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Abstract—Thermal energy storage gives a system enhanced 

operational flexibility because thermal loads can be shifted, not 

only spatially—from one piece of equipment to another—but 

also temporally, using storage, from one point in time to 

another. The resulting optimization problems become non-

convex and difficult to solve. This paper illustrates how to take 

advantage of the enhanced flexibility that storage provides, 

while simplifying the dynamic optimization problems involved. 

The optimization strategy presented decouples the static and 

dynamic pieces of the problem using a hierarchical structure, 

where a static sub-problem is solved for each trial decision 

variable in the dynamic problem. Energy savings as high as 9.4 

% are observed with cost savings as high as 17.4%.  

I. INTRODUCTION 

ecause thermal loads account for a significant portion of 

peak energy consumption, thermal energy storage has 

proven to be a cost-effective peak reduction technology 

[1,2]. Thermal energy storage gives a system the ability to 

shift loads temporally by providing system operators more 

degrees of freedom in operating the system. Optimization 

can then be applied to help operators use the system most 

effectively in terms of energy or cost minimization [3]. In 

this work, this methodology is applied to a district cooling 

system with chilled water thermal energy storage. 

In warm climates, cooling demand is a significant 

contributor to total energy demand in buildings. Cooling 

loads are most frequently met by running electrically-

powered air conditioners or chillers. For large-scale systems, 

such as campuses with many buildings, performance 

improvement of chilling equipment through optimization is a 

viable cost and energy saving approach. In order to meet 

cooling loads and also to have redundancy for reliability 

purposes, large-scale systems on a district cooling loop 

typically have multiple chillers. From an optimization point 

of view, this gives the system more degrees of freedom, as 

different combinations of cooling load can be placed on each 

chiller, while still meeting the total cooling demand for the 

system. Optimization leads to improved energy efficiency 

compared to using simple rules, such as equal ratio chiller 

loading, where the part load ratios (the load on a chiller 

divided by its capacity) for each chiller are set to be equal 

[4]. When chiller efficiency varies widely with load and 

ambient conditions (most notably wet bulb temperature), an 

optimization-based approach to chiller loading can have a 

significant impact on energy savings [5].  
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The addition of thermal energy storage to a district 

cooling system further increases system flexibility. The 

ability to store energy means that cooling loads do not have 

to be exactly met by chilling equipment at all points in time. 

Instead, cooling can be generated in excess of the real-time 

demand and stored. If stored cooling (typically in the form 

of chilled water or ice) is available, chilling equipment can 

run at loads less than the real-time demand using the stored 

energy to make up the difference [6]. This enhanced 

flexibility allows chillers to shift cooling loads to periods 

where ambient conditions may allow them to operate more 

efficiently and to optimally distribute these loads in time and 

over the range of available chillers. Under a time-of-use 

electricity pricing structure, significant cost savings will also 

be achieved. 

While thermal energy storage can greatly enhance a 

system’s ability to operate more efficiently, the addition of 

energy storage translates the optimal chiller loading problem 

from a static optimization problem to a dynamic 

optimization problem. This increases the size of the 

optimization problem as chiller loading must be solved at 

every step in the time horizon. Another complicating factor 

is that, for the static problem, the only load of concern is the 

instantaneous load, while for the dynamic problem chiller 

loading must be determined for some period into the future, 

where exact loads as well as ambient conditions are largely 

unknown. Therefore, solving the dynamic optimization 

problem typically requires incorporating a forecast of 

weather and of cooling load for the duration of the 

prediction horizon.  

II. CHILLER MODELING 

Industrial sized chillers are large, complex pieces of 

equipment, making accurate first principles modeling a 

difficult task. Empirical, or black box, models can be 

relatively easily developed. These models use equations with 

a particular structure (e.g., polynomial, neural network, etc.) 

to describe the chiller performance. The models are 

generally equipped with a number of parameters, which can 

be fit to the given model structure through regression 

techniques [7]. Because there is generally no physical basis 

for the equations and parameters, these models can be 

accurate over the range of data to which they are fit because 

of the high number of parameters available for fitting [8–

11], but they are generally inaccurate outside that range. 

