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Abstract—The problem of interval state observer design
is addressed for time-invariant discrete-time systems. Two
solutions are proposed: the first one is based on a similarity
transformation synthesis, which connects a constant matrix
with its nonnegative representation ensuring the observation
error positivity. The second contribution shows that in the
discrete-time case the estimation error dynamics always can
be represented in a cooperative form without a transformation
of coordinates. The corresponding observer gain can be found
as a solution of the formulated LMIs. The performances of
the proposed observers are demonstrated through computer
simulations.

I. INTRODUCTION

The observer design problem is very challenging and

its solution is demanded in many applications [1], [2],

[3]. There exist many approaches dealing with the design

techniques for state observers. In some cases, due to dis-

turbance or uncertain parameter presence the synthesis of

a conventional estimator (converging in the noise-free case

to the ideal value of the state) is not possible. However,

an interval estimation still may be feasible. By interval

(or set-membership) estimation we understand an observer

that, using input-output measurements, evaluates the set of

admissible values (interval) for the state at each instant of

time.

There exist many interval observers proposed for

continuous-time (linear and nonlinear) systems based on

monotone system theory [4], [5], [6], [7]. One of the most

complex assumptions for the interval observer design deals

with cooperativity/monotonicity of the interval estimation
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error dynamics. Recently it was shown that under some mild

conditions, applying similarity transformation, a Hurwitz

matrix can be transformed to a Hurwitz and Metzler (co-

operative) one [6], [8], [7]. In [6], [8] this transformation is

time-varying, in [7] the transformation matrix is constant and

real, it is a solution of the Sylvester equation (a constructive

procedure for this solution calculation was also given in [7]).

In [9] this result has been extended to the class of linear time-

varying systems, when constant and time-varying similarity

transformations have been proposed representing an interval

matrix (a time-varying matrix) in the Metzler form.

Several set-membership state estimators have been de-

veloped for discrete-time models in the the literature using

simple geometrical forms such as parallelotopes, ellipsoids,

zonotopes or intervals [10], [11], [12], [13], [14], [15]. They

are based on the well-known prediction/correction approach

(also called open-loop observers, framers or predictors, then

the system equations are solved starting from a set of initial

conditions taking on each step the values consistent with the

output measurements). The main drawback of this approach

is that the convergence rate cannot be tuned since it is not

based on an observer gain. As an alternative, the interval

observer methodology is studied in this paper, initially

developed for continuous-time systems in [4], [8], [7] and

extended to uncertain discrete-time systems in [16].

In many cases the measurements are available at the

discrete instants of time, then the discretized models of

plants are used. It is interesting to note that a cooperative

continuous-time system remains cooperative in the discrete

time under (Euler) discretization. In [16], LTI discrete-

time systems are considered and an interval predictor is

designed in order to propagate the uncertainties on the initial

state and on the additive disturbances. In the following, an

interval observer is proposed for the same class of systems.

Nevertheless, the design procedure consists in computing an

observer gain as well as a change of coordinates. Note that

a similar result has been obtained for time-varying discrete-

time systems in [17]. An academic planar system and the

Hénon map system are considered in this work as examples.

The paper is organized as follows. Some basic facts from

the theory of interval estimation are given in Section 2. The

main result is described in Section 3. Example of computer

simulation is presented in Section 4.
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II. PRELIMINARIES

The real and integer numbers are denoted as R and Z

respectively, R+ = {τ ∈ R : τ ≥ 0} and Z+ = Z ∩ R+.

Euclidean norm of a vector x ∈ R
n will be denoted as |x|,

and for a measurable and locally essentially bounded input

u : Z → R the symbol ||u||[t0,t1] denotes its L∞ norm:

||u||[t0,t1] = sup{|u(t)|, t ∈ [t0, t1]},

if t1 = +∞ then we will simply write ||u||. We will denote

as L∞ the set of all inputs u with the property ||u|| < ∞.

