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Abstract— This contribution proposes a model-based predic-
tive control approach for combined longitudinal and lateral
vehicle guidance. The controller, which has been designed for
an automotive collision avoidance system, aims at following a
desired evasion trajectory at the handling limits. Thereby, the
trajectory following problem is decomposed in a path following
and a velocity trajectory tracking problem using the wheel
steering angle and the longitudinal acceleration as control
inputs. There are two major advantages of this approach. First,
the a priori knowledge of the evasion trajectory is explicitly
incorporated into the computation of control inputs. Second,
the combined transmission of longitudinal and lateral tire forces
is considered in the sense of an integrated vehicle dynamics
control approach. Experimental results show the potential of
the introduced control scheme.

I. INTRODUCTION

A. Motivation

Safety is one of the most important issues in the de-

velopment process of a passenger vehicle. While passive

safety systems like seat belts or air bags are already part

of almost each vehicle, active safety systems resp. advanced

driver assistance systems (ADAS) are increasingly employed

in nowadays cars, see [1]. While antilock braking systems

(ABS) or electronic stability controls (ESC) are applied to

stabilize the ego-vehicle in critical driving situations, recent

ADAS developments aim at taking the surrounding vehicle

environment into account to avoid road accidents. Emergency

brake assistant systems that conduct a partial or full braking

maneuver when an accident is imminent due to inattention

of the driver are just one example of such ADAS. While

these systems are already implemented in modern cars,

collision avoidance systems (CAS) that additionally conduct

autonomous evasion maneuvers are part of ongoing research,

see e.g. [1], [2].

In this context, RWTH Aachen University conducts re-

search on a CAS that relies on a global navigation satellite

system (GNSS) in combination with digital road maps and

vehicle-to-vehicle (V2V) communication, see [2]. The in-

tended behavior of CAS is to keep track of surrounding vehi-

cles and to conduct an autonomous emergency braking resp.
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evasion maneuver if the driver does not react appropriately

in time. This contribution focuses on the control approach

to guide the vehicle on a desired evasion trajectory at the

handling limits. As the evasion trajectory, provided by a

trajectory planner, is considered to be given over a finite time

horizon and physical constraints like the tire/road friction

limit shall be taken into account, a model-based predictive

control (MPC) scheme [3] is investigated.

B. Related Work and Main Contribution

Regarding MPC-based vehicle guidance, [4] introduces

a nonlinear steering-only MPC controller (NMPC) for an

obstacle avoidance as well as a side-wind rejection maneuver.

For the same purpose, [5] introduces a hybrid parameter-

varying MPC (HPV-MPC) which aims at reducing the com-

putational complexity of [4]. A linear time-varying MPC

(LTV-MPC) approach using successive linearizations of the

nonlinear prediction model is investigated in [6]. While [6]

limits the tire sideslip angles to the linear region, a LTV-MPC

steering-only controller that is able to guide the vehicle at the

handling limits, i.e. in the nonlinear region of the tire model,

has been proposed by the authors in [7]. The additional use

of differential braking can be found in [8].

Subsequently, the main focus is on the design of a MPC-

based controller that employs the wheel steering angle and

the vehicle’s longitudinal acceleration (in contrast to differ-

ential braking in [8]) as control inputs to follow an evasion

trajectory at the handling limits. As the underlying applica-

tion aims at avoiding accidents, only negative accelerations

are considered to be reasonable as positive accelerations

might even worsen the consequences of a collision. A

LTV-MPC control scheme has been chosen to cover model

nonlinearities while being able to apply the controller in

real-time during experimental tests. The main contribution of

this paper can be seen in the formulation as multiple-input

multiple-output (MIMO) trajectory following problem which

is handled in the sense of an integrated vehicle dynamics

control approach. In this regard, the trajectory following

problem is decomposed in a path following problem, having

the main objective to minimize the lateral deviation from

the evasion path, and a velocity trajectory tracking problem.

To the best knowledge of the authors, this particular control

problem has not been investigated so far.

