analysis of stochastic system responses and
uses PCEs as a functional approximation of the mathe-
matical model. The PCE approach is suitable for studying
probabilistic uncertainty quantification and propagation.

Recent introductory tutorials of the use of PCE with em-
phasis on the application to systems and control problems
(Kim et al., 2013; Nagy and Braatz, 2010) and a compre-
hensive overview on the use of PCE methods for sensitivity
analysis (Sudret, 2008) are available. This section focuses
on tutorial introduction to the ideas of PCE methods with
some simple examples of biochemical reaction network
systems.

Propagation of Probabilistic Uncertainty. The method
of PCE to analyze uncertainty in a stochastic dynamical
system was first introduced by Wiener (1938) for turbu-
lence modeling for uncertainties that are Gaussian random
variables, which was later extended to other random vari-
ables (Xiu and Karniadakis, 2002). The underlying idea
is to use a spectral decomposition for which solutions for
stochastic differential equations in an infinite-dimensional
probability space are projected onto a finite-dimensional
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subspace spanned by a set of certain polynomial basis
functions. Selection of the types of basis functions depends
on the types of random variables whose stochasticity is to
be propagated, and the methods of projections determine
ways of computing the associated coeflicients of basis func-
tions that minimize an approximation error.

To illustrate the use of PCE methods for uncertainty prop-
agation, consider the biochemical reaction network model
in (Ma and Iglesias, 2002) underlying cAMP oscillations
observed in chemotactic Dictyostelium discoideum cells:
kll‘7 — kQZCl To
kazs — kqwo
ksx7 — kewows
k7 — ksx3wy
ko1 — k1owams
k1121 — k12ze
kizre — k1az7
T

jj:

(24)

where p = [k1,ka,...,k14]' are the parameters, and x =
[xl,...,x7]T represents the concentrations of seven pro-
teins: [ACA], [PKA], [ERK2], [REG A], [Internal cAMP],
[External cAMP], and [CAR1], respectively. Suppose that
the only source of uncertainty is in kinetic parameters '2
described by a normal distribution with mean 0.8 and

variance 0.1:
ke ~ norm(0.8,0.1).

Here the state solution x;(t;kg) is approximated by a
PCE of the form a;(t;0) = >0, &;(t)$;(0), where 6 ~
norm(0,1), ie., k¢ = 0.16 + 0.8, and ¢;’s refer to the
Hermite polynomial basis functions. A least-squares fit
was used to determine &;;(t), which minimizes [;(t; kg) —
#;(t;0)]? for m; distinct 6’s that are roots of ¢y, 1. Fig. 6
shows the average and variance of [ACA] computed from
an 8"-order PCE (m; = 9) and from Monte Carlo simula-
tion (10* samples). Compared to Monte Carlo simulation,
which takes 342.7 seconds, PCE significantly decreases the
computational time to 0.644 seconds. As shown by Fig. 6,
PCE agrees with Monte Carlo for short-time behavior;
however, as time progresses, disagreement in the variance
increases. This result suggests that PCE should be applied
to oscillatory systems with caution, which has motivated
the development of modified PCE methods that are more
accurate for such systems (Le Meitour et al., 2010).

The PCE methods require the determination of the associ-
ated coefficients &;;(t). In addition to the least-squares fit,
there are several methods available for the determination
of the coefficients of a PCE. For details of methods of
coefficient determination, the readers are referred to the
research monographs (Le Maitre et al., 2010; Xiu, 2010).

In addition to quantifying uncertainty propagation in dy-
namical systems, PCE methods are used to facilitate solv-
ing Bayesian inference problems (Ma and Zabaras, 2009;
Marzouk et al., 2007). Direct Monte Carlo simulations are
replaced by PCEs to efficiently approximate the likelihood
functions associated with the Bayesian rule of computing
posterior distributions. Computational efficiency and ap-
proximation accuracy of using the PCE methods for solv-

12PCE methods can be also used for uncertainty propagation
and quantification of uncertain initial conditions and/or inputs in
straightforward ways, see (Kim, 2013; Kim and Braatz, 2012a,b) for
technical details.



IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

3.5 T T T
—PCE

—Monte Carlo

3| i

variance

T T T T T T

T
—PCE
|'|—Monte Carlo 7

o
Y

o

w

vl
T
L

o
w
T
L

o

N

%
T
L

I
N
T
L

<}

i

(%)
T
1

<)

-
T
|

o

o

%]
T
L

15 L L L
0

1
10 20 30 40
time

50 60 70 80

o

.
40
time

(=)

10 20 30 50 60 70 80

Fig. 6. Average and variance of the state z; computed from an 8"-order PCE and from Monte Carlo simulation for
10* samples (computation time: 0.644 seconds for PCE and 342.7 seconds for Monte Carlo simulation).

ing Bayesian inference problems have been demonstrated
with genetic circuit models (Marzouk and Xiu, 2009) and
a diffusion process (Marzouk et al., 2007).

Steady-State Probability Distribution. In the presence
of randomness of kinetic parameters, the steady-state of
a biochemical reaction network has a probability distri-
bution in which the probability density function of the
state or the output converges as time goes to infinity.
For analysis of the steady-state of the output yss, a goal
is to compute or estimate such a converging probability
distribution. One approach to estimate the steady-state
distribution is to use a sampling-based method such as
Monte Carlo simulations that can be computationally in-
efficient, especially for analysis of a large-scale biochemical
reaction network. A spectral method based on PCE can be
used as a computationally efficient alternative to analyze
the probability distribution of the steady-state.

To illustrate the use of PCE methods for analysis of a
steady-state, consider the mathematical model for the
dual-positive feedback loops motif (Kim et al., 2012;
Bornholdt, 2005; Brandman et al., 2005),

dA n

— = Tg | kmin — At ———(1-A)S ’

dt T ( * on + €Cs0 ( ) )

dB on

— = koyin — B+ —"——(1-B)S |, 25

dt Tb( +O”+eC50( ) ) ( )

dO out out out

E:kon <A+B>(1_O)_koffo+kmin7
which has been normalized and nondimen-
sionalized. @ The  parameter vector is p =
[ec50, Kmin, KOUE, KOU kOBt 7, 7] T, and the state vector
is # = [A,B,0]". The state variables O, A, and B

refer to concentrations of the corresponding genes. O
is activated by A and B, and a nonlinear Hill function
h(O) = %:Cm characterizes the relationship between
the concentration of O and the rate of production of A
and B. The Hill coefficient is n and the concentration
for half-maximum response for the feedback is ecsg. The
mutual activations O shared with A and B form the dual
positive feedback loops. A and B are also activated by an
external stimulus S.

Fig. 7 shows estimated probability distributions of
the steady-state output that are computed from
a Monte Carlo simulation and the second degree
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Hermite polynomial chaos expansion. The param-
eter vector p [ec50, Kmin, KOS, KOUY, KOBY 7, 7)) T
is assumed to have a Gaussian distribution with
mean [0.35,0.01,0.001,2,0.3,0.5,0.008] and covariance
diag{0.03,0.1,0.06,0.15,0.13,0.2,0.01}, and the Hill coef-
ficient is n = 3. The resultant histograms in Fig. 7 are
obtained with the same set of samples of the random vector
p for both Monte Carlo simulation and the PCE method.

0.05 T T

Monte Carlo
—PCE

0.04 1

PDF

0.02

o I i i

0.4 0.6 14

0.8
Steady state output (Oss)

Fig. 7. A comparison of the steady-state probability den-
sity functions yss obtained from Monte Carlo simu-
lation (with 10* samples) and a Hermite PCE (with
degree 2), where the applied step stimulus is unity,
ie, S=1.