Denote the sequence of integers 1, ..., k as 1, k. The symbols

In and En×m denote the identity matrix and the matrix with

all entries equal 1 respectively (with dimensions n× n and

n×m). For a matrix A ∈ R
n×n the vector of its eigenvalues

is denoted as λ(A). The relation P ≻ 0 (P � 0) means that

the matrix P ∈ R
n×n is positive (nonnegative) definite.

A. Interval analysis

For two vectors x1, x2 ∈ R
n or matrices A1, A2 ∈ R

n×n,

the relations x1 ≤ x2 and A1 ≤ A2 are understood elemen-

twise. Given a matrix A ∈ R
m×n define A+ = max{0, A},

A− = A+ −A.

Lemma 1. Let x ∈ R
n be a vector variable, x ≤ x ≤ x

for some x, x ∈ R
n, and A ∈ R

m×n be a constant matrix,

then

A+x−A−x ≤ Ax ≤ A+x−A−x. (1)

Proof: Note that Ax = (A+−A−)x, that for x ≤ x ≤ x

gives the required estimates.

B. Cooperative discrete-time linear systems

A matrix A ∈ R
n×n is called Schur stable if all its eigen-

values have the norm less than one, it is called nonnegative

if all its elements are nonnegative. Any solution of the linear

system

x(t+ 1) = Ax(t) + ω(t), ω : Z+ → R
n
+, t ∈ Z+,

with x ∈ R
n and a nonnegative matrix A ∈ R

n×n
+ ,

is elementwise nonnegative for all t ≥ 0 provided that

x(0) ≥ 0 [18]. Such dynamical systems are called coop-

erative (monotone) [18].

Lemma 2. [7] Given the matrices A ∈ R
n×n, R ∈ R

n×n

and C ∈ R
p×n. If there is a matrix L ∈ R

n×p such that the

matrices A − LC and R have the same eigenvalues, then

there is a S ∈ R
n×n such that R = S(A−LC)S−1 provided

that the pairs (A− LC, e1) and (R, e2) are observable for

some e1 ∈ R
1×n, e2 ∈ R

1×n.

This result was used in [7] to design interval observers for

LTI systems with a Metzler matrix R (the matrix R is called

Metzler if all its off-diagonal elements are nonnegative). The

main difficulty is to prove the existence of a real matrix S,

and to provide a constructive approach of its calculation.

In [7] the matrix S = ORO
−1
A−LC , where OA−LC and OR

are the observability matrices of the pairs (A−LC, e1) and

(R, e2) respectively. Another (more strict) condition is that

the Sylvester equation SA − RS = QC, Q = SL has a

unique solution S provided that the pair (A,C) is observable

(in this case there exists a matrix L such that λ(A) 6= λ(A−
LC) = λ(R), that is equivalent to existence of a unique

S [19]). In the present work we will apply this lemma to

a nonnegative matrix R. Note that if the matrix A − LC

has only real positive eigenvalues, then R can be chosen as

diagonal or Jordan representation of A− LC.

The application of Lemma 2 is connected with the In-

verse eigenvalue problem for nonnegative matrices (i.e. the

problem of existence of a nonnegative matrix R with the

given set of eigenvalues λ(A − LC)), see the monograph

[20] (section 11.2) for the necessary and sufficient conditions

which have to be imposed on λ(A − LC) in order that a

nonnegative R exists. In [21] the fast Fourier transformation

is used to design a real symmetric R with a given vector of

eigenvalues.

III. MAIN RESULT

Consider an LTI discrete-time system

x(t+1) = Ax(t)+ b(t), y(t) = Cx(t)+v(t), t ∈ Z+, (2)

where x(t) ∈ R
n is the state; y(t) ∈ R

p is the output signal

available for measurements; b : Z+ → R
n, b ∈ L∞ is the

input; v : Z+ → R
p, v ∈ L∞ is the measurement noise; A

and C are real matrices of the corresponding dimensions.