Consecutively, section II describes the employed predic-

tion model that is used in the control scheme outlined in

section III. Finally, experimental results are discussed in

section IV.
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II. MODELING

A. Vehicle Model and Relative Kinematics

In order to describe vehicle dynamics, a nonlinear single-

track model according to [9] is employed, see Fig. 1. In this

regard, it is assumed that the height of center of gravity

(CG) is zero, thus neglecting roll and pitch dynamics, and

that rolling resistances, aerodynamic drag as well as road

bank and grade are negligible. Table I provides an overview

of the employed model parameters. Particularly, Newton-

Euler equations (1)-(2) denote the longitudinal and lateral

momentum with respect to CG in the vehicle reference frame

while yaw dynamics are considered by (3). Compared to the

steering-only approach in [7], the longitudinal deceleration

ax,br due to braking as well as the corresponding longitudinal

tire forces Fx,f and Fx,r are additionally incorporated in

(1)-(3). The particular computation of Fx,f and Fx,r in

dependence of ax,br is introduced in section II-B.

v̇x = ψ̇vy −
1

m
Fy,f sin(δ) + ax,br (1)

v̇y = −ψ̇vx +
1

m

(

Fy,f cos(δ) + Fy,r + Fx,f sin(δ)
)

(2)

ψ̈ =
1

Jz

(

Fy,f cos(δ)lf + Fx,f sin(δ)lf − Fy,rlr

)

(3)

Furthermore, the dynamic behavior of the steering actuator

is approximated by a first-order lag element

δ̇ = −
1

Tδ
δ +

1

Tδ
δref (4)

where Tδ denotes the dynamic time constant, δref the

demanded and δ the actual wheel steering angle. Likewise,

the dynamic behavior of the braking system is modeled by

ȧx,br = −
1

Tax,br

ax,br +
1

Tax,br

ax,br,ref (5)
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Fig. 1. Free body diagram of the employed prediction model

TABLE I

EMPLOYED SYMBOLS

Symbol Description

m Vehicle mass
Jz Mass moment of inertia (vertical axis)
µ Maximum tire/road friction coefficient
lf , lr Distance between CG and front/rear axle
vx, vy Longitudinal/lateral velocity at CG in veh. ref. frame

ψ̇, ψ Yaw rate, yaw angle
∆ψ Difference angle between vehicle and evasion path
∆y Lateral distance between CG and evasion path
d∆ẏ Lateral velocity disturbance
δ Actual wheel steering angle at the front axle
δref Demanded wheel steering angle at the front axle
ax,br Actual deceleration due to braking
ax,br,ref Demanded deceleration due to braking
ibr Brake force distribution front/rear axle
Tδ Dynamic time constant of steering system
Tax,br

Dynamic time constant of braking system

κ Path curvature
αf , αr Sideslip angle at the front/rear tire
Fx,f , Fx,r Applied longitudinal forces at the front/rear tire
Fy,f , Fy,r Applied lateral forces at the front/rear tire
Fz,f , Fz,r Vertical tire load at the front/rear tire
vCG Absolute velocity at CG
vf , vr Absolute velocity at the front/rear tire

where Tax,br
indicates the dynamic time constant, ax,br,ref

the demanded and ax,br actual longitudinal deceleration due

to braking.

The relative rotational and translational movement be-

tween the vehicle’s CG and the evasion path is described

by (6)-(7) in accordance to [7]. In this context, ∆ψ denotes

the relative yaw angle, ∆y the lateral distance between

the vehicle’s CG and the evasion path perpendicular to the

longitudinal vehicle axis and κ the path’s curvature.

∆ψ̇ = ψ̇ − κ
√

vx2 + vy2 (6)

∆ẏ =
√

vx2 + vy2 sin(∆ψ) + vy + d∆ẏ (7)

ḋ∆ẏ = 0 (8)

As described in [6], yaw angle offsets can be observed in

experimental tests. Such a yaw angle offset can be interpreted

as a lateral velocity disturbance acting on the relative lateral

velocity ∆ẏ in (7) and thus as a ramp disturbance on ∆y.