 A reasonable compromise between a first principles 

model and a purely empirical model is a semi-empirical 

model, which provides the structure to the model equations, 
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based on the physics of the actual system, but allows for 

some unmeasured constants to be varied in order for the 

model to provide a good fit to the data. A thermodynamic 

chiller performance model, which has proven to be accurate, 

yet sufficiently simple, is that developed by Gordon and Ng 

[12]. This model can be used to evaluate a chiller’s 

coefficient of performance (COP) as a function of the 

cooling load on the chiller, the condenser inlet temperature 

(which is a strong function of the ambient wet bulb 

temperature), and the chilled water temperature exiting the 

evaporator. The COP is then used to determine the power 

consumption by the chiller. The model is well formulated in 

that it provides several terms that can be used as fitting 

parameters, while still possessing a structure that allows the 

model to be extrapolated beyond the range of the data over 

which it is fit [13]. The relationship for COP is shown in (1).  
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 This thermodynamic chiller model can be fit to data for 

chillers using some of the constants in the model as fitting 

parameters and employing a least-squares model fitting 

algorithm. The parameters used for fitting in this work are qe 

and qc (the heat losses at the evaporator and condenser, 

respectively) and Me and Mc (the product of overall heat 

transfer coefficient and heat transfer area for the evaporator 

and condenser, respectively). Although the model 

parameters appear nonlinearly in the model, they can be 

grouped together in a manner that the least squares 

minimization problem can be obtained by solving a linear 

system of equations. The model fit is demonstrated in Figure 

1. 

 
Figure 1: A parity plot demonstrating the model fit for Chiller 1. 

 

 The performance curve for one of the four chillers in the 

network is shown in Fig. 2. The performance curves for the 

other three chillers are similar, but not identical due to 

differences in make, age, and capacity. These curves are 

generated using (1) and fitting the above-specified 

parameters for a four chiller system in Austin, TX. The 

models generated from these fits are used for subsequent 

analysis in this paper. The chillers are electric-powered, 

industrial-size centrifugal chillers using a refrigeration cycle 

with R-134a.   

 
Fig. 2: Performance curve for Chiller 1 at two different wet bulb 

temperatures (20°C and 25°C). 

 As Fig. 2 indicates, chiller efficiency strongly depends on 

the load placed on each chiller and can vary considerably 

from one chiller to another. Furthermore, chillers operate 

much more efficiently at a lower ambient wet bulb 

temperature because heat is rejected by the condenser at a 

lower temperature. 

III. STATIC OPTIMAL CHILLER LOADING 

In order to enhance the steady-state operation of a chilling 

system by optimal chiller loading, a static optimization 

problem must be solved first, with the objective of 

minimizing total power consumption by optimally 

distributing the cooling load across the available chillers. 

The decision for choosing an optimization method ultimately 

depends on the model used to represent the system and the 

optimization resources that are available. Close examination 

of (1) reveals that, upon multiplying through by Q, the 

cooling load, to get power consumption (P) as a function of 

Q, the model is quadratic with respect to Q, as (2) indicates.  

 For convenience, the terms in (2) can be grouped based on 

their dependence on Q, where the parameters α, β, and γ are 

assumed to be independent of Q. This assumption is justified 

by the fact that Te
out

, the temperature of the chilled water 

exiting the evaporator maintained at a constant set-point and 

Tc
in

, the cooling water temperature entering the condenser, is 

predominantly a function of the cooling tower performance 

and the ambient conditions, primarily the wet bulb 

temperature. 
2P Q Q      (2) 

A. Static Problem Formulation 

The objective of minimizing the total power consumption 

for a set of Nc chillers while meeting or exceeding a total 
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cooling demand (Qtot) at a given instant in time yields the 

optimization problem in (3). Because it may be optimal to 

turn some chillers off, the binary decision variable δ is added 

to the formulation, taking on a zero value when chiller i is 

off and one when it is on.  This makes the problem a mixed 

integer nonlinear programming (MINLP) problem, which is 

typically solved using a branch and bound or another 

MINLP solution algorithm. 