In this section we will consider two approaches. The first

one is based on a transformation of coordinates, which maps

the estimation error dynamics to its cooperative represen-

tation. The second approach is based on the error system

representation without transformation of coordinates.

A. Time-invariant transformation to cooperative form

We will need the following assumptions.

Assumption 1. The state x(t) is bounded, i.e. x ∈ L∞.

Assumption 2. There exists a matrix L ∈ R
n×p such that

i) The matrix A− LC is Schur stable.

ii) The matrix A− LC is nonnegative.

Assumption 3. Two functions b, b : Z+ → R
n, b, b ∈ L∞

are given such that for all t ∈ Z+

b(t) ≤ b(t) ≤ b(t).

Assumption 4. The constant 0 ≤ V < +∞ is given such

that ||v|| < V .

Assumption 1 is introduced since in this work we will not

consider the problem of control design (it is rather common

in the literature of the observer synthesis). The first part of

Assumption 2 is standard [3], [1]. The second part is crucial

for the approach, it is rather restrictive and it will be relaxed

later. Assumption 3 states that the input is known up to some
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interval error b(t)−b(t), Assumption 4 introduces the upper

bound V of the noise v amplitude.

Under the introduced assumptions an interval observer

equations for (2) take form:

x(t+ 1) = Ax(t) + b(t) + L(y(t)− Cx(t))− LV, (3)

x(t+ 1) = Ax(t) + b(t) + L(y(t)− Cx(t)) + LV,

where x(t) ∈ R
n and x(t) ∈ R

n are the lower and upper

interval estimates for the state x(t), L = (L+ + L−)Ep×1.

Theorem 1. Let assumptions 1–4 be satisfied. Then for all

t ∈ Z+ the estimates x(t), x(t) given by (3) are bounded

and

x(t) ≤ x(t) ≤ x(t)

provided that x(0) ≤ x(0) ≤ x(0).

Proof: The equation (2) can be rewritten as follows:

x(t+ 1) = (A− LC)x(t) + L[y(t)− v(t)] + b(t).

Then the dynamics of the errors e(t) = x(t)− x(t), e(t) =
x(t)− x(t) obey the equations:

e(t+ 1) = (A− LC)e(t) + d(t),

e(t+ 1) = (A− LC)e(t) + d(t),

where d(t) = [LV − Lv(t)] + [b(t) − b(t)], d(t) = [LV −
Lv(t)] + [b(t) − b(t)]. According to assumptions 3, 4 we

have d, d ∈ L∞ and d(t) ≥ 0, d(t) ≥ 0 for all t ∈ Z+.

Therefore, from Assumption 2.i, the variables e(t) and e(t)
are bounded, and taking in mind Assumption 1 we get the

boundedness of the estimates x(t), x(t). From Assumption

2.ii e(t) ≥ 0 and e(t) ≥ 0 for all t ∈ Z+ (d, d have the

same property and e(0) ≥ 0, e(0) ≥ 0 by conditions), that

implies the required order relation x(t) ≤ x(t) ≤ x(t) for

all t ∈ Z+.

In order to skip the part (ii) of Assumption 2, let us use

Lemma 2.

Theorem 2. Let assumptions 1–2.i, 3–4 be satisfied, there

exist matrix R ∈ R
n×n
+ such that λ(A − LC) = λ(R) and

the pairs (A − LC, e1), (R, e2) are observable for some

e1 ∈ R
1×n, e2 ∈ R

1×n. Then for all t ∈ Z+ the estimates

x(t), x(t) are bounded and

x(t) ≤ x(t) ≤ x(t)

provided that x(0) ≤ x(0) ≤ x(0), where

x(t) = S+z(t)− S−z(t), x(t) = S+z(t)− S−z(t);

z(t+ 1) = Rz(t) + Fy(t)− FV (4)

+(S−1)+b(t)− (S−1)−b(t),

z(t+ 1) = Rz(t) + Fy(t) + FV

+(S−1)+b(t)− (S−1)−b(t);

z(0) = (S−1)+x(0)− (S−1)−x(0),

z(0) = (S−1)+x(0)− (S−1)−x(0),

where S = ORO
−1
A−LC (OA−LC and OR are the observabil-

ity matrices of the pairs (A−LC, e1), (R, e2) respectively),

F = S−1L and F = (F+ + F−)Ep×1.