To achieve steady-state offset-free tracking and to improve

the transient tracking performance, the yaw angle offset is

modeled as a lateral velocity disturbance d∆ẏ . The corre-

sponding dynamic behavior (8) is assumed to be a random

walk-process. Further information on disturbance estimation

is provided in section III-C.

B. Tire Model

1) Longitudinal Tire Forces: As outlined in section II-A,

longitudinal tire forces Fx,f and Fx,r have to be determined

in dependence of ax,br. In this context, the longitudinal

momentum due to braking can be expressed as

m · ax,br = Fx,f cos(δ) + Fx,r. (9)
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Defining the front/rear tire force distribution ibr as

ibr =
Fx,f

Fx,f + Fx,r
, (10)

the corresponding longitudinal front resp. rear tire forces can

be formulated as

Fx,f =
ibr

1− ibr
Fx,r, Fx,r =

1− ibr
ibr

Fx,f (11)

when reorganizing (10) with respect to Fx,f resp. Fx,r. When

substituting (11) in (9), Fx,f resp. Fx,r can be determined

as a nonlinear function of ax,br

Fx,f =
m

cos(δ) + 1−ibr
ibr

· ax,br, (12)

Fx,r =
m

1 + ibr
1−ibr

cos(δ)
· ax,br. (13)

For the sake of simplicity, it is asssumed that the ideal brake

force distribution [10]

ibr =
Fz,f

Fz,f + Fz,r
=

lr
lf + lr

(14)

is applied by the braking system, where

Fz,f =
m · g · lr
lf + lr

, Fz,r =
m · g · lf
lf + lr

(15)

denotes the nominal tire load neglecting load transfer,

see [9].

2) Lateral Tire Forces at Pure Cornering: To determine

the lateral tire forces Fy,f and Fy,r in (1)-(3), a Pacejka

Magic Formula tire model [11] is employed. When assuming

pure cornering, the corresponding lateral tire forces Fy,i,0 for

i ∈ {f, r} can be expressed as

Fy,i,0 = µFz,i · fy,i(αi) (16)

where µFz,i indicates the maximum feasible lateral tire

force according to Coulomb’s law of friction and fy,i(αi)
the normalized Pacejka Magic Formula. In this regard, αi

denotes the tire sideslip angle at the front resp. the rear tire

according to [7], µ the maximum friction coefficient and Fz,i

the nominal tire load as defined in (15).

3) Combined Slip: An extension of the Pacejka tire

model that allows for considering combined slip, i.e. the

simultaneous transmission of longitudinal and lateral forces,

is proposed in [11]. Due to the fact that this concept

requires additional parameters to be identified, a simplified

approach according to [12] is employed in this contribution.

In particular, the lateral tire force Fy,i,0 for i ∈ {f, r} at

pure cornering is reduced depending on the transmission of

longitudinal forces in accordance to the friction ellipse

Fy,i = Fy,i,0

√

1−

(

Fx,i

Fx,i,max

)2

(17)

where

Fx,i,max =

{

µFz,i , ‖Fx,i‖ < µFz,i

ξFx
‖Fx,i‖ , ‖Fx,i‖ ≥ µFz,i

(18)

with ξFx
> 1 descibes the maximum feasible longitudinal

tire force. As the maximum friction coefficient µ is not

known exactly and load transfer is neglected, the longitudinal

tire forces that are determined by (12)-(13) in dependence

of ax,br can exceed the assumed friction limit µFz,i. Fur-

thermore, Fx,i/Fx,i,max < 1 has to be ensured to avoid lin-

earization issues. Thus, the maximum feasible force Fx,i,max

is increased to a slightly larger value than the absolute value

of the longitudinal tire force Fx,i if ‖Fx,i‖ ≥ µFz,i. For

this purpose, ξFx
is introduced in (18) and has to be chosen

slightly larger than one.