 2
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i i i i i i
Q

i

Q Q
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(3d) 

If a known subset of chillers is anticipated to be on, 

however, the problem is reduced to a simple quadratic 

programming (QP) problem, which takes on the form: 

min T T

x
x Hx F x

 
(4a) 

subject to  

Ax B  (4b) 

min maxx x x 
 

(4c) 

where x is a vector containing the load placed on each 

chiller, with NAC referring to the total number of chillers 

assumed to be active, H is a diagonal matrix containing the 

quadratic terms from each chiller model, and F is a vector 

containing the linear terms from the chiller model. The 

constraint that the total demand must be met is enforced 

using the A and B terms, which are a vector and a scalar, 

respectively. In this case A is a horizontal NAC-vector of ones 

and B is the negative of the total cooling demand. 

Formulating the problem as a QP has several advantages. 

First, the problem can be solved quickly using an off-the-

shelf QP solver. Second, because H is a diagonal matrix with 

only positive values, it will always be positive definite, 

ensuring convexity of the problem and guaranteeing that the 

solution to the problem will be a global minimum. The 

major disadvantage of this method, however, is that the 

problem must be solved multiple times in order to explore 

all possible combinations of active chillers. This can be 

largely bypassed, however, by methodically testing specific 

active sets of chillers, beginning with the most efficient 

chillers in the system and gradually adding the less efficient 

chillers. This can greatly reduce the number of combinations 

tried. Upon solving the problem for these combinations, the 

best of these solutions can then be implemented. Because the 

QP problems being solved are fairly trivial, computation 

times for the static optimal chiller loading problem are not a 

major issue. The overriding concern is reaching a global 

solution, which is guaranteed by using this method but 

cannot necessarily be guaranteed by the MINLP formulation 

of the problem. 

IV. MULTI-PERIOD OPTIMAL CHILLER LOADING WITH 

STORAGE 

If the objective is to minimize total energy consumption 

over some time horizon by optimally placing the cooling 

load on certain chillers at suitable times of the day, the 

addition of thermal energy storage to a cooling network adds 

many more degrees of freedom. Using energy storage, 

cooling loads can be shifted, not only to the most efficient 

chillers, but to the times of the day when chillers operate 

most efficiently, typically when ambient wet bulb 

temperatures are lower. While the extra degrees of freedom 

by virtue of energy storage are very useful, they also make 

the problem much more difficult to solve. Typically, a 

dynamic optimization problem is discretized temporally into 

a certain number of time intervals, Nt, during which, it is 

assumed that inputs are held constant. For a system with NC 

chillers, this creates a total of NtxNC degrees of freedom. If 

binary variables, δ, are used to represent the on/off states of 

the chillers, the total number of degrees of freedom becomes 

2NtxNC. While solving problems of this size is certainly 

within the realm of some MINLP solvers, the problem of 

finding a global solution within a reasonable amount of time 

may be a limiting factor. 

The high dimensionality may be mitigated, however, by 

re-formulating the problem. The number of degrees of 

freedom can be reduced by a factor of NC if the set of 

chillers is considered to be a single optimal chiller, rather 

than NC individual chillers. Essentially, this entails solving 

the static optimal chiller problem to determine the optimal 

total power consumption for a given load. Solutions to this 

problem are shown in Fig. 3 for ambient wet bulb 

temperatures of 20°C and 25°C, over a range of total chiller 

loads. As the figure shows, higher efficiencies are obtained 

at a lower wet bulb temperature. A general upward trend in 

1/COP as load increases is also observed. However, the 

curves have some locations with sharp peaks. These non-

smooth points indicate a change in the active set of chillers 

that is optimal for a given load.  