Proof: Consider the system (2) in the new coordinates

z = S−1x:

z(t+ 1) = Rz(t) + F [y(t)− v(t)] + S−1b(t),

y(t) = CSz(t) + v(t).

The dynamics of the errors e(t) = z(t)−z(t), e(t) = z(t)−
z(t) obey the equations:

e(t+ 1) = Re(t) + d(t),

e(t+ 1) = Re(t) + d(t),

where d(t) = [FV − Fv(t)] + [S−1b(t) − (S−1)+b(t) +
(S−1)−b(t)], d(t) = [FV + Fv(t)] + [(S−1)+b(t) −
(S−1)−b(t) − S−1b(t)]. The matrix R is Schur stable and

nonnegative, thus all arguments of Theorem 1 are valid to

substantiate that z(t) ≤ z(t) ≤ z(t) for all t ∈ Z+ (by

construction z(0) ≤ z(0) ≤ z(0)). Next, using the relations

(1) we get the theorem claim.

B. Cooperative representation in the same coordinates

There is another possibility for an interval observer con-

struction in the case when Assumption 2.ii is not satisfied

without a transformation of coordinates, but with more

complex stability conditions [16].

Theorem 3. Let assumptions 1, 3, 4 be satisfied and there

exist a matrix L ∈ R
n×p such that the matrix

Σ =

[

D+ D−

D− D+

]

is Schur stable for D = A − LC. Then for all t ∈ Z+ the

estimates x(t), x(t) are bounded and

x(t) ≤ x(t) ≤ x(t)

provided that x(0) ≤ x(0) ≤ x(0), where

x(t+ 1) = D+x(t)−D−x(t) + b(t) + Ly(t)− LV, (5)

x(t+ 1) = D+x(t)−D−x(t) + b(t) + Ly(t) + LV,

and L = (L+ + L−)Ep×1.

Proof: The system (2) can be rewritten as follows:

x(t+ 1) = Dx(t) + L(y(t)− v(t)) + b(t)

= [D+ −D−]x(t) + L(y(t)− v(t)) + b(t).

Then the dynamics of the errors e(t) = x(t)− x(t), e(t) =
x(t)− x(t) obeys the equations:

e(t+ 1) = D+e(t) +D−e(t) + d(t), (6)

e(t+ 1) = D+e(t) +D−e(t) + d(t),

where d(t) = [LV − Lv(t)] + [b(t) − b(t)], d(t) = [LV −
Lv(t)] + [b(t) − b(t)]. By definition, the matrices D+, D−
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are nonnegative. According to assumptions 3, 4 the inputs

d(t), d(t) are also nonnegative, thus the estimation error

dynamics is cooperative and starting from e(0) ≥ 0, e(0) ≥
0 we get that e(t) ≥ 0, e(t) ≥ 0 for all t ∈ Z+. Since

the matrix Σ is Schur stable and the inputs d(t), d(t) are

bounded, the variables e(t), e(t) possess the same property,

that in combination with Assumption 1 implies boundedness

of x(t), x(t).
It is worth doing some comments about stability verifi-

cation of the matrix Σ. According to [22] a nonnegative

matrix Σ is Schur stable if there exists a diagonal positive

definite matrix PΣ ∈ R
2n×2n such that ΣTPΣΣ − PΣ ≺ 0,

or this condition can be replaced with existence of a vector

pΣ ∈ R
2n
+ , pΣ > 0 such that pT

Σ(Σ − I2n) < 0. Due

to block symmetric structure of the matrix Σ and its non-

negativeness, the stability of Σ is equivalent to stability of

the matrix D = D+ +D−. Indeed consider the copositive

Lyapunov function V (t) = pTe(t)+pTe(t) for some vectors

p > 0, p > 0 for the system (6), since e(t) ≥ 0, e(t) ≥ 0 for

all t ∈ Z, then this function is positive definite. Existence of

such a Lyapunov function under the condition ∆V (t) =
V (t + 1) − V (t) < 0, ∀ t ∈ Z, satisfied for any initial

conditions e(0), e(0) ∈ R
n
+ for the unperturbed system (6)