C. Resulting Prediction Model

Finally, replacing Fx,i resp. Fy,i in (1)-(3) with (12)-(13)

resp. (17) and using the lateral deviation ∆y from the evasion

path as well as the absolute velocity vCG =
√

v2x + v2y at CG

as control outputs, the resulting nonlinear prediction model

can be rewritten in state space representation as

ẋ = f(x,u, z) (19)

y = g(x) =

[

∆y
vCG

]

(20)

where xT = [vx, vy, ψ̇, δ, ax,br, ∆ψ, ∆y, d∆ẏ] denotes

the state vector, uT = [δref , ax,br,ref ] the input vector and

z = κ the system disturbance. To be used in the predictive

control approach, (19)-(20) have to be linearized at the

current operating point (x0,u0, z0) and to be transfered into

a discrete-time representation. Finally, the resulting discrete-

time linear affine prediction model can be written as

xk+1 = Akxk +Bkuk +Ekzk + Γk (21)

yk = Ckxk +Πk (22)

where Ak ∈ R
8×8 denotes the system matrix, Bk ∈ R

8×2

the input matrix, Ck ∈ R
2×8 the output matrix, Ek ∈ R

8

describes the influence of the system disturbance z on the

state variables and Γk ∈ R
8 as well as Πk ∈ R

2 indicate

affine terms that result from the linearization of (19)-(20).

III. OPTIMAL VEHICLE DYNAMICS CONTROL

A. Problem Statement

As outlined in section I, the main aim of the controller is to

follow an evasion trajectory by demanding the wheel steer-

ing angle δref and the longitudinal deceleration ax,br,ref .

Thereby, the problem of trajectory following is decomposed

in a path following problem, having the main objective to

minimize the lateral deviation ∆y from the evasion path,

and a velocity trajectory tracking problem. As not all the

states, required for this particular control approach, are

directly measurable, two Extended Kalman Filter (EKF)

[13] based estimators are employed to provide these states.

The first, subsequently referred to as vehicle state estimator,

determines the longitudinal velocity vx, the lateral velocity

vy as well as the yaw rate ψ̇. Based on the estimator outputs,

the longitudinal acceleration due to braking ax,br is com-

puted based on the measured acceleration ax = v̇x − ψ̇vy
substracting the resistance − 1

mFy,f sin(δ) due to steering,
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see (1). As the vehicle state estimator is not part of this con-

tribution, it is subsequently assumed to provide information

with sufficient accuracy. The second estimator is employed

for the purpose of disturbance estimation and supplies ∆ψ,

∆y and d∆ẏ , see section III-C. Finally, the actual wheel

steering angle δ is obtained from the vehicle.

B. Predictive Control Problem

In general, the main idea of MPC-based control schemes

is to employ a mathematical plant model to predict the

plant’s outputs y(k+j|k), j = 1, .., Hp over a finite predicition

horizon of length Hp. In this context, {·}(k+j|k) indicates

that at time k the future value of variable {·} is predicted

for time k + j. According to this prediction, the control

inputs are chosen in such a way over a finite control

horizon of length Hu that the deviations from a reference

trajectory r(k+j|k), j = 1, ..., Hp are minimized according

to a quadratic cost function. This open-loop control problem

is solved at each sampling time, thus obtaining an optimal

input step sequence ∆u∗
(k|k), ...,∆u∗

(k+Hu−1|k). Finally, the

control input uk = uk−1 +∆u∗
(k|k) is applied to the plant

where uk−1 denotes the control input of the preceding time

step k−1. At the next time step, this optimization is repeated

over a shifted prediction horizon.

As far as this particular control problem is concerned, the

control outputs comprise the lateral deviation ∆y from the

evasion path as well as the absolute velocity vCG at CG.

