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Abstract— This work presents a robust approach to estimate
the continuously varying phase of an optical system. Here we
extend the adaptive homodyne estimator scheme by using a
nonlinear guaranteed cost robust filter in the feedback loop to
improve the estimator performance. The nonlinear robust filter
is designed by using a copy of the sector bounded nonlinear
uncertainty present in the measurement of the adaptive ho-
modyne estimator. Finally, closed loop simulations considering
both linear and nonlinear uncertainty are performed and the
results are compared with the standard Kalman filter results.
Simulation results show a significant improvement using the
nonlinear filter which provides a better choice for the time
varying phase estimation problem.

I. INTRODUCTION

The phase estimation problem has attracted considerable
research interest since it plays important role in quantum
computing, quantum communications, and high-precision
measurement [1], [2], [3]. As phase cannot be directly
measured, its measurement has to rely on the measurement
of other quantities. Consequently, in addition to the existence
of intrinsic uncertainty governed by the uncertainty principle
in quantum mechanics, excess uncertainty may be induced.
Therefore, one of the key issues in phase estimation is to
reduce the introduced uncertainty.

Heterodyne measurement is a standard approach to ap-
proximately estimate a completely unknown phase by using
simultaneously measured orthogonal quadratures. In contrast
to heterodyne phase measurement, homodyne measurement
offers a relative high sensitivity. However, the initial phase
information has to be known since homodyne measurement
is only able to estimate a constrained phase [4]. To keep
the flexibility of heterodyne phase measurement and the
increased sensitivity of homodyne measurement, the adaptive
dyne technique was theoretically and experimentally pro-
posed, in which a feedback loop was used to adjust the local
oscillator phase in a homodyne measurement [1], [4], [5], [6],
[7]. The estimated phase is assumed to be sufficiently close
to the actual system phase so that the sinusoidal relationship
between the measurement and phase is approximately linear.
This assumption would be true if the phase estimation error is
very small. However, as the error increases, the linear relation
will no longer be valid.

In this paper, we consider a measurement which is a
nonlinear function of the phase and propose an improved
estimator which will be valid for an increased range of
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Fig. 1: Adaptive homodyne system with robust nonlinear
filter.

estimation error. This approach extends the adaptive homo-
dyne design technique using a nonlinear robust estimator
rather than a standard linear Kalman filter in the feedback
loop (see Fig. 1). The robust nonlinear estimator will be
robust to the initial phase error and also provides robustness
to the uncertainties in the underlying parameters of the
model. However, in this paper only nonlinear uncertainty
in the measurement has been taken into account. The filter
proposed here also provides a guaranteed bound on the
associated cost function.

The paper is organized as follows. Section II presents
a description of a nonlinear optical system considered for
the phase estimation problem. Derivation of uncertainty
modeling for the given system is presented in Section III.
A brief introduction to the procedure of robust nonlinear
filter/estimator design is given in Section IV. The relevant
phase estimation problem has been solved in Section V.
Simulation results and comparison with the standard Kalman
filter are presented in Section VI and the paper is concluded
in Section VII.

II. SYSTEM DEFINITION

Let us consider a coherent optical beam with a varying
phase φ(t) and having a constant amplitude of |α|. The
magnitude is scaled so that |α|2 is the photon flux. The
governing equation for the this system can be written in the
form of stochastic differential equation as follows:

dφ(t) = −λφ(t)dt+
√
κdV (t). (1)

The process model for the above system is given by the
equation below:

φ̇(t) = −λφ(t)dt+
√
κv(t), (2)
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Fig. 2: Sector bound.

where v(t) := dV
dt is a unit variance white noise process.

Here dV (t) is Wiener increment satisfying (dV )2 = dt. The
photon current for a continuous coherent beam is given by

I(t)dt = 2Re(αe−iΦ(t))dt+ dW (t), (3)

where Φ(t) = φ̂ + π/2 is the phase of the local oscillator,
and dW (t) is Wiener increment independent of dV (t). The
homodyne photocurrent is given by the following relation:

I(t)dt = 2|α| sin[φ(t)− φ̂(t)]dt+ dW (t). (4)

III. UNCERTAINTY MODELLING

The measurement equation (4) of the optical system is
a nonlinear equation. However, we can approximate the
model (1), (4) with a linear system having a sector bounded
nonlinear uncertainty. Let us define µ1(t) := φ(t) − u(t)

where u(t) = ˆφ(t) is controller/estimator output and y(t) =
f(µ1(t)). Hence, we can write (4) using the following
relation (see Fig. 2), we remove argument t from some of
the variables:

