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Abstract— In this paper, we present a systematic approach
based on harmonic balance method to study the induced
oscillations in a class of Goodwin oscillator networks forced
by external periodic signals. Analytical expressions on the
dependence of the phases and amplitudes of network oscillations
to those of forcing inputs are revealed. Based on those expres-
sions, we further show that under some specific conditions,
the amplitude and phase shift of synchronized oscillations in
networks of Goodwin oscillators monotonically depend on the
amplitude of exciting inputs. The theoretical results are then
illustrated through some examples.

I. INTRODUCTION

In mammals, the circadian timing system has a master

clock network in suprachiasmatic nucleus (SCN) which co-

ordinates the circadian rhythms and regulates the peripheral

circadian clocks [1], [2], [3], [12], [15]. Moreover, the master

circadian network is directly entrained by the daily Light-

Dark cycle through the retina which shows an important

property of the circadian system that it is entrainable by

the periodic factors called zeitgebers in which light is the

main zeitgeber [12], [18], [19], [20]. From the control

system viewpoint, we can consider the circadian network

as a dynamical system forced by an external periodic input

representing the zeitgeber referred as the Light-Dark cycle

in this paper. Without external inputs, that dynamical system

itself exhibits an autonomous periodic oscillating pattern.

Hence, a natural question raises up that how the oscillations

produced by the system in presence of exciting periodic

inputs look like. Particularly, it is worth seeing how the

amplitudes and phases of induced oscillations in the system

relate to those of exciting inputs.

Researches in biology community show that under the

effect of Light-Dark signal, the oscillations in the circa-

dian network are synchronized with frequency equal to the

frequency of Light-Dark signal. Furthermore, there exists a

phase shift between synchronized circadian oscillations and

Light-Dark signal [2], [12], [13]. In [18], the phase shift

was shown to be increasingly leading toward long periods

and lagging toward short periods. There are also evidences

from experiments, for example in older rats that to increase

the amplitude of circadian oscillations to a desired level

requires an increase in amplitude of Light-Dark signal [12].

However, the biological mechanisms under that phenomena

have not been yet well understood, although there are some
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researches on circadian rhythms based on dynamical system

theory. They mostly focus on the synchrony of circadian

oscillations and only a few papers deal with the dependence

of amplitude and phase shift of circadian oscillations to

external inputs. [14] studied the synchronization of circadian

oscillators described by a modified Goodwin model where

the oscillators communicate through a mean-field. The re-

search in [4] focused on how the period of circadian rhythm

and the temperature compensation depend on the stability of

FRQ-protein. The sync rate in a simple phase model which

may be used for circadian network was investigated in [16].

Leloup et al. [5] investigated the effect of light’s magnitude

to the phase shift of circadian oscillations with some models

of circadian rhythms in Drosophila and Neurospora, but no

analytical relation was obtained.

We present, in this paper, some analytical results on

the relation between amplitude, phase shift of synchronized

circadian oscillations and frequency, amplitude of periodic

forcing inputs. The Goodwin model is used for circadian

oscillators since it describes a biological process with a

negative feedback loop which is shown to be one of the

core molecular regulatory mechanisms for circadian oscil-

lations [2], [13], [14]. In [17], a similar model was em-

ployed to study the collective frequency of inter-coupled

circadian oscillators. In other words, [17] only focused on

the frequency of autonomous oscillations in the circadian

network and no results were obtained for the case that

the circadian network is excited by external signals. There-

fore, this paper contributes distinguishing results for the

oscillations in the circadian network. Our first contribution

is to provide analytical expressions on the dependence of

amplitude and phase shift of circadian oscillations on those

of external forcing inputs. Next, we prove that under some

specific conditions, the amplitude and phase shift of induced

oscillations are monotonically increasing functions of the

amplitude of periodic forcing inputs. This interesting result

may give new insights which are helpful for further studying

the biological circadian rhythms. In the second half of the

paper, we extend the analysis to the case when the forcing

inputs include higher order harmonics. We then also derive

explicit expressions for the amplitudes and phase shifts of

higher order harmonics in the network oscillations in terms

of amplitudes and phases of harmonic components in the

forcing inputs. Hence, the previous analysis is strengthened

since the forcing inputs are not purely sinusoidal.