 
Fig. 3: A composite chiller performance curve created by solving the 

static optimal chiller loading problem over the range of total cooling 

loads at certain ambient conditions. 
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As Fig. 3 clearly indicates, it is generally more efficient to 

cool during times with lower ambient wet bulb temperature. 

Therefore, energy storage can be used to reduce energy 

usage by shifting the cooling load to times when lower wet 

bulb temperatures are expected. There are limits to the 

efficiency that can be gained by doing this, however, as 

increasing load at the lower temperature causes the system to 

be less efficient. With no constraints on energy storage rate 

or total capacity, the optimal solution for shifting load 

between these two temperatures would be achieved when the 

marginal decrease in power consumption per unit load at the 

less efficient time equals the marginal increase in power per 

unit load at the more efficient time. 

 Using the solution to the static optimal chiller loading 

problem, all chillers can be considered as a single, optimal 

chiller. This significantly reduces the combinatorial 

complexity of the dynamic problem. Rather than solving for 

loading on each chiller at each time interval, only the total 

load is needed at every time interval. The dynamic problem 

uses the total loads at each time interval as decision 

variables, with the loads placed on individual chillers being 

determined by the static optimization sub-problem. This 

formulation is depicted graphically in Fig. 4. As the figure 

illustrates, the dynamic problem uses the total load (Qtot) at 

each time interval (j) as its decision variables. For a given 

Qtot,j, the static problem is then solved to determine the 

optimal loading on each chiller (Qi,j) required to meet Qtot,j. 

The power consumed at each time interval under optimal 

loading (P
*
tot) is then communicated back to the dynamic 

problem. By solving the static optimal chiller loading 

problem at each time interval, the system of chillers, 

therefore, behaves essentially as a single chiller, operating at 

its most efficient point for a given load and given ambient 

conditions. While the system still has NtxNC degrees of 

freedom of which it can take advantage, the optimization 

problem is reduced to one with only NC degrees of freedom 

with global optimality guaranteed at each time interval. One 

inherent disadvantage to this problem formulation is that it 

becomes more difficult to prevent chillers from switching on 

and off regularly. However, if a penalty on the change in 

total load from one time interval to the next is added, this 

will prevent excessive chiller switching, provided there are 

no dramatic swings in ambient conditions over the same 

interval. 

 
Fig. 4: The hierarchical structure used to solve the dynamic 

optimization problem is shown. The dynamic problem uses the total 

load at each time step (Qtot,j) as decision variables. These values are then 

fed to the static optimization sub-problem, where the optimal loading 

on each chiller (Qi,j) is determined. The optimal power that results from 

the static sub-problem at each time step (P*tot,j) is then communicated 

back to the dynamic problem. 

V. CONCLUSIONS 

A. Dynamic Problem Formulation 

A discrete-time version of the dynamic optimal chiller 

loading problem is described in (6). Here, a simple model 

(6b) is adopted for the energy stored (E), where the energy 

stored at time j+1 is equal to the difference in cooling 

delivered (Qtot) minus the total cooling demand (Qdemand) at 

time j multiplied by the time interval Δt. The function Φ in 

(6a) refers to the composite chiller function at time j, as 

obtained from the solution of the static optimal chiller 

loading problem. The system is subject to inequality 

constraints on the amount of energy stored (6e) and the rate 

at which energy can be extracted or delivered to storage (6f). 

Here, a negative value of ΔE means that energy is being 

extracted from the storage system. 
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min j maxE E E  
 

(6f) 

The system is subject to an initial condition on the amount 

of stored energy initially in the storage system (6c). With the 

objective to minimize total energy consumption over some 

time horizon, the optimal solution to this problem will 

generally be to finish with an empty storage tank. A time 

horizon of 24 hours is chosen in this analysis, with the tank 

reaching its initial condition at the end of the time horizon. 

Longer time horizons (two to three) may also be considered 

as it may be advantageous to store energy over a period of 

multiple days, depending on the forecasted conditions.  

