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Abstract— This paper investigates the performance of two
Multivariable Model Predictive Control (MPC) strategies: self-
ish and solidary. These strategies are based on the main ideas
developed in the EPSAC (Extended Prediction Self-Adaptive
Control) approach to MPC. A two degree of freedom (2DOF)
helicopter simulation has been chosen to illustrate these con-
cepts, as it represents a complicated and challenging problem
due to strong intercoupling effects, non-linear dynamics and
uncertainties in the system model. The performance obtained
with a Linear Quadratic Regulator (LQR) is also included
as a reference to the performance of the multivariable MPC
strategies. In this contribution, the performance of these mul-
tivariable MPC strategies is analyzed, providing more insight
about the behavior of these controllers.

I. INTRODUCTION

Model Predictive Control (MPC) is a general designation
for controllers that make explicit use of a model of the plant
to obtain the control signal by minimizing an objective func-
tion over a time horizon. This strategy allows to deal with
multivariable and non-linear processes, as well as unusual
behavior of processes. Some examples of MPC strategies
described in [1] are: Generalized Predictive Control (GPC),
Dynamic Matrix Control (DMC), Model Algorithmic Con-
trol (MAC) and Extended Prediction Self-Adaptive Control
(EPSAC).

During the last decades, MPC has become an important,
distinctive part of control theory and application. A great in-
terest has been shown for this methodology resulting in many
interesting reviews and books [2], [3], [4], [5]. The reason for
its success can be attributed to the fact that Model Predictive
Control is the most general way of posing the process control
problem in the time domain. MPC formulation integrates
optimal control, stochastic control, control of processes with
dead time and multivariable control to mention a few ones.

A particularly challenging and interesting process to test
the performance of MPC is a Helicopter. This process
presents severe nonlinearities and significant cross-coupling
between its inputs and outputs, which make the control
of such multiple-input multiple-output (MIMO) system a
challenging task.

Conventional approaches to helicopter flight control in-
volve linearization about an equilibrium point, allowing the
use of single-input single-output (SISO) techniques [6], [7].
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The main drawback of this approach is that interactions of the
MIMO system decreases the controller performance as it as-
sumes a decoupled system, besides the fact that these multi-
loop controllers are inflexible and difficult to tune. Therefore,
the MIMO controller design approaches have received more
and more attention. Successful implementations of Linear
Quadratic Regulator (LQR) and Sliding Mode Control are
presented in [8] and [9], respectively. Constrained MPC is
presented in [10] in which a twin rotor MIMO system was
used.

In this study two alternatives to calculate the optimal
control solution for MIMO MPC are evaluated: solidary
and selfish control [2]. Initially, the effectiveness of these
techniques is probed, by comparing the performance of the
solidary MPC with another multivariable strategy, namely the
Linear Quadratic Regulator (LQR). During this first test, the
controllers are tuned to produce the fastest response without
overshoot and then the control effort is just constrained into
the minimal and maximal possible value of the actuator
(this intuitive strategy to deal with input constraints will be
referred as ’clipping’). Next, a more convenient formulation
to deal with constraints is done, by including the constraints
in the multivariable MPC control problem ’constrained con-
trol’. Simulation experiments in a strongly coupled 2DOF
helicopter shows that the main differences between selfish
and solidary control arise at the moment that the constraints
are active, providing insight in the understanding of their
behavior.

The content of this paper is as follows. Section II presents
in detail the methodology for Multivariable MPC, with 2
design solutions based on different control criteria: solidary
and selfish control. Next in section II-C constraints are
included in the control problem. A comparison between the
2 proposed multivariable MPC methodologies and a LQR is
presented in section III. A conclusion section summarizes
the main outcome of this investigation.

II. MULTIVARIABLE EPSAC METHOD

This section briefly summarizes the extension of the
EPSAC predictive control to multivariable systems, both
‘solidary’ and ‘selfish’ approaches [2]:

A. Principle of MIMO EPSAC

The analysis of the method is described considering the
case of a nu inputs and ny outputs process (Fig. 1):

yi(t) = xi(t)+ni(t), i = 1,2, . . . ,ny (1)

where,
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Fig. 1. Process Model

• yi(t) :(measured) process outputs
• u j(t) : process intputs
• xi(t) : model outputs
• ni(t) : process/model disturbances
An essential aspect in the MPC methodology consists of

the prediction of the process outputs, these are calculated
with:

yi(t + k|t) = xi(t + k|t)+ni(t + k|t), i = 1,2, . . . ,ny (2)

for k = N1i, . . . ,N2i where N1i and N2i are the minimum
and the maximum prediction horizons for each i-output of
the process. Our problem resides now on finding xi(t + k|t)
and ni(t + k|t). The first multi-step prediction problem is
solved by recursion of the process models, while the second
is solved using filtering techniques on the noise model. A
detailed description is given in [2].