The following notation and symbols will be used in the

paper. R and C stand for the real and complex sets. R
n,

R
n
+ and C

n are used to denote the set of real, positive real
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and complex n× 1 vectors. Moreover, 1n denotes the n× 1
vector with all elements equal to 1, and In denotes the n×n
identity matrix. Lastly, for any vector ν = [ν1, . . . , νn]

T ,

sin(ν) means [sin(ν1), . . . , sin(νn)]
T and similar notations

are used for other functions in the paper.

II. PROBLEM FORMULATION

In this paper, we employ the Goodwin model for circadian

oscillators [4], [5], [17] to investigate the circadian rhythms

driven by daily Light-Dark cycle. This model was first

proposed by Goodwin [10] and then modified by Griffith

[11] as follows,


























dX

dτ
= k1

Kp

Kp + Zp
− k4X,

dY

dτ
= k2X − k5Y,

dZ

dτ
= k3Y − k6Z,

(1)

where X,Y, Z are concentrations of mRNA, its protein and

inhibitor, respectively; k1, k2, k3 are rates of transcription,

translation and catalysis; k4, k5, k6 are degradation rates of

mRNA, its protein and inhibitor; the Hill function Kp

Kp+Zp

represents a nonlinear effect of the inhibitor to the mRNA,

K is a constant. Then by introducing the new variables,

µ = 3

√

K

k1k2k3
, b1 = µk4, b2 = µk5, b3 = µk6,

x =
µ2k2k3X

K
, y =

µk3Y

K
, z =

Z

K
, t =

τ

µ
,

(2)

we obtain a dimensionless mathematical model of a single

circadian oscillator from above Goodwin model as follows,


























dx

dt
= f(z)− b1x,

dy

dt
= x− b2y,

dz

dt
= y − b3z,

(3)

where f(z) =
1

1 + zp
. Using the Laplace transform, we

further rewrite the Goodwin oscillator as the following

system.
{

z = h(s)u,
u = f(z),

(4)

where

h(s) =
1

(s+ b1)(s+ b2)(s+ b3)
. (5)

In a population of SCN circadian neurons, neurons may

interact with others through neurotransmitters such as VIP,

GABA or by gap junctions [12], [13]. We here assume that

the circadian neurons are interconnected through neurotrans-

mitters but do not sense a common pool of neurotransmitters

as in [14]. Hence, the dynamics of each circadian oscillator

in the circadian network without external inputs is described

as follows.

zk = h(s)f(zk) +
∑

1≤j≤n

Akjf(zj), k = 1, . . . , n, (6)

where Akj , k, j = 1, . . . , n are coupling weights between

circadian oscillators. Since the circadian clocks in SCN

can be directly entrained by Light-Dark signal through the

retinas, it is reasonable to argue that each circadian oscillator

in SCN is forced by a same periodic input representing the

Light-Dark signal. As a result, the whole network model in

presence of Light-Dark inputs uLD is written as follows.






z = H(s)u,
y = Fz,
u = Ay + uLD,

(7)

where

u =
[

u1 u2 . . . un

]T
= uf + uLD = Ay + uLD,

uf =
[

uf
1 uf

2 . . . uf
n

]T
,

uLD = û1n,

y =
[

y1 y2 . . . yn
]T

,

z =
[

z1 z2 . . . zn
]T

,

and A = (Akj)k,j=1,...,n is the weighted coupling matrix,

H(s) = h(s)In, F = fIn, û represents the Light-Dark

signal, uf
k, k = 1, . . . , n describes the feedback input to the

k-th oscillator formed by interacting with other oscillators

in the network. Figure 1 shows the block diagram of the

network described in (7).

u yz

A

h(s)In fIn

uk

uf

uLD

ykzk
h(s) f

a. Structure of a Goodwin oscillator

b. Structure of the network

Fig. 1. Network model of interconnected Goodwin oscillators

For simplicity, let û(t) = κ sin(ωt), κ > 0 where ω > 0
is the frequency of Light-Dark signal. This sinusoidal form

of Light-Dark signal is utilized to take into account the

variability of light intensity during a day. Hence, κ has a

physical meaning of maximum intensity of the light during

a day. Our problem here is to find out how the natural

oscillations in the nonlinear circadian system are changed by

the effect of external periodic Light-Dark signal. It is obvious

that the problem in this paper is different from the work in

[17] since the results in [17] were obtained for autonomous

oscillations in circadian networks without external inputs,

i.e., without uLD. Thus, the results presented in subsequent
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sections theoretically contribute some advances to the study

of circadian rhythms.