VI. RESULTS 

Dynamic optimal chiller loading using thermal energy 

storage is more effective when there is a larger swing in wet 

bulb temperature over the course of a day (giving the system 

a greater improvement in efficiency by shifting the cooling 

load to these times) and when there is a large swing in total 

cooling demand. Assuming a storage system that is initially 

uncharged (E0=0), several days were simulated using actual 

wet bulb temperatures and cooling demands for a large 

campus in Austin, TX. One of these days is shown in Fig. 5, 

where the total demand ranges from 39,600 to 65,300 kW of 

cooling, giving the system ample opportunity to shift the 

cooling load. The ambient wet bulb temperature ranges from 

17.7°C to 23.3°C, which correlates fairly well with the 

cooling demand. The total storage capacity for this system is 

136,800 kWh, meaning that the system has a little over 2 
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hours of full-load storage capacity in this case. However, 

because the storage can only be charged and discharged at a 

maximum rate of 21,100 MW, the storage lasts much longer 

as part-load storage. 

 
Fig. 5: Total cooling demand (Qdemand) and wet bulb temperature vs. 

time for one day on a campus cooling network in Austin, TX. 

Three different chiller operating strategies are considered. 

An equal ratio loading operating strategy places the same 

proportional load (relative to the chiller maximum capacity) 

on each chiller.  

 When static optimization is performed, the results show 

that, during peak times, Chiller 1 is used at full capacity. 

Peak loads require Chiller 3 (the least efficient chiller) to run 

for a total of 15 hours. Still, static optimal operation saves 

approximately 9% energy over an equal ratio loading 

strategy under these conditions.  The chiller operation for 

static optimization is shown in Fig. 6. 

 
Fig. 6: Solution to the static optimal chiller loading problem for each 

hour of the day under the conditions given in Fig. 5. Static optimal 

chiller loading still requires using the least efficient chiller (Chiller 3) 

for long durations. 

 Dynamic optimal chiller loading gives the system many 

more degrees of freedom. This allows the system to not only 

shift load to the more efficient chillers, but also to shift the 

load to the most efficient times of the day. Fig. 7 and Fig. 8 

show the results of dynamic optimal chiller loading under 

the same conditions. As these results indicate, much of the 

load is shifted to the earlier parts of the day, under cooler 

conditions. Chiller 3 is still used; however, it is only 

required for a total of 7 hours as a larger percentage of the 

load is placed on the more efficient chillers in the system. 

Chiller 1 (the most efficient chiller at full load), for example, 

runs at full capacity the entire time, while Chillers 2 and 4 

are kept near their optimal efficiency point. An added 

benefit of storage is that it allows the chillers to run at a 

more constant rate for the duration of the day, with only 

small fluctuations in the load on each chiller. 

 
Fig. 7: Solution to the dynamic optimal chiller loading problem with 

storage for the conditions in Fig. 5. 

 
Fig. 8: A plot showing the total supply and demand vs. time of day in 

the dynamic optimal chiller loading case. As the plot shows, much of 

the cooling supply is delivered early in the day and stored. It is 

extracted later when wet bulb temperatures are higher and it becomes 

less efficient to run the chillers. 

 Table 1, which summarizes the results of three different 

days used in this case study, shows that the total energy 

consumption is improved by a total of up to 9.4% in going 

from an equal ratio chiller loading strategy to a dynamic 

optimal chiller loading strategy with thermal energy storage. 

In Case 3, a day when there is little fluctuation (a range of 

only 0.9°C) in ambient wet bulb temperature, the savings are 

6.8%. Therefore, the benefit of using thermal energy storage 

solely for shifting cooling loads to more efficient periods of 

the day depends on how much ambient conditions change 

during the day.  