I(t)dt = 2α(f(µ1) + βµ1)dt+ dW (t), (5)

where β is the slope of the tangent on the curve at µ1 = 0.
Also,

I(t)dt = [2α(f(µ1) + 2αβ(φ(t)− u(t))]dt+ dW (t)

I(t) + 2αβu(t) = 2αf(µ1) + 2αβφ(t) +W (t)
(6)

and

ỹ(t) = 2αf(µ1) + 2αβφ(t) +W (t)

ỹ(t)

2αβ
= φ(t) +

f(µ1)

β
+

1

2αβ
W (t)

(7)

where ỹ = I(t) + 2αβu(t). Finally we can write a linear
system model with sector bounded uncertainty as follows:

φ̇ = −λφ(t)dt+
√
κv(t),

ȳ(t) = φ(t) +
f(µ1)

β
+

1

2αβ
W (t),

(8)

Fig. 3: Nonlinear system with nonlinear state estimator.

where ȳ(t) = ỹ(t)
2αβ . We assume that the sector is defined by

the region γ = 1−m
2 (see Fig. 2), where m is the lowest

boundary of the sector. Also, f2(µ1) ≤ γ2µ2
1. Let us assume

that f̃(µ1) = f(µ1)γ. Then (8) can be written as

φ̇ = −λφ(t)dt+
√
κdv(t),

ȳ(t) = φ(t) + γ
f̃(µ1)

β
+

1

2αβ
W (t).

(9)

IV. ROBUST NONLINEAR ESTIMATION

In this section, we present an approach to estimate the
phase φ(t) of the system in the presence of the nonlinear
time varying uncertainty f̃(µ1). The robust nonlinear state
estimation technique used here is based on the minimax LQG
control theory [8] which uses Integral Quadratic Constraints
(IQCs) to exploit this nonlinear uncertainty [9]. This method
provides a systematic methodology for constructing a robust
nonlinear phase estimator for the system given above. The
main idea behind this approach is to modify the standard IQC
approach to robust state control and estimation by including
a copy of the nonlinearity in the state estimator as shown
in Fig. 3. This approach enables us to use minimax LQG
control theory to construct the linear part of the estimator
and then the nonlinear estimator is constructed by including
a copy of the plant nonlinearity. Here, the method in [9] is
used for the infinite horizon case where t→∞.

A. Methodology

In this subsection we present a summary of the method
from [9] which will later be used to solve phase estimation
problem.

Definition 1: Let (Ω, F, P ) be complete probability space
on which a p-dimensional standard Wiener process W (·)
and a Gaussian random variable x0 : Ω → <n are defined.
The probability measure P is defined as the product of the
probability measure

µ(dx×dy) =
1

(2π)n/2|Y0|
e−

1
2 (x−x̆0)TY −1

0 (x−x̆0)dx×δ(y)dy

(10)
on <n×<l and the standard measure on C([0,∞],<p). Here,
x̆0, Y0 > 0 denote the mean and variance of the Gaussian
variable x0, and δ(y) denotes the deltafunction on <l.
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Let us consider a system on the probability space (Ω, F, P )
driven by the noise input W (·) as follows:

dx(t) = Ax(t)dt+ [

g∑
i=1

B̄1iµi(t) +

k∑
s=1

B1sξs(t)]dt

+B1dW (t); x(0) = x0,

w(t) = C0x(t);

ζ1(t) = C1,1x(t);

...
ζk(t) = C1,kx(t);

ν1(t) = C̄1,1x(t);

...
νg(t) = C̄1,gx(t);

dy(t) = C2x(t)dt+ [

g∑
i=1

D̄21,iµi(t)

+

k∑
s=1

D21,sξs(t)]dt+D21dW (t); y(0) = 0,

(11)

where x(t) ∈ <n is the state, w(t) ∈ <m is the estimated
output, ζ1(t) ∈ <h1 , · · · , ζk(t) ∈ <hk are the uncertainty
outputs, ν1(t) ∈ <h1 , · · · , νg(t) ∈ < are the nonlinearity
outputs, ξ1(t) ∈ <r1 , · · · , ξk(t) ∈ <rk are the uncertainty
inputs, ν1(t) ∈ <, · · · , νg(t) ∈ < are nonlinearity inputs, and
y(t) ∈ <l is the measured output. The nonlinearity inputs are
related to the nonlinearity outputs by the following nonlinear
relations