III. HARMONIC BALANCE ANALYSIS OF CIRCADIAN

OSCILLATIONS FORCED BY LIGHT-DARK INPUTS

Suppose that the intrinsic oscillations in the network of

Goodwin oscillators, i.e., without external input uLD, are

sinusoidal with natural frequency ω0 > 0. Using the phase

oscillator model, it was shown [6] that if the frequency ω
of the forcing inputs is close to the intrinsic frequency ω0

of network oscillations and amplitudes of the forcing inputs

are sufficiently large then the frequency of induced network

oscillations will be entrained to ω. Since phase model of

oscillators is not utilized in this paper, we ignore the details

of the frequency entrainment and assume hereafter that the

frequency of induced network oscillations is equal to that

of forcing inputs, i.e., ω. Then let zk(t) be described in the

following form,

zk(t) = α0k + α1k sin(ωt+ ϕk), k = 1, . . . , n. (8)

Accordingly, using the describing function method [7] to

approximate the nonlinearity f , the output yk(t) can be

written as follows,

yk(t) = σ0kα0k + σ1kα1k sin(ωt+ ϕk), k = 1, . . . , n. (9)

The describing functions σjk, j = 0, 1, k = 1, . . . , n can be

considered as the gains of the nonlinearity f as the inputs

are the zero and first-order harmonics and the outputs are

approximated by zero and first-order harmonics, respectively.

They are computed [7] as follows for k = 1, . . . , n,

σ0k =
2

πα0k

∫ π

0

f(α0k + α1k sin(t))dt,

σ1k =
2

πα1k

∫ π

0

f(α0k + α1k sin(t)) sin(t)dt.

(10)

Let us denote










α0 =
[

α01, . . . , α0n

]T
,

α1 =
[

α11e
iϕ1 , . . . , α1ne

iϕn

]T
,

ϕ =
[

ϕ1, . . . , ϕn

]T
,

(11)

the bias vector, phasor vector and phase vector of the signal

z(t), and
{

Σ0 = diag (σ0k)k=1,...,n ,

Σ1 = diag (σ1k)k=1,...,n ,
(12)

the matrices of describing functions. Then we can represent

the signals z(t) and y(t) as following phasor vectors
{

z = α0 + α1,
y = Σ0α0 +Σ1α1.

(13)

Consequently, substituting (13) into (7) and using harmonic

balance method [7], [9], we obtain the following harmonic

balance equations.
{

[In − h(0)AΣ0]α0 = 0,
[In − h(iω)AΣ1]α1 = h(iω)κ1n.

(14)

Denote φ(s) = 1/h(s) which is a generalized frequency

variable [8], then (14) is equivalent to
{

[φ(0)In −AΣ0]α0 = 0,
[φ(iω)In −AΣ1]α1 = κ1n.

(15)

Next, we propose a condition for the synchronization of

circadian oscillators under the effect of Light-Dark signal and

how phases and amplitudes of circadian oscillations depend

on those of Light-Dark signal.

Proposition 1: Consider the network of circadian oscil-

lators driven by Light-Dark signals (7) with sufficiently

high amplitude and frequency close to intrinsic frequency

of circadian oscillators. The following statements hold.

(i) (Sync condition) If the weighted coupling matrix A has

an eigenvector 1n then the circadian oscillations in the

network are expected to synchronize at frequency ω of

Light-Dark signals.

(ii) The phase and amplitude dependence of circadian os-

cillations to Light-Dark signal can be calculated as

follows,
{

[φ(0)− λσ̂0] α̂0 = 0,
[φ(iω)− λσ̂1] α̂1e

iϕ̂ = κ,
(16)

with ϕ = ϕ̂1n,Σ0 = σ̂0In,Σ1 = σ̂1In, ϕ,Σ0,Σ1

are defined in (11)–(12), λ is the eigenvalue of A
corresponding to the eigenvector 1n.

Proof: Due to the limitation of space, we omit the proof

here.

Remark 1: The sync condition in Proposition 1 sounds

artificial from a practical point of view. However, if the

circadian oscillators are diffusively interconnected as usually

considered in literature [17] then the interconnection matrix

A is in the form of a Laplacian matrix and hence A always

has an eigenvector 1n. Thus, our assumption is reasonable.