The future response of the process is considered to be the
result of two effects:

yi(t+k|t) = yibase(t+k|t)+yiopt(t+k|t), i = 1,2, . . . ,ny (3)

The two contributions have the following origins:

yibase(t + k|t) :

• effect of past controls and of the basic future control
scenario, called u jbase(t + k|t), for k = 0 . . . ,Nu j − 1
(Nu being the control horizon), and for j = 1 . . .nu. For
linear systems the choice of this scenario is irrelevant,
a simple choice being u jbase(t + k|t)≡ 0,k ≥ 0

• effect of future (predicted) disturbances ni(t + k|t).
.
yiopt(t + k|t) :

• effect of the optimizing future control actions: δu j(t +
k|t) = u j(t +k|t)−u jbase(t +k|t),k = 0 . . .Nu−1. Where
u j(t + k|t) are the desired optimal control actions. The
optimizing control actions δu j can be considered as a
series of impulses hi j and a final step gi j of input j to
output i.

• the prediction horizons N2i could be different for the ny
outputs.

• the control horizons Nu j could be different for the nu
inputs.

In brief the key EPSAC-MPC equations for the MIMO
case (3), can be expressed in matrix notation:

Yi = YiBase +Yiopt = Yi +
nu

∑
j=1

GijUj (4)

where for i = 1,2, . . . ,ny and j = 1,2, . . . ,nu:

Yi = [yi(t +N1i|t) . . .yi(t +N2i|t)]T

Yi = [yibase(t +N1i|t) . . .yibase(t +N2i|t)]T

Uj = [δu j(t|t) . . .δu j(t +Nu j−1|t)]T

Gij =


hi j

N1i
hi j

N1i−1 . . . hi j
N1i−Nu j+2 gi j

N1i−Nu j+1

hi j
N1i+1 hi j

N1i
. . . . . . . . .

. . . . . . . . . . . . . . .

hi j
N2i

hi j
N2i−1 . . . hi j

N2i−Nu j+2 g11
N2i−Nu j+1


B. The Control Objective

For MIMO-systems, the calculation of the optimal control
vector Uj can be approached in 2 different ways, depending
on the choice of the control criteria. Without affecting the
generality of the problem will be considered in the sequel a
system with 2 inputs and 2 outputs.

Solidary Control

The objective is to find the optimal control vectors
U∗1 and U∗2 which minimize the cost function

J(U) =
N21

∑
k=N11

[r1(t + k|t)− y1(t + k|t)]2+

N22

∑
k=N12

[r2(t + k|t)− y2(t + k|t)]2
(5)

suject to u1(t+k|t) = u1(t+Nu1−1|t) for k≥Nu1 and u2(t+
k|t) = u2(t +Nu2−1|t) for k ≥ Nu2.

With this strategy the predicted control errors summed over
all process outputs are minimized. Notice that the control
error for a specific variable y1 can possibly and deliberately
be increased, with the pupose of reducing the control error
for another variable y2. The objective is thus to minimize
the total control error of all partners together, and not just
to minimize the individual control error of each partner
separately; hence, the choice for the name solidary control.

Defining compound matrices G1 = [ G11 G12 ] and
G2 = [ G21 G22 ] and the compound vector U =
[ U1 U2 ]T , it is possible to represent (5) in a quadratic
cost index in U:

J(U) = UTHU+2fTU+ c (6)

with,

H = GT
1 G1 f = [−GT

1 (R1−Y1)+GT
2 (R2−Y2)]

c = (R1−Y1)
T(R1−Y1)+(R2−Y2)

T(R2−Y2)
(7)

Selfish Control

In this case the objective is to find the optimal control
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vectors U∗1 and U∗2 which minimize the cost function:

J(U1) =
N21

∑
k=N11

[r1(t + k|t)− y1(t + k|t)]2

J(U2) =
N22

∑
k=N12

[r2(t + k|t)− y2(t + k|t)]2
(8)

subject to u1(t + k|t) = u1(t +Nu1 − 1|t) for k ≥ Nu1, and
u2(t + k|t) = u2(t +Nu2−1|t) for k ≥ Nu2.