 Because COP is also a strong function of the load on each 

chiller, shifting load even with relatively constant ambient 

conditions can be beneficial. Because the load in Case 3 is 

relatively high, however, the system is more constrained and 

requires all chillers to be active. This leaves less opportunity 

for optimization as it reduces the system’s flexibility.  
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Table 1: A summary of the results of 3 different cases with an objective 

to minimize total energy consumption. Three solutions are compared: 

equal ratio chiller loading (where each chiller is assigned the same ratio 

of load with respect to its maximum capacity), static optimal chiller 

loading, and dynamic optimal chiller loading using storage. 

 Case 1 Case 2 Case 3 

TWB Range (°C)  6.4 5.6 0.9 

Min Cooling Load (kW) 37,900 39,600 62,500 

Max Cooling Load (kW) 55,400 65,300 76,400 

Total Energy 

Consumption (MWh) 
   

Equal Ratio Chiller 

Loading 
165.6 197.5 279.7 

Static Optimal Chiller 

Loading 
152.4 183.0 261.8 

Dynamic Optimal 

Chiller Loading 
150.0 179.7 260.8 

Total Savings 9.4% 9.0% 6.8% 

While thermal storage can shift cooling loads to periods 

where chillers can operate more efficiently, the major benefit 

of having thermal energy storage is its ability to shift 

electrical loads, not only cooling loads, temporally. 

Therefore, the true benefit of thermal energy storage must be 

quantified in terms of the savings achieved for the larger 

electrical system. The real-time value of electricity, for 

example, is often reflected in a time-of-use pricing structure, 

where electricity costs more during peak times of the day. If 

a simple time-of-use pricing structure is applied to this 

district cooling system, the savings change significantly. The 

price structure used in this case study is $0.1/kWh during off 

peak times and $0.2/kWh during peak times (12:00 PM to 

8:00 PM). When this pricing structure is applied with an 

objective to minimize total cost, rather than total energy, the 

savings from optimization and thermal energy storage 

increases to as much as 17.4%, as Table 2 indicates. 
Table 2: Daily cost for the three cases with an objective to minimize 

total cost subject to time of use electricity pricing. 

 Case 1 Case 2 Case 3 

Equal Ratio Chiller 

Loading 
$23,600 $28,600 $39,500 

Static Optimal Chiller 

Loading 
$21,800 $26,500 $37,000 

Dynamic Optimal 

Chiller Loading 
$19,500 $23,900 $34,500 

Total Savings 17.4% 16.4% 12.7% 

VII. CONCLUSIONS 

Optimization can be one of the most cost-effective 

methods to improve a utility network. For a cooling network 

with multiple chillers, several degrees of freedom exist, 

allowing an optimization scheme to dictate which chillers 

should be used and their corresponding cooling loads. The 

addition of thermal energy storage to a cooling network can 

also have a profound impact. While it does require some 

capital investment, a thermal energy storage tank is 

significantly less expensive than an industrial scale chiller, 

yet it can shift load to off-peak hours. Thermal energy 

storage also provides more degrees of freedom to a system, 

which can be exploited through optimization. Thermal 

storage allows for cooling loads to be shifted temporally, so 

that the system can take advantage of ambient conditions 

that are more amenable to efficient chiller operation. 

However, as this paper has shown, the true value of thermal 

storage comes by its ability to shift electrical loads, allowing 

the system to take advantage of less expensive off-peak 

rates. Thermal energy storage, therefore, can essentially be 

used as electrical storage, given that a significant portion of 

the electrical load in most climates is for HVAC purposes. 

It has been shown that for a quadratic chiller model the 

power minimization problem of static optimal chiller loading 

can be easily solved by a series of QPs, assuming different 

sets of chillers to be active. The convexity of such problems 

guarantees a global solution for each active set assumed. 

This QP problem can be solved very quickly. The dynamic 

optimal chiller loading problem is much more difficult to 

solve as it is inherently non-convex and has many degrees of 

freedom. However, it has been shown that the solution to the 

static optimal chiller loading problem can be used by the 

dynamic problem, significantly reducing the number of 

degrees of freedom and allowing for much faster solution 

times in addition to a better probability of converging to a 

global minimum for total energy consumption. 
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