While the reference value of the lateral deviation r∆y,(k+j|k)

is set to zero, the velocity reference value rvCG,(k+j|k) is

provided by the trajectory planner. Due to the fact that the

predicition model is inherently nonlinear, especially when

operating at the vehicle handling limits, successive lineariza-

tions of the nonlinear plant model (19)-(20) are determined at

the operating point (x0 = xk, u0 = uk−1, z0 = κk) in each

sampling step at time k, thus obtaining a LTV-MPC control

scheme. In this regard, xk indicates the state vector at time k,

uk−1 the control input of the preceding time step k− 1 and

κk the path’s curvature at time k. The resulting discrete-

time linear affine plant model (21)-(22) is employed to

determine the free response of the plant and to formulate the

constrainted finite-time optimal control problem (CFTOC).

When predicting the free response of the plant, the path’s

curvature κk at time k results from the perpendicular projec-

tion of the vehicle’s CG on the evasion path, see Fig. 1. For

the remaining prediction horizon, κ(k+j|k), j = 1, ..., Hp−1
is estimated assuming that the vehicle follows the evasion

path in an optimal way along the path coordinate s. Using

the quadratic cost function

J(∆u, ǫf , ǫr) =

Hp−1
∑

j=1

eT(k+j|k)Qe(k+j|k) (23a)

+ eT(k+Hp|k)
QHp

e(k+Hp|k) (23b)

+

Hu−1
∑

j=0

∆uT
(k+j|k)R∆u(k+j|k) (23c)

+ ρf · ǫf + ρr · ǫr (23d)

with e(k+j|k) = y(k+j|k) − r(k+j|k), the CFTOC of the

trajectory following problem can be formulated as

min
∆u,ǫf ,ǫr

J(∆u, ǫf , ǫr) (24a)

subject to

dynamic constraints

xk+1 = Akxk +Bkuk +Ekzk + Γk (24b)

yk = Ckxk +Πk (24c)

input constraints

∆u(k+j|k) ≥ ∆umin, j = 0, ..., Hu − 1 (24d)

∆u(k+j|k) ≤ ∆umax, j = 0, ..., Hu − 1 (24e)

u(k+j|k) ≥ umin, j = 0, ..., Hu − 1 (24f)

u(k+j|k) ≤ umax, j = 0, ..., Hu − 1 (24g)

and state constraints

αf,(k+j|k) ≥ αf,min − ǫf , j = 1, ..., Hp (24h)

αf,(k+j|k) ≤ αf,max + ǫf , j = 1, ..., Hp (24i)

αr,(k+j|k) ≥ αr,min − ǫr, j = 1, ..., Hp (24j)

αr,(k+j|k) ≤ αr,max + ǫr, j = 1, ..., Hp (24k)

ǫf ≥ 0, ǫr ≥ 0 (24l)

where ∆uT = [∆uT
(k|k), ...,∆uT

(k+Hu−1|k)]. As far as the

quadratic cost function (23) is concerned, (23a)-(23b) weigh

the deviation of the control outputs from their reference

values, (23c) the shift per time step of the control inputs

and (23d) the use of the slack variables ǫf resp. ǫr that

are employed in soft constraints (24h)-(24k). To apply the

control scheme online and in real-time, the control horizon

Hu is always chosen shorter than the prediction horizon Hp

to reduce computation time. In this regard, investigations

have shown that using terminal cost (23b), i.e. a significantly

increased weight at the end of the prediction horizon, leads

to a noticeable improvement of the control performance.

Thereby, it has to be noted that the control scheme is stable

without any appropriately chosen terminal cost. Indeed, the

main intention of employing (23b) is to force the control

outputs to tend towards their reference values at the end of

the prediction horizon which has turned out to be beneficial.

Input constraints (24d)-(24g) are introduced to account

for limitations of the steering as well as the braking system.