Although at first sight the above mentioned objectives (8)
might give the (false) impression of a degenerate MIMO
controller - consisting of 2 independent SISO controllers, it
is important to realize that is certainly not the case. Contrary
to the solidary control strategy, the objective of this selfish
control strategy is not to minimize the total control error
of all partners together, but just to minimize the individual
control error of each player separately. However, taking into
account the effect of control actions of all other - possibly
competing - players.

This makes the strategy a multivariable control approach,
with internal cross compensation of the dynamic interactions
in the multivariable process. In fact, in the unconstrained
case, experience shows that both solidary and selfish lead to
nearly identical control performance.

Using again the compound matrix notation, the cost func-
tions of selfish control can be written as a quadratic form in
U1 and U2:

J1(U1) = UT
1 H1U1 +2fT

1 U1 + c1

J2(U2) = UT
2 H2U1 +2fT

2 U2 + c2
(9)

with,

H1 = GT
11G11 f1 =−GT

11(R1−Y1−G12U2)

c1 = (R1−Y1−G12U2)
T(R1−Y1−G12U2)

(10)

H2, f2 and c2 can be easily defined similarly to (10).

C. Constrained MIMO EPSAC

In practice all processes are subject to constraints, because
actuators have a limited range of action and a maximum
slew rate. Fortunately, Model Predictive Control offers a
straightforward approach to deal with constraints, making
of it a desirable strategy to be applied in industry. For the
case of limits in the actuators range (input constraints), two
approaches are available: clipping (leading to suboptimal
results and being usual approach, e.g. in PID control) and
constrained control (leading to optimal results and particu-
lary being one of the main advantages of MPC).

Clipping is the simplest approach as the control is cal-
culated assuming the actuator has unlimited range. Once
the action is calculated, it is then hard-limited to keep the
resulting values within the specified range.

Minimizing J(U) for both selfish and solidary controllers
with respect to U, leads to the optimal (unconstrained)
solution:

U∗i =−H−1
i fi, f or i = 1,2. (11)

Clipping approach will take the unconstrained solution (11)
into a minimum and maximum value allowed, e.g. (min ≤
U∗i ≤ max).

In Constrained control, constraints are taken into account
a priori, thus leading to the best solution that is possible
within the specified limits. In MPC, the calculation of these
constrained control actions is approached as a constrained
optimization problem:

min
U

J(U) = UTHU+2fTU+ c

subject to AU≤ b
(12)

with A a specified matrix and b a specified vector (both
depending on the type of constraints).

Above problem is a standard, well-known optimization
problem called quadratic programming (quadratic cost func-
tion with linear inequality constraints). The differences be-
tween the two constrained approaches will be addressed in
next section through a simulation example, in which at the
same time the conceptual differences of solidary and selfish
control are also highlighted.

III. MECHATRONIC APPLICATION

Although the MIMO EPSAC algorithm can be applied
to any multivariable process, we will focus on the field of
mechatronic systems, by applying it to a 2 DOF Quanser
helicopter (Fig. 2).

Fig. 2. Quanser 2 DOF Helicopter

A. Process Description
While the description of the helicopter is beyond the

scope of this paper, a brief description of it is provided
in this subsection; for further information about it, the
original documentation in [8] is recommended. The Quanser
2 DOF Helicopter experiment consists of a helicopter model
mounted on a fixed base with two propellers that are driven
by DC motors. The front propeller controls the elevation
of the helicopter nose about the pitch axis and the back
propeller controls the side to side motions of the helicopter
about the yaw axis. The pitch and yaw angles are measured
using high-resolution encoders [8].

The two degrees of freedom helicopter pivots about the
pitch axis by angle θ and about the yaw axis by angle ψ . The
pitch is defined positive when the nose of the helicopter goes
up and the yaw is defined positive for a clockwise rotation.
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B. Modelling

Using the kinematics of the center of mass it is possible
to find the potential and kinetic energies involved in the
helicopter system, and using the Euler-Lagrange method to
derive the nonlinear equations of motion [8]. Two nonlinear
differential equations of second order are obtained; the values
of lengths, masses and moment of inertias associated with
the helicopter model are presented in the table I.