(the system (6) with d(t) = d(t) = 0), is equivalent to its

Schur stability. Thus ∆V (t) = [pTD+ + pTD− − pT]e(t) +
[pTD− + pTD+ − pT]e(t) and a reasonable choice is p = p,

then ∆V (t) = pT[{D+ + D−} − I2n][e(t) + e(t)], that is

equivalent to pT{D − In} < 0 or the Schur stability of D.

Verification of stability of D with simultaneous computa-

tions of L and p can be performed via the following LMIs.

By its construction, D = A− LC, then D+ = A+ − L+C

and D− = A− + L−C, where L+, L− are the parts of the

matrix L = L+−L− with sign indefinite entries which enter

into matrices D+ or D− respectively. Thus

D = D+ +D− = A+ − L+C +A− + L−C

= A− (L+ − L−)C = A− LC.

Now the nonnegative matrix D is Schur stable if there exists

a diagonal positive definite matrix P such that D
T
PD−P ≺

0. Since P is diagonal, then the property P ≻ 0 implies

that all elements of P are positive. By applying Schur

complement, the matrix D stability follows the facts that

there exist a diagonal matrix P ≻ 0 and a matrix Y ∈ R
n×p

such that
[

P PA− Y C

(PA− Y C)T P

]

≻ 0 (7)

under the constraint

PA− Y C ≥ 0, (8)

where L = P−1Y . Since the matrix P is elementwise posi-

tive the constraint (8) implies that the matrix D = A− LC

is nonnegative, while the LMI (7) ensures the Schur stability

of D. Therefore the following corollary can be formulated.

Corollary 1. Let assumptions 1, 3, 4 be satisfied and there

exist a diagonal matrix P ≻ 0 and a matrix Y ∈ R
n×p such

that (7), (8) be true. Then the result of Theorem 3 is valid.

The main advance of this corollary is that it allows us

to use the numerical routines for the matrix L selection, the

YALMIP toolbox of Matlab in particular can be used to find

a solution of such a constrained problem [23].

Remark 1. It is worth to stress that b could be a function

of the state x provided that there exist known bounded

signals b, b satisfying Assumption 3. Therefore, the presented

interval observers (3) and (4) can be applied to nonlinear

systems in the output canonical form, for instance. A mild

reformulation of theorems 1, 2 for this case is skipped for

brevity of presentation. Application of these theorems to

nonlinear systems is illustrated on example in Section 4.

In all cases, the width of the estimated interval (after some

transients) is proportional to the system uncertainty (i.e., the

bounds b,b and V ). Improvement of interval estimation ac-

curacy can be achieved optimizing the value of the observer

gain L in H∞ sense, for example.

IV. EXAMPLES

In this section we consider two examples. The first one is

an academic planar system for which we will compare the

interval observers proposed in theorems 2 and 3. The second

example is the Hénon chaotic system.

A. Comparison of observers (4) and (5)

Consider the following system

x(t+ 1) = Ax(t) + b(t),

y(t) = Cx(t) + v(t),

b(t) = b0(t) + δb(t, x(t)),

where x(t) ∈ R
2, y(t) ∈ R, v(t) ∈ R are respectively the

state, the output and the measurement noise (||v|| ≤ V =
0.1, for simulation we used v(t) = V sin(t)). The signals

b0(t) = [sin(0.1t) cos(0.2t)]T,

δb(t, x(t)) = δ[sin(0.5t x2(t)) sin(0.3t)]T

are the known portion of b and its uncertain deviation δb

from the nominal b0 from which we know that it is bounded

by δ = 0.5. Thus b(t) = b0(t) − δ, b(t) = b0(t) + δ and

assumptions 3, 4 are satisfied. Finally,

A =

[

0.3 −0.7
0.6 −0.5

]