In particular, (24f)-(24g) are employed to limit the absoulte

values of the control inputs while (24d)-(24e) constrain

the corresponding maximum resp. minimum shift per time

step. According to [6] and [7], soft constraints (24h)-(24k)

on the tire sideslip angles have to be incorporated in the

CFTOC to ensure vehicle stability when operating in the

nonlinear region of the tire model. Due to the fact that the

tire sideslip angles are a nonlinear function of the state

variables, αf and αr are linearized at the current operating

point at time k to obtain linear constraints and thus a convex

optimization problem. The particular choise of the upper and

lower tire sideslip angle limits is essential to ensure vehicle

stability in the nonlinear region of the tire model. A detailed
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discussion of this issue can be found in [7]. To ensure

feasibility of the CFTOC (24), slack variables ǫf and ǫr are

introduced to formulate state constraints (24h)-(24k). Finally,

Q = diag(Q∆y, QvCG
), QHp

= diag(Q∆y,Hp
, QvCG,Hp

),
R = diag(Rδref , Rax,br,ref

), ρf and ρr in (23) denote

weighting matrices resp. coefficients.

C. Disturbance Estimation

As indicated in section II-A, time-varying yaw angle off-

sets can be observed in experimental tests, see [6]. These

offsets can be interpreted as a lateral velocity disturbance

with respect to the evasion path. Hence, yaw angle offsets

act as a ramp disturbance on the control output ∆y. To

achieve offset-free tracking in MPC-based control schemes,

an appropriate disturbance estimator is required if the plant

itself does not contain enough integrators, see [14]. Thus,

an EKF has been implemented to compensate the ramp

disturbance on ∆y in order to achieve steady-state offset-

free tracking as well as to improve the transient control

performance. For the second control output, i.e. the velocity

vCG at CG, disturbance estimation is not reasonable as the

velocity can just be decreased by braking but not increased

by accelerating. The EKF employs (6)-(8) as estimator

model, thus obtaining the nonlinear estimation model

ẋ = f(x,u) (25)

y = [∆ψ, ∆y]T (26)

where xT = [∆ψ, ∆y, d∆ẏ] denotes the state vector,

uT = [vx, vy, ψ̇, κ] the input vector and y the measurement

vector. In this context, κ and the measurement vector y are

provided by the trajectory planner while the remaining inputs

vx, vy and ψ̇ are supplied by the vehicle state estimator. As

an extension of [6], experimental results in section IV show

that steady-state offsets of ∆y can be avoided.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For experimental tests, a Volkswagen Passat CC 3.6 V6 is

employed as test vehicle. It is equipped with an electronic

power steering (EPS) system which allows for demanding

a wheel steering angle and a brake booster with a de-

celeration interface. Moreover, an Oxford RT3003 L1/L2

RTK-GPS/INS high precision navigation system (differen-

tial corrections are obtained via N-TRIP V3) provides the

navigation solution, i.e. the vehicle’s position, velocity and

orientation, with an update rate of 100Hz. To handle the

computational complexity of the applied algorithms, two

dSPACE MicroAutoBox II electronic control units (ECU)

are employed. In particular, sensor fusion algorithms (e.g.

the vehicle state estimator) are assigned on the first while the

control scheme is implemented on the second ECU. Thereby,

the vehicle state estimator is executed with a sample time of

0.01 s, the disturbance estimator with 0.02 s and the control

scheme with 0.04 s. Furthermore, qpOASES [15] is used as

(active-set) QP solver while a solution of the CFTOC can

always be obtained within the sampling interval resp. within

the maximum number of iterations.

Consecutively, a scenario on a rural road with two lanes,

oncoming traffic and a speed limit of 70 km/h is examined.

The ego-vehicle is driving on a dry road (µ = 1) with an

initial velocity of vCG = 20m/s when a non-moving broken

vehicle occurs in the lane. At the same time, oncoming

traffic on the other lane and a vehicle that is standing still

on the same lane for a left turn (50m behind the first

obstacle) are part of the scenario. For the evasion maneuver,

the ego-vehicle has to evade the first obstacle as well as the

oncoming traffic and has to decelerate to standstill before

colliding with the turning vehicle. In order to be able to

evade the oncoming traffic and to follow the evasion path,

the inital velocity is decreased by braking with −5m/s2

from t = 0 to 0.8 s and with −1.5m/s2 from t = 0.8
to 1.3 s when lateral accelerations increase. In this time

interval, braking and steering are applied simultaneously to

investigate the potential of the proposed integrated vehicle

dynamics control approach. From t = 1.3 to 3 s, no further

braking is applied to finish the main part of the maneuver

as soon as possible. Finally, the vehicle is decelerated to

standstill while braking is initiated with −2m/s2 from

t = 3 to 5 s when the vehicle approaches its original lane.