θ̈(Jeqp +mhelil2
cm) = KppVmp +KpyVmy−Bpθ̇

−mheli.l2
cmψ̇

2 cosθ sinθ −mheli.g.lcm cosθ
(13)

ψ̈(Jeqy +mhelil2
cm cosθ

2) = KypVmp +KyyVmy−Byψ̇

+2mheli.l2
cm cosθ sinθψ̇θ̇

(14)

TABLE I
NOTATION AND UNITS USED IN THE HELICOPTER MODEL

Symbol Description Value Unit
Jeqp Total moment of inertia in θ 0.0384 Kg.m2

Jepy Total moment of inertia in ψ 0.0432 Kg.m2

mheli Total moving mass of the helicopter 1.3872 Kg
lcm Center of mass about pitch axis 0.186 cm
Kpp Thrust torque on θ from pitch motor 0.204 N.m/V
Kpy Thrust torque on θ from yaw motor 0.0068 N.m/V
Kyp Thrust torque on ψ from pitch motor 0.0219 N.m/V
Kyy Thrust torque on ψ from yaw motor 0.072 N.m/V
Vmp Voltage applied to pitch motor [0,20] V
Vmy Voltage applied to yaw motor [−10,10] V
By Equivalent viscous damping about ψ 0.318 N/V
Bp Equivalent viscous damping about θ 0.8 N/V
g Gravitational acceleration constant 9.81 m/s2

The linear model of the process represented in transfer
functions is presented in 15. This model is obtained by
linearization of equations (13) and (14) around the operating
point described by the outputs (θ = 0, ψ = 0) and the inputs
(Vmp = 18.05, Vmy = −7.5). A suitable sampling time, able
to capture the dynamics of the system is Ts = 0.01 s.[

θ(s)
ψ(s)

]
=

[
1.657

s(s+9.275)
0.07898

s(s+9.275)
0.2542

s(s+3.496)
0.6121

s(s+3.496)

][
Vmp(s)
Vmy(s)

]
(15)

From the matrix transfer function (15) it is possible to
observe that voltage in pitch motor Vmp has strong influence
on pitch angle θ , while voltage in yaw motor Vmy has
strong influence in yaw angle ψ . Moreover, a positive voltage
applied to Vmp generates an increment of pitch angle, but also
a positive change in the yaw angle. A similar conclusion can
be stated for voltage Vmy, although, the cross-coupling effect
in this case is smaller but not negligible.

C. Clipping: LQR vs. Solidary EPSAC

It is important to highlight that all controllers were tested
using as plant the nonlinear model of the helicopter (13),(14).

The first simulation consists in comparing the performance
of a Linear Quadratic Regulator (LQR) and solidary EPSAC
controller, both using clipping as strategy to deal with

constraints given in Table I. LQR was designed including
integral action to avoid steady state error, according to the
cost function:

J =
∫

∞

0
(XT QX +UT RU)dt (16)

where the penalizing matrices Q and R were tuned to achieve
the fastest response possible without overshoot giving as
results:

Q = 1000∗diag(100,100,1,1,400,500)
R = diag(0.05,0.05)

(17)

Following the same approach as for LQR (fastest response
without overshoot), the unconstrained EPSAC solidary con-
troller was tuned, giving as result: N11 = N12 = 1, Nu1 =
Nu2 = 1 and N21 = N22 = 10 for Ts = 0.01s.

Fig. 3. LQR vs Clipping EPSAC

Fig. 4. Control effort LQR vs Clipping EPSAC

Another important aspect to tune the predictive controller
is the noise filter as illustrated in [11]. A ‘smart’ choice for
these filters being: 1

(1−q−1)(1−q−1)
for pitch and 1

(1−q−1)
for

yaw, as it leads to have zero steady-state error
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The comparison between LQR and the clipping solidary
EPSAC is depicted in Fig. 3, in which it is observed how the
MPC outperforms the LQR both in terms of overshoot and
settling time. MPC presents a more agressive control action
compared to the LQR (Fig. 4).

In Fig. 3 it can be noticed how applying a step change
in the reference or applying a disturbance to one of the axis
produce a deviation in the other one. More specifically, at
time 25 seconds a change in the reference is applied to
yaw axis, the MPC controller applies a big control action
compared to the LQR, as result the system has a smaller
settling time. More interesting is to observe that pitch angle
did not change significantly, owing to the fact that the
influence from pitch to yaw is not so strong. Furthermore, the
MPC compensates the effect of yaw on pitch by decreasing
the voltage in pitch, thus dynamically compensating the
interactions. Opposite to the MPC behavior, the LQR applies
a smaller control action in yaw and almost no action in pitch,
resulting in a slower response to track the yaw reference and
a small overshoot in pitch.

