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Abstract— This paper presents a state estimation algorithm
referred to as a cubature H∞ information filter (CH∞IF) for
nonlinear systems. The proposed algorithm is developed from
a cubature Kalman filter, an H∞ filter and an extended infor-
mation filter. The CH∞IF is a derivative free filter, where the
information state vector and information matrix are propagated
rather than the state vector and error covariance matrix.
Furthermore, the CH∞IF is extended for multi-sensor state
estimation. The efficacy of the CH∞IF is demonstrated by a
simulation example of a permanent magnet synchronous motor
in the presence of Gaussian and non-Gaussian noises.

I. Introduction

The Kalman filter has been the preferred state estimation

method over the last few decades. It was initially developed

for linear systems [1], and then extended to nonlinear sys-

tems as the extended Kalman filter (EKF) [2]. The naive

EKF is mainly suitable for mild nonlinear systems with

Gaussian noises and requires Jacobians for the prediction

and measurement update. The calculation or evaluation of

Jacobians can be avoided by using the derivative free fil-

ters like unscented Kalman filter (UKF) [21], particle filter

[22], cubature Kalman filter (CKF)[3], etc. In many real

life applications, these derivative free filters show improved

performance over the EKF. Unlike the particle filter, the UKF

and CKF only have a limited capability to deal with non-

Gaussian noises. One of the promising approaches to deal

with non-Gaussian noises is the H∞ filter which requires nei-

ther statistical noise properties nor the exact process model

[4-10]. For nonlinear systems, an extended H∞ filter (EH∞F)

can be used. However, the EH∞F is not a derivative free filter

as it require Jacobians and hence is not suitable for systems

with severe nonlinearities. To improve the performance of

EH∞F, a cubature H∞ filter (CH∞F) was proposed in [11].

CH∞F is a derivative free filter and can handle nonlinear and

non-Gaussian systems.

For multi-sensor state estimation, information filters are

preferred over Kalman filters. The information filter is an

algebraically equivalent form of Kalman filter. Similar to

the EKF, the information filter can also be extended for

nonlinear state estimation as the extended information filter

(EIF). In EIF, the parameters of interest are the information

state vector and the information matrix (inverse of covariance

Kumar Pakki. Bharani Chandra is a PhD student with Control
and Instrumentation Group, University of Leicester, UK, LE1 7RH,
bcp3@leicester.ac.uk, bharanichandra@gmail.com.

Da-Wei Gu is the Head of the Control and Instrumentation Group,
University of Leicester, UK, LE1 7RH. He is also a Chutian Visiting
Professor at the China Three Gorges University, Hubei, People’s Republic
of China, dag@leicester.ac.uk.

Ian Postlethwaite is Deputy Vice-Chancellor at Northumbria University,
UK, NE1 8ST, ian.postlethwaite@northumbria.ac.uk.

matrix). Information filters are easy in initialisation com-

pared to conventional Kalman filters and the update stage

is computationally economic. EIF has indeed several advan-

tages over