For t > 5 s, the velocity is reduced to zero by braking with

−8m/s2. The corresponding reference path and velocity

trajectory are depicted in Fig. 2. Thereby, the following

MPC parameters have been used: Hu = 15, Hp = 25,

Q∆y = 1, Q∆y,Hp
= 10, QvCG

= 0.15, QvCG,Hp
= 1.5,

Rδref = 200, Rax,br,ref
= 1, ρf = 1000, ρr = 1000,

∆δref,max/min = ±0.8 deg, δref,max/min = ±15 deg,

∆ax,br,max/min = ±9.81m/s2, ax,br,ref,max = 0m/s2,

ax,br,ref,min = −9.81m/s2.

B. Evaluation of Experimental Results

Fig. 2 depicts the results that have been gained in experi-

mental tests. As far as the control outputs are concerned, a

maximum lateral deviation error e∆y,max of 0.25m resp. a

root mean square error (RMSE) e∆y,RMSE of 0.12m can

be observed. The absolute velocity vCG at CG shows a

maximum tracking error evCG,max of 1.55m/s resp. a RMSE

evCG,RMSE of 0.99m/s. These velocity errors as well as

the delayed response of vCG from t = 0 to 0.3 s are mainly

caused by the inital buildup of the brake booster pressure and

cannot be avoided. As the controller is not able to accelerate,

the velocity decreases from t = 1.3 to 3.4 s due to steering

and rolling resistances. For t ≥ 3.4 s the velocity is tracked

very well. Though, it can be recognized that the maneuver

ends at a velocity of about 2m/s instead of standstill.

This issue is caused by the fact that the estimators as well

as the controller are disabled for low velocities to avoid

numerical issues. During the maneuver, horizontal accelera-

tions increase up to 8.9m/s2 when steering and braking is

applied simultaneously which corresponds to the limits of

vehicle dynamics. Thereby, longitudinal accelerations have

a magnitude of −9.3m/s2 while lateral accelerations are in

a range of ±6.7m/s2. Considering tire sideslip angles, it is

apparent that the maximum absolute tire sideslip angle at the

front axle amounts to 4.7 deg while the limit of static friction
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Fig. 2. Experimental results

corresponds to 7 deg. Thereby, it has to be stated that linear

tire behavior can be assumed for −3 deg ≥ αi ≥ 3 deg and

that 95% of the maximum feasible tire force is transmitted

for sideslip angles of ±5 deg. According to the main focus

of this paper, it can be concluded that the controller is able

to guide the vehicle at the handling limits when combined

steering and braking is applied (especially for t = 0.5 to

1.5 s) as well as in the nonlinear region of the (lateral)

tire force model (especially for t = 1.8 to 2.8 s) while

achieving a convincing control performance. Finally, steady-

state offsets of the lateral deviation ∆y can be avoided using

the disturbance estimator outlined in section III-C.

V. CONCLUSION AND FUTURE WORK

In this paper, an optimal control approach for combined

longitudinal and lateral vehicle guidance at the handling

limits is introduced. The control problem to follow an

evasion trajectory is decomposed in a path following and a

velocity trajectory tracking problem. Thereby, the controller

inherently considers the combined transmission of longitu-

dinal and lateral forces in the sense of an integrated vehicle

dynamics control approach. Experimental results prove the

potential of the proposed control scheme.

As far as future work is concerned, the incorporation of

load transfer due to braking into the prediction model will

be investigated. As braking leads to a higher/lower tire load

at the front/rear axle, a larger/smaller amount of tire forces

can be transmitted at this axle. Hence, it has to be proven if

an improved control performace can be achieved when this

information is considered in the prediction model.
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