It should be noted that two equations in (16) are scalar, so

they can be numerically solved to obtain the values of the

phase shift ϕ̂, amplitude α̂1 and bias α̂0 of induced circadian

oscillations. The first equation in (16) shows that the bias

α̂0 only depends on λ and φ(s) which are the network’s

properties and α̂0 does not depend on Light-Dark signal.

Hence in the following we explore in more details the second

equation to see how the phase shift ϕ̂ and amplitude α̂1 of

induced circadian oscillations vary according to the change

in the amplitude κ and frequency ω of Light-Dark signal.

We have

φ(iω) = b1b2b3−(b1+b2+b3)ω
2+iω(b1b2+b2b3+b3b1−ω2).

Therefore, the second equation in (16) is equivalent to the

following two equations,
[

(b1b2b3 − (b1 + b2 + b3)ω
2
− λσ̂1)

2+
ω2(b1b2 + b2b3 + b3b1 − ω2)2

]

α̂2
1 = κ2,

(17)

−
ω(b1b2 + b2b3 + b3b1 − ω2)

b1b2b3 − (b1 + b2 + b3)ω2 − λσ̂1

= tan(ϕ̂). (18)
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Equation (17) shows the dependence of amplitude α̂1 of in-

duced circadian oscillations to amplitude κ and frequency ω
of Light-Dark signal. The essential question here is how the

increase or decrease on amplitude α̂1 of induced circadian

oscillations caused by the increase or decrease of Light-

Dark signal’s amplitude. The following proposition provide

an answer for that question.

Proposition 2: The amplitude α̂1 of induced synchronized

circadian oscillations is a monotonically increasing function

of the amplitude κ of Light-Dark signal if the following

conditions hold:

C1. [b1b2b3 − (b1 + b2 + b3)ω
2]λ > 0,

C2. κ2 > 16λ2f2(α̂0)/π
2+ω2(b1b2+b2b3+b3b1−ω2)2α2

∗,

where α∗ > 0 satisfying

[b1b2b3 − (b1 + b2 + b3)ω
2]α∗

=
2λ

π

∫ π

0

f(α̂0 + α∗ sin(t)) sin(t)dt.
(19)

Proof:

Due to limitation of space, we ignore this proof here.

Remark 2: If one of the conditions C1 or C2 is violated,

says C1 then α̂1 would not increase as κ increase. For

example, let us select b1, b2, b3 and ω such that b1b2b3 −

(b1 + b2 + b3)ω
2 > 0 and choose λ < 0. Then from

the proof of Proposition 2,
[

b1b2b3 − (b1 + b2 + b3)ω
2
]

α̂1

is positive and monotonically increasing w.r.t α̂1 and

−λσ̂1α̂1 is positive and monotonically decreasing w.r.t α̂1.

Hence, if the decrease of −λσ̂1α̂1 is greater than the

increase of
[

b1b2b3 − (b1 + b2 + b3)ω
2
]

α̂1 as α̂1 increase

then
[

b1b2b3 − (b1 + b2 + b3)ω
2
− λσ̂1

]

α̂1 is not always a

monotonic function of α̂1. Thus, our result in Proposition 2

is meaningful in the analysis of Goodwin oscillator networks

driven by external periodic signals.

Remark 3: From the result of Proposition 2, we may fix

the frequency of Light-Dark signal and vary its amplitude to

see the corresponding response of the amplitude of induced

circadian oscillations. Hence, this study may be helpful for

further understanding and exploring the relationship between

amplitudes of realistic circadian rhythms and Light-Dark

signal.

The following proposition shows a circumstance where the

phase shift φ̂ is a monotone function of the amplitude κ of

Light-Dark signal.

Proposition 3: The phase shift ϕ̂ is a monotonically in-

creasing function of the amplitude κ of Light-Dark signal if

ω2 > b1b2 + b2b3 + b3b1, λ < 0 and the condition C2 in

Proposition 2 is satisfied. In constrast, if b1b2b3/(b1 + b2 +
b3) < ω2 < b1b2 + b2b3 + b3b1, λ > 0 and the condition

C2 in Proposition 2 is satisfied then the phase shift ϕ̂ is

a monotonically decreasing function of the amplitude κ of

Light-Dark signal

Proof: The outline of this proof is as follows. We

can show that
∫ π

0
f(α̂0 + α̂1 sin(t)) sin(t)dt is positive and

monotonically decreasing with respect to α̂1. Therefore,

σ̂1 = 2

πα̂1

∫ π

0
f(α̂0 + α̂1 sin(t)) sin(t)dt is positive and a

monotonically decreasing function of α̂1. Then if the condi-

tion C2 in Proposition 2 is satisfied and other conditions

in the proposition are fulfilled then we will obtain ϕ̂ as

a monotonically increasing or decreasing function of the

amplitude κ of Light-Dark signal.