, C = [1 0],

and there is no observer gain L ∈ R
2 making the matrix

D = A−LC nonnegative. The matrix A is Schur stable (it

has complex eigenvalues), but the matrix A = A+ + A− is

unstable. Applying Matlab YALMIP toolbox we obtain

L = [0.3 0.6]T,
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Figure 1. Comparison of interval estimation performed by the observer
(4) (part (a)) and (5) (part (b))

then λ(D) = [0 − 0.5]T and λ(D) = [0 0.5]T, therefore all

conditions of Theorem 3 are satisfied for this choice of L.

The matrices

R =

[

−0.5 0
1 0

]

, S =

[

0.609 0.814
−1.162 0.581

]

satisfy to all conditions of Theorem 2. Therefore now we can

apply both observers (4) and (5) in this examples. The results

of simulation for the interval estimation of the unmeasured

coordinate x2 are shown in Fig. 1. As we can conclude in this

examples the observers demonstrate a similar performance.

An advantage of (5) is that we can use the LMI techniques

to calculate L, however performance in this case is critically

dependent on ability to increase the stability margin of D by

L, which is a harder problem than stabilization of D required

for (4). From another side, performance of the observer (4)

is influenced by additional transformation of coordinates S,

which also decreases the accuracy of estimation.

B. Hénon chaotic system

Consider a variant of the Hénon model:

x(t+ 1) = Ax(t) + r[1− a(t)x2
1(t) + d(t)],

y(t) = x1(t) + v(t),

where x(t) ∈ R
2 is the state, y(t) ∈ R is the output,

v(t) ∈ R is the measurement noise (||v|| ≤ V = 0.1 and

Assumption 4 is satisfied) and d(t) ∈ R is the disturbance

(||d|| ≤ δ = 0.015),

A =

[

0 1
0.3 0

]

, r =

[

1
0

]

, a ≤ a(t) ≤ a,

a = 1, a = 1.4.

The system has an uncertain parameter a(t) with the values

from an interval. If a(t) = a, then the system equations
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Figure 2. The results of simulation for Hénon model

become identical to the chaotic Hénon model. Thus assume

that ||x|| < +∞ (Assumption 1 holds). Let us rewrite the

system as follows:

x(t+1) = Ax(t)+b(t), b(t) = r[1−a(t)[y(t)−v(t)]2+d(t)]

then clearly it is in the form (2) and Assumption 3 is valid

for

b(t) = r[1− ay2(t)− 2a|y(t)|V − aV 2 − δ],

b(t) = r[1− ay2(t) + 2a|y(t)|V − aV 2 + δ],

that justifies Remark 1. Finally, Assumption 2 is verified

for L = [−0.1 0.1]T and C = [1 0] (the matrix A − LC

is Schur stable and nonnegative). Therefore, all conditions

of Theorem 1 are satisfied and the interval observer (3)

solves the problem of interval state estimation. The results

of simulation are shown in Fig 2.

V. CONCLUSION

The paper is devoted to interval observer design for

the LTI discrete-time systems. Two techniques have been

proposed. The first one is based on a static transformation

of coordinates, which connects a stable LTI discrete-time

system with its nonnegative representation. The second

technique uses a nonlinear transformation of the system in

a nonnegative form, the observer gain can be calculated as

a solution of LMIs. The efficiency is shown on example of

computer simulation for a chaotic system.

In comparison with continuous-time systems, the discrete-

time interval observers admit a relaxation of some appli-

cability conditions (there are more results on design of a

nonnegative matrix rather than a Metzler one [20], [21])

and always there exists an interval observer (5) with a

cooperative estimation error dynamics.
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