Stochastic Stability.  Sec. 6.1 discusses methods to rigor-
ously analyze stochastic stability without approximation
by employing Lyapunov theory proven to be rigorous using
the Fokker-Planck equation for the probability distribu-
tion of the states. Alternative approaches for analysis
of stochastic stability have been proposed based on the
PCE approximation of the probability distribution. For
example, (Fisher and Bhattacharya, 2008; Fisher, 2008)
presented stability tests for linear and polynomial stochas-
tic systems that contain random variables. The tests were
based on PCEs for which the intrusive Galerkin projec-
tion method was used to obtain deterministic dynamical
system equations for the associated coefficients, and the
convergence of the coefficients was used to define notions
of stochastic stability, for which Lyapunov methods were
applied. As another example, Hover (2006) applied PCEs
to estimate short-term statistics and stability of a solution
trajectory in the presence of random parameters and initial
conditions with known probability distributions.
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However, it was unfortunate that the stability analysis us-
ing PCE methods presented in (Fisher and Bhattacharya,
2008; Fisher, 2008) is very limited. Most importantly,
the notion of stability was very restrictive, requiring the
probability distribution of a state solution to converge to a
Dirac delta function that peaks at the origin in some sense
of probabilistic convergence. However, the main purpose
of stability analysis of a stochastic dynamical system is
to determine whether there exists a stationary probabil-
ity distribution to which distribution of a state solution
converges (El Samad and Khammash, 2004; Lasota and
Mackey, 1994). This issue can be corrected by employing
the following steps:

(1) compute/check the existence of equilibrium points of
an extended state space model corresponding to an
ODE for the coefficients of a PCE,

(2) rewrite the ODE in terms of the deviations from the
equilibrium points, and

(3) test stability of the equilibrium points by using Lya-
punov analysis.

Note that checking the existence of an equilibrium point
in Step 1 should be considered as approzimate'® existence
of a stationary probability distribution in the sense of con-
vergence in distribution, since it implies that there exists
a random vector with well-defined probability distribution
such that its moments have a convergent stationary point
for the associated stochastic differential equation.

7. DISCUSSION AND CONCLUSIONS

This work presented an overview of various approaches
to model and analyze robustness in biochemical reaction
networks. Usually, robustness analysis aims to quantify
the perturbations for which a network loses or gains some
qualitative behavior.

When constructing or working with mathematical models
of biochemical networks, there are not only a large amount
of uncertainties, but also significantly different classes of
uncertainties such as set-based, qualitative, or probabilis-
tic uncertainties. These uncertainties typically result from
limited or expensive measurement techniques, precision,
and sampling frequency. Moreover, the descriptions of the
network functions or characteristics analyzed for robust-
ness are also inherently uncertain. Robustness analysis is
hence inevitably linked to uncertainty analysis.

Due to the different types of encountered uncertainties, the
analysis method must be chosen carefully. Moreover, it is
important to examine the influence of the uncertainties
on the model response and consequently to assess the
validity of the analysis conclusions. We feel that the
different approaches have not been reviewed systematically
so far, especially within the context of biochemical reaction
networks. Therefore, this paper, first, defined the different
uncertainty classes and, secondly, formally stated the
different robustness analysis questions of interest. Finally,
recent developments for the uncertainty and robustness
analysis were presented.

Besides a quantification of robustness, we expect that in
the future quantitative predictions of responses to pertur-

13 Notice that PCE methods provide an approximation, not an exact
solution for the associated stochastic differential equation.
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bations and uncertainty propagation will become increas-
ingly important, for instance, in therapy design and syn-
thetic biology. This paper presented methods that are—
from our perspective—potentially suited for robustness
analysis, prediction, and estimation. Due to lack of space
and for consistency, the focus was on a particular class of
methods and models that we feel can be used to deal with
the mentioned challenges. The presentation was weighted
towards set-based deterministic methods and stochastic
methods based on the Fokker-Planck equation or polyno-
mial chaos theory, with minimal discussion of Monte Carlo
sampling methods or local analyses.

This perspectives paper also touched on advances being
made in robust estimation and prediction and the design
of biochemical reaction networks, also known as synthetic
biology. Substantial research is still needed in the develop-
ment of practically implementable algorithms, especially
for larger networks. A natural approach to the develop-
ment of scalable methods is to exploit the interconnection
(or reaction) structure and to decompose the whole sys-
tem into many several subsystems and analyze these in
isolation, see e.g. (Del Vecchio et al., 2008).
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