Remark 4: It can be seen from Propositions 2 and 3

that if the frequency and amplitude of Ligh-Dark signal

satisfy some specific conditions then the induced circadian

oscillations are stronger, i.e., their amplitudes increase as

the amplitude of Light-Dark signal increase but the phase

shift of induced circadian oscillations is also increase, i.e.,

they response more slowly. It implies that there is a tradeoff

between the amplitude and the phase shift of circadian

oscillations under the effect of external Light-Dark input.

This point may be useful in the clinical application of light

for treating some diseases related to circadian rhythms [12].

Example 1: Consider a network of 20 circadian oscillators

(3) with dimensionless parameters b1 = 0.5, b2 = 1, b3 =
1.5 and the interconnection matrix A is randomly generated

such that it admits 120 as one of its eigenvectors. With this

interconnection matrix, the autonomous oscillations in the

circadian network are shown in Figure 2. It is obviously that

the autonomous circadian oscillations are not synchronized.

Moreover, the frequency of autonomous oscillations can be

observed to be 1.66.

Next, we assume that each circadian oscillator is driven

by a normalized Light-Dark signal uLD = 2 sin(t). Then,

we obtain a synchronized oscillating pattern in the circadian

network with frequency equal to the frequency of driven

signals as displayed in Figure 3. This clearly shows the

statement in Proposition 1.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 2. Autonomous oscillations in a randomly interconnected network of
circadian oscillators.

Example 2: We consider a network of 20 circadian oscilla-

tors (3) with b1, b2, b3 are the same as in Example 1. The

interconnection matrix A is generated such that it has an

eigenvector 120. Moreover, we assume that each circadian

oscillator is driven by a sinusoidal signal uLD representing

the normalized Light-Dark signal. Then we attempt to verify
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1.5

2

2.5

3
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4

4.5

Fig. 3. Synchrony in a randomly interconnected network of circadian
oscillators by a sinusoidal Light-Dark input.

the monotonicity of the amplitude of induced synchronized

circadian oscillations with respect to the amplitude of Light-

Dark signal uLD. To do so, we first check the conditions C1–

C2. Choosing the normalized frequency of Light-Dark signal

uLD to be 1, then the eigenvalue λ of A corresponding to

the eigenvector 120 must be negative to satisfy the condition

C1. Let λ = −1 then the condition C2 is equivalent to

κ2 > 16f2(α̂0)/π
2 + 3.0625α2

∗, where α∗ is obtained from

(19), i.e.,

−2.25α∗ =
−2

π

∫ π

0

f(α̂0 + α∗ sin(t)) sin(t)dt. (20)

By choosing the Hill coefficient p to be 2, the right hand side

of (20) can be analytically expressed in terms of α̂0 and α∗.

Subsequently, solving α̂0 from (16) and α∗ from (20), we

can obtain the minimum value of κ such that the condition

C2 is satisfied. Note that this value is less than 3, so in

simulation we will increase κ starting from 3 and record

the corresponding amplitude α̂1 of induced synchronized

circadian oscillations. Figure 4 displays the simulated values

of κ and α̂1. We then clearly see that α̂1 is a monotonically

increasing function of κ.

IV. EXTERNAL INPUTS WITH HIGHER ORDER

HARMONICS

In the previous section, we have considered the circadian

oscillations under the effect of Light-Dark signals modeled

by sinusoidal inputs. However, the real sun light’s changes

during a day or during different seasons may not follow the

shape of exact sinusoidal signals but instead the form of pe-

riodic signals containing higher-order harmonic components

as well as the first one. Therefore, in the following we assume

that the Light-Dark signal includes the harmonics up to m-th

order, i.e.,

uLD = κ0+κ1 sin(ωt+ζ1)+. . .+κm sin(mωt+ζm), (21)

where κ0, κ1, . . . , κm > 0 are the bias and amplitudes of

harmonic components, ζ1, . . . , ζm are the phases of harmonic

components, respectively.

3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Amplitude of Light−Dark signal
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a
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Fig. 4. Monotonicity of amplitude of synchronized circadian oscillations
to amplitude of Light-Dark signal.