µi(t) = ψi(νi(t)) ∀i = 1, 2, · · · , g, (12)

where the nonlinear functions ψi(· · · ) are such that ψi(0) =
0 and satisfy the following global Lipschitz conditions:

|ψi(νi(t))− ψi(νi(t))|µi(t) ≤ βi|ν1 − ν2| (13)

for all ν1, ν2 and for all i = 1, 2, · · · , g.
Definition 2: An uncertainty is an admissible uncertainty

for the system (11), (12) if given any strong solution to
the system (11), (12) then for all s = 1, · · · , k and Ss are
given positive-definite matrices and ‖·‖ denotes the standard
Euclidean norm.
The uncertainty in the system is described by the following
Stochastic Integral Quadratic Constraint.

E

∫ ∞
0

‖ξs(t)‖2dt ≤ E[

∫ ∞
0

‖ζs(t)‖2dt+ x(0)TSsx(0)].

(14)
The nonlinear dynamic state estimator is of the form as
follows:

dx̂(t) = (Acx̂(t) +

g∑
i=1

Ḡciµ̃i(t))dt

+Bcdy; x̂(0) = x̂0,

ν̃1(t) = K̄c1x̂(t);

...
ν̃g(t) = K̄cgx̂(t);

ŵ(t) = Ccx̂(t),

(15)

where µ̃i(t) = ψi(ν̃i(t)) for i = 1, 2, · · · , g. The nonlinear
dynamic estimator (15) is designed such that it provides an
upper bound on the following cost functional:

J(ŵ(·)) = E
[1
2

∫ ∞
0

‖ŵ(t)− w(t)‖2dt
]
. (16)

The nonlinear estimator (15) can be written in compact form
as follows:

dx̂(t) = Acx̂(t)dt+ B̃cdỹ(t),

ũ(t) = C̃cx̂(t),
(17)

where

ỹ(t)
4
=


y(t)
µ̃1(t)

...
µ̃g(t)

 ; ũ(t)
4
=


ŵ(t)
ν̃1(t)

...
ν̃g(t)

 ;

B̃c
4
=
[
Bc Ḡc1 · · · Ḡcg

]
; C̃c

4
=


Cc
K̄c1

...
K̄cg

 .
The IQCs for the repeated nonlinearities can be written as
follows (see [9] for detail):

E

∫ ∞
0

[µi(t)− µ̃i(t)]2dt

≤ E[

∫ ∞
0

β2
i [νi − ν̃(t)]2dt+ x(0)TS1ix(0)],

(18)

E

∫ ∞
0

[µi(t)]
2dt

≤ E[

∫ ∞
0

β2
i [νi]

2dt+ x(0)TS2ix(0)],

(19)

E

∫ ∞
0

[µ̃i(t)]
2dt

≤ E[

∫ ∞
0

β2
i [ν̃(t)]2dt+ x(0)TS3ix(0)]

(20)

for all i = 1, · · · , g. Here the S̄1i, S̄2i, S̄3i are any positive
definite matrices. System (11) can be written in a compact
form as follows:
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dx(t) = [Ax(t) + B̃1ξ̃(t)]dt+B1dW (t);

w(t) = C0x(t);

ζ̃(t) = C̃1x(t) + D̃12ũ(t);

dỹ(t) = [C̃2x(t) + D̃21ξ̃(t)]dt+ D̄21dW (t),

(21)

where

ξ̃(t) =

 ξ̃1(t)
...

ξ̃k+2g(t)

 4=



ξ1(t)
...

ξk(t)
µ1(t)

...
µg(t)
µ̃1(t)

...
µ̃g(t)


;

ζ̃(t) =

 ζ̃1(t)
...

ζ̃k+2g(t)

 4=



ζ1(t)
...

ζk(t)
µ1(t)

...
µg(t)
ν̃1(t)

...
ν̃g(t)


;

B̃1 =
[
B1,1 · · · B1,k B̄1,1 · · · B̄1,g 0n×g

]
;

C̃1 =



C1,1

...
C1,k

C̄1,1

...
C̄1,g

0g×n


; D̃12 =



0h1×m 0h1×g
...

...
0hk×m 0hk×g
01×m 01×g

...
...

01×m 01×g
0g×m Ig×g


;

C̃2 =

[
C2

0g×n

]
; D̄21 =

[
D21

0g×(h+g) J21

]
;

D̃21 =

[
D21,1 · · · D21,k D̄21,1 · · · D̄21,g 0l×g
0g×r1 · · · 0g×rk 0g×1 · · · 0g×1 Ig×g

]
.

Also h =
∑k
i=1 hi, r =

∑k
i=1 ri, p = h + 2g and J21

is any suitable matrix satisfying J21 > 0. Considering new
variables, the IQCs (14), (18), (19), and (20) can be written
as follows:

E

∫ ∞
0

ξ̃T (t)M̃(λ)ξ̃(t)dt ≤ E[

∫ ∞
0

ζ̃T (t)Ñ ζ̃(t) + x(0)T S̃ix(0)]

(22)
for all λ = [λ1 λ2, · · · , λk̃]T ∈ <k̃ where k̃ = k + 3g.

Also, M̃(λ) =
∑k̃
i=1 = λiMi ≥ 0 and Ñ(λ) =

∑k̃
i=1 =

λiNi ≥ 0 where Mi = mT
i mi ≥ 0, Ni = nTi ni ≥ 0 and S̃i

are positive-definite matrices. The constraint on the M̃(λ) is
defined as follows:

λ ∈ Γ̃ : M̃(λ)−1 ≥ JJT ∀t, (23)

where Γ̃ = {λ ∈ <k̃ : λi ≥ 0 ∀iM̃(λ) > 0}.

Assumption 1: There exist a square matrix function J
such that we can write[

B1

D̄21

]
=

[
B̃1

D̃21

]
J. (24)

Assumption 2: There exist a constant d0 > 0 such that

D̄21D̄
T
21 = D̃21JJ

T D̃T
21 ≥ d0I (25)

for all t.
Assumption 3: There exist a constant τ > 0 such that the

following conditions hold:

1) The algebraic Riccati equation

(A− B̃1M̃(λ)−1D̃T
21E

−1
λ C̃2)TY

+ Y (A− B̃1M̃(λ)−1D̃T
21E

−1
λ C̃2)

− Y (C̃T2 E
−1
λ C̃2 −

1

τ
Rτ,λ)Y + B̃1M̃(λ)−1B̃T1

− B̃1M̃(λ)−1D̃T
21E

−1
λ D̃21M̃(λ)−1B̃T1 = 0

(26)

has a symmetric positive definite solution.
2) The algebraic Riccati equation

XA+ATX + (Rτ,λ − Γτ,λ)−1ΓTτ,λ

+
1

τ
XB̃1M̃(λ)−1B̃T1 X = 0

(27)

has a symmetric nonnegative definite solution.
3) and ρ(Y X) < τ , where ρ(·) denotes the spectral radius

of a matrix and

Rτ,λ = CT0 C0 + τC̃T1 Ñ(λ)C̃1,

Gτ,λ =

[
Im×m 0m×g
0g×m 0g×g

]
+ τD̃T

12Ñ(λ)D̃12,

Γτ,λ
4
= −[CT0 0n×g] + τC̃T1 Ñ(λ)D̃12.

Also, M̃(λ) =
∑k̄
i=1 λiMi ≥ 0 where λ =

[λ1 λ2 · · ·λk̃]T ∈ <k̃.
If all the given assumptions are satisfied then parameters in
(17) can be determined using the following relations.

Ac = A+
1

τ
Y Rτ,λ − (Y C̃T2 + B̃1M̃(λ)−1D̃T

21)E−1
λ C̃2

− 1

τ
Y Γτ,λG

−1
τ,λΓTτ,λ(I − 1

τ
Y X)−1;

B̃c = (Y C̃T2 + B̃1M̃(λ)−1D̃T
21)E−1

λ ;

C̃c = −G−1
τ,λΓTτ,λ[I − 1

τ
Y X]−1.

(28)

The guaranteed cost bound is given by the following rela-
tion.

Vτ =
1

2
tr[Y Rτ,λ + (Y C̃T2 + B̃1M̃(λ)−1D̃T

21)E−1
λ

× (C̃2Y + D̃21M̃(λ)−1B̃T1 ) ×X(I − 1

τ
Y X)−1].

(29)
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V. PHASE ESTIMATION

The uncertainty model of the original system under con-
sideration in (9) can be written in the form (11) as follows:

dφ(t) = −λφ(t)d(t) + [0× f̃(µ1)(t)

+
√
κ∆1ζ1]dt+ [

√
κ 0]dW (t),

ν1(t) = γ2αφ(t),

ζ1 = 0× φ(t).

(30)

Also, the uncertainty f̃(µ1) satisfies the IQC (14). A com-
parison of the above model with (11) gives the following
model parameters:

A = −λ, B̄11 = 0, B11 =
√
κ,B1 = [

√
κ 0 0],

C2 = 1, D̄21,1 =
1

2αβ
, C̄1,1 = γ2α, C1,1 = 0,

D21,1 = 0, D21 = [0
1

2αβ
], g = 1, k = 1.

Considering the above model parameters, the notation used
in (21) can be defined as follows:

B̃1 = [
√
κ 0 0], C̃1 = [0 γ2α 0]T , D̃12 =

 0 0
0 0
0 1

 ,

C̃2 = [1 0]T , D̄21 =

(
0 1

2αβ 0

0 0 1

)
,

D̃21 =

(
0 1

2αβ 0

0 0 1

)
, h = 1, r = 1, p = 3, k̃ = 4.

For the above definition of the model, the assumptions (1)
and (2) are satisfied for J(t) = I and 0 < d0 ≤ 1. From the
definition of IQC (22) we have

M̃λ(λ) =

 λ1 0 0
0 λ2 + λ3 −λ2

0 −λ2 λ2 + λ4


and its inverse is given by

M̃−1 =


1
λ1

0 0

0 λ2+λ4

λ3λ4+λ2(λ3+λ4)
λ2

λ3λ4+λ2(λ3+λ4)

0 λ2

λ3λ4+λ2(λ3+λ4)
λ2+λ3

λ3λ4+λ2(λ3+λ4)

 .

Also,

Gτ,λ(t) =

(
1 0
0 (λ2 + λ4)τ

)
,

Rτ,λ(t) = 4γ2α2τ(λ2 + λ3) + 1,

Υτ,λ(t) = {−1 − 2αλ2τγ}.

The constraints on λi for i = 1, 2, 3, 4 due to (23) are given
below.

λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0, 0 < λ1 ≤ 1,

0 < λ2 + λ3 ≤ 1, 0 < λ2 + λ4 ≤ 1,

(1− λ2 − λ3)(1− λ2 − λ4)− λ2
2 ≥ 0.

For the values of the parameters given in Table I, the min-
imum value of the bound (29) obtained using the ‘Interior-
point’ numerical optimization method is Vτ = 0.1506 at

TABLE I: Parameters values for the optical system.

λ 9.14× 103 rad/s γ 0.4
κ 40000 rad/s α 1162 s−1

β 1
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Fig. 4: Error covariance with uncertainty variation.

τ = 1.08 × 10−6 and the values of the λi for i = 1, 2, 3, 4
are obtained as follows:

λ1 = 0.9975, λ2 = 0.4985, λ3 = 0.0002, λ4 = 0.0001.

Also, the solution of the Riccati equations at the optimum
parameter values are obtained as Y = 0.166, X = 1.446×
10−8. The estimator parameters in (28) are calculated as
follows:
Ac = −4.5725× 105, B̃c = [4.476× 105 − 192.56],

C̃c = [1.002 931.405].

VI. CLOSED LOOP SIMULATION

In this paper, simulations with both linear and nonlinear
uncertainties have been performed. The linear simulation
allows for the comparison with the standard Kalman filter
(SKLF) which gives an insight into the performance of the
nonlinear guaranteed cost filter (NGCF) for different values
of the time varying uncertainty. The nature of the uncertainty
in the given system is actually nonlinear therefore, a Monte-
Carlo simulation using Simulink has been performed for the
closed loop system.

A. Linear Simulation
In order to perform the simulation with linear uncertainty,

a closed loop equation has been derived using the system
and estimator dynamics. The system dynamics in (30) can
be written in the form of (11) as follows:

dφ(t) = [Aφ(t) + B̃1ξ̃(t)]d(t) +B1dW (t),

ζ̃ = C̃1φ(t) + D̃12(C̃cφ̂(t)).
(31)

Since ξ̃(t) = ∆ζ̃(t) or

ξ̃(t) =

 ∆1 0 0
0 ∆2 0
0 0 ∆2

 ζ1
µ1

µ̃1

 ,
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we can write above equation as given below:

dφ(t) = [Aφ(t) + B̃1∆(C̃1)φ+ D̃12C̃cφ̂(t)]d(t) +B1dW (t),

ζ̃ = C̃1φ(t) + D̃12(C̃cφ̂(t)),

where ∆1 = 0 and ∆2 = f̃(µ1).

dφ(t) = [(A+ B̃1∆(C̃1)φ(t) + B̃1∆D̃12C̃cφ̂(t)]d(t) +B1dW (t)

ζ̃ = C̃1φ(t) + D̃12(C̃cφ̂(t)).

Also,

dφ̂(t) = [Acφ̂(t) + B̃c(C̃2φ(t) + D̃21ξ̃(t))]dt+ D̄21(t)]dW (t)

dφ̂(t) = [Acφ̂(t) + B̃cC̃2φ(t) + B̃cD̃21∆(C̃1)φ(t)

+ D̃12C̃cφ̂(t)]dt+ B̃cD̄21(t)]dW (t).
(32)

Finally we get the simplified expression as follows:

dφ̂ = [(Ac + B̃cD̃21∆D̃12C̃c)φ̂+ (B̃cC̃2 + B̃cD̃21∆C̃1)φ(t)]dt
(33)

or dφc = Asφcdt+BsdW, (34)

where dφc =

[
dφ(t)

dφ̂(t)

]
, φc =

[
φ(t)

φ̂(t)

]
,

As =

[
A+ B̃1∆(C̃1 B̃1∆D̃12C̃c

B̃cC̃2 + B̃cD̃21∆C̃1 Ac + B̃cD̃21∆D̃12C̃c

]
,

Bs =

[
B1 0

0 B̃cD̄21

]
.

The steady state covariance matrix P of the closed loop
system is calculated by solving the following Lyapunov
equation:

AsP + PATs +BsB
T
s = 0 (35)

where Ps = E(φcφ
T
c ) is the symmetric matrix. The error

covariance then can be written as follows:

σ2 = E(eeT ) = [1 − 1]E(φcφ
T
c )

[
1
−1

]
(36)

where e = φ − φ̂. Simulation with ∆2 varying from 0
to −1 has been performed for both NGCF and standard
Kalman filter. Fig. 4 shows the error covariance for each
case. In the figure, ∆2 = 0 means zero uncertainty and
∆2 = −1 represents maximum uncertainty for which the
estimator has been designed i.e. γ = 0.4. It is obvious that
at zero uncertainty the error covariances of Kalman filter and
NGCF are approximately equal. However, as the uncertainty
increases, the error covariance increases for both the filters
but NGCF error remains below the theoretical value of the
error bound which is found to be 0.15. Hence, NGCF out
performs the SKLF in the presence of uncertainty and proved
to be a better design option for the phase estimation problem
considered here.

B. Nonlinear simulation

Since original model of the system is nonlinear, a nonlin-
ear simulation has also been performed. A nonlinear Monte-
Carlo simulation has been performed by collecting error
samples during 50, 000 runs using Simulink. The nonlinear
uncertainty is of the form sin(φ)−φ. The samples have been
collected by running the simulation for a fixed time interval

with randomly generated noise signals and the error signal is
collected at the end of the simulation. The error covariance
for the simulation with the NGCF is found to be 0.1031. In
the case of nonlinear uncertainty a similar simulation with
the SKLF in the feedback loop yields the error covariance
of 0.1872 which is 81% larger than the error covariance
obtained using NGCF.

VII. CONCLUSION

In this paper the problem of phase estimation has been
considered for a quantum optical system. The scheme in this
paper extended the design of an adaptive homodyne estima-
tor by using a nonlinear robust estimator in the feedback
loop. The scheme uses an uncertainty model of the system
and provides a nonlinear robust estimator by considering a
copy of nonlinear uncertainty in the estimator. Simulation
results with both linear and nonlinear uncertainty shows that
the scheme improves the error covariance significantly and
works better than the standard Kalman filter in the case of
large difference between initial guess of the phase and the
original phase of the system. Further research will be directed
toward implementing the scheme on the real hardware and
perform experiments.
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