At time 35 seconds a disturbance is applied to yaw axis,
to wich the MPC presents a better disturbance rejection.
The explanation is again that it better compensates for the
dynamic interactions, meaning in this particular case to avoid
decreasing the voltage in pitch as this has a big influence in
yaw. As observed, in the control actions made by the LQR it
decreases the voltage in both motors producing an undesired
behavior over pitch, meanwhile the MPC did not apply any
voltage in pitch motor, thus minimizing the interaction effect.

Even though clipping EPSAC has exhibit a satisfactory
performance, it can be improved by considering input con-
straints in the MPC formulation as evaluated in next section.

D. Constrained Control: Selfish vs. Solidary

Although, originally the helicopter has a larger operation
range, during this study we have constrained it even more
to illustrate the effectiveness of MPC to deal with input
constraints. The operating input range was thus fixed to:
0 ≤ Vmp ≤ 20 and −10 ≤ Vmy ≤ 10. Aditionally, in order to
highlight the differences between clipping and constrained
MPC, the simulation time was reduced and bigger changes in
the reference were applied compared to the LQR simulation.

Fig. 5 shows the multivariable clipping strategy (the same
analized above) compared to both selfish and solidary con-
strained strategies. Observing in detail, it is noticeable how
each time there is a big change in the setpoint in one axis,
the selfish strategy compensates the cross interaction such
that the opposite axis remains as close as possible to the
setpoint (as expected from theory!). On the other hand, the
solidary strategy tries to use the interaction to achieve a
faster response even at expenses of creating a bigger error
in the opposite axis to which the change on the setpoint was
applied. In Fig. 6 it is observed the control effort for this
particular experiment.

The mentioned effect can be clearer seen on Fig. 7, which
corresponds to a zoom of Fig. 5 at time 10.5 seconds when

Fig. 5. Constrained Selfish and Solidary vs Clipping EPSAC

Fig. 6. Control effort constrained vs Clipping EPSAC

a step change was applied to yaw. As result, the following
analysis for the control strategies is shown:
• The clipping EPSAC asks for an unachievable value

of Vmy = 120 V (Fig. 8). Therefore, the controller will
try to compensate for the possible increment in the
pitch angle due to the interaction decreasing the Vmp
to about 11 V. Finally, the voltage applied to yaw is
not 120 V as request by the controller but restricted to
10 V, consequently, pitch decreases as it was expecting
a bigger interaction.

• In the constrained selfish strategy, the controller out-
put in the yaw axis is within the constraints of the
physical system, as consequence, the interaction is well
compensated avoiding significant changes in the pitch
angle. This statement is in agreement with theory as
constrained selfish controller will try to keep the error
in pitch as low as possible, i.e. it will act as a good
decoupler.

• In the constrained solidary strategy, the controller out-
put is also within the constraints of the system. How-
ever, in this case, the controller produces a positive
change in pitch in order to help the controller to reach
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the setpoint in yaw faster (a positive change in pitch
generates a positive change in yaw angle).

Fig. 7. Zoom Constrained vs Clipping EPSAC

Fig. 8. Zoom Control effort Constrained vs Clipping EPSAC

The performance of the controllers is compared (in the
time range of the zoomed area) by using the well known
performance indexes ISE, IAE and ITAE as shown in table
II. It is possible to observe that the best performance is
achieved by the constrained controllers, but specially the
constrained selfish. The main reason for this result is that
it does not deviate significantly in pitch while still keeps a
similar settling time and overshoot in yaw compared to the
solidary constrained.

TABLE II
PERFORMANCE INDEX FOR MIMO EPSAC STRATEGIES

Controller ISE IAE ITAE
Solidary Clipping 4.9713 17.4560 191.3585

Selfish Constrained 4.7258 15.7619 172.2839
Solidary Constrained 4.5815 16.3843 179.0239

IV. CONCLUSIONS

Two multivariable predictive control strategies were pre-
sented and evaluated by means of a 2 DOF helicopter
case. It has been illustrated that the main differences of
these controllers appear at the moment the constraints are
active. The results obtained suggest that depending on the
control target, following setpoint changes as fast as possible
(tracking) or avoiding that the change of one reference affects
the other (decoupling), one might choose the solidary or
selfish control respectively. However, if the cross-coupling
effect between the inputs and outputs is not strong enough,
using a solidary MPC for tracking might not be meaningful.
Instead, a selfish MPC control should be used, as it follows
equally well the reference changes without disturbing other
outputs, as observed in the studied case of this paper.
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