Suppose that the natural frequency of circadian oscillators

is close to the frequency ω of Light-Dark signal and the am-

plitudes of harmonic components are sufficiently high, then

the oscillating frequency of circadian oscillators is entrained

to ω. Accordingly, assume that the induced oscillations in the

circadian network also compose of higher-order harmonic

components up to m-th order as follows.

zk(t) = α0k + α1k sin(ωt+ ϕ1k) + . . .
+αm sin(mωt+ ϕmk), k = 1, . . . , n,

yk(t) = σ0kα0k + σ1kα1k sin(ωt+ ϕ1k) + . . .
+σmkαm sin(mωt+ ϕmk), k = 1, . . . , n,

(22)

where σ0k, σ1k, . . . , σmk, k = 1, . . . , n are describing func-

tions which can be calculated [7] similarly to (10). Then, we

obtain the following result when Light-Dark signal includes

higher order harmonics.

Proposition 4: Consider the network of circadian oscilla-

tors (7) driven by Light-Dark signals (21) with sufficiently

high amplitudes and frequency close to intrinsic frequency of

circadian oscillators. Suppose that the circadian oscillations

are under the form (22). The following statements hold.

(i) If the interconnection matrix A between circadian os-

cillators has an eigenvector 1n then the circadian os-

cillations in the network are expected to synchronize at

frequency ω of Light-Dark signals, i.e.,

α01 = · · · = α0n = α̂0,
α11 = · · · = α1n = α̂1, . . . ,
αm1 = · · · = αmn = α̂m,
ϕ11 = · · · = ϕ1n = ϕ̂1, . . . ,
ϕm1 = · · · = ϕmn = ϕ̂m.

(23)

(ii) The phase-shift as well as the amplitude dependence

of circadian oscillators to Light-Dark signal can be

calculated as follows.


















[φ(0)− λσ̂0] α̂0 = κ0,
[φ(iω)− λσ̂1] α̂1e

iϕ̂1 = κ1e
iζ1 ,

...

[φ(imω)− λσ̂m] α̂meiϕ̂m = κmeiζm ,

(24)
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where σ01 = · · · = σ0n = σ̂0, σ11 = · · · = σ1n =
σ̂1, . . . , σm1 = · · · = σmn = σ̂m, λ is the eigenvalue

of A corresponding to the eigenvector 1n.

Proof: This proof can be obtained similarly to the proof

of Proposition 1, so we ignore it here for brevity.

Example 3: Consider a network of 20 circadian oscillators

with the same b1, b2, b3 and the randomly generated inter-

connection matrix A such that it admits 120 as one of its

eigenvectors as in Example 1.

We assume that each circadian oscillator is driven by a nor-

malized Light-Dark signal represented by uLD = 2 sin(t) +
3 sin(2t + 2π/5) + 5 sin(3t + 3π/7). Then the induced

circadian oscillations in the network are exhibited in Figure

5. We can see that the circadian oscillations still synchronize

at the frequency of normalized Light-Dark signal and they

contain higher order harmonics instead of having only zero

and first order harmonics. Employing Theorem 4, we can

approximate the harmonic components including zero, first

and higher order ones in the circadian oscillations based on

those of Light-Dark signal.

As seen in Figure 2, the autonomous circadian oscillations

are of different frequency, asynchronous and seem to contain

only zero and first order harmonic components. However,

under the effect of external Light-Dark signal, the oscillations

in the circadian network are completely changed in their

frequency, amplitudes and phases.
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Fig. 5. Synchrony in a randomly interconnected network of circadian
oscillators by a periodic Light-Dark input with higher order harmonics.

V. CONCLUSION

An approach based on the harmonic balance method

has been proposed to study the circadian oscillations in a

network of Goodwin oscillators forced by periodic Light-

Dark inputs. We show how the phases and amplitudes of

circadian oscillations depend on those of driving Light-Dark

inputs. We then explore the monotonicity of the amplitude

and phase shift of induced oscillations with respect to the

amplitude of Light-Dark input. In a further step, the effect

of Light-Dark input with higher order harmonics to circadian

oscillations is investigated in a similar manner which reveals

the relation between the amplitudes and phases of harmonics

in circadian oscillations and thoses of Light-Dark signal. The

obtained results may give some new insights to the study of

biological circadian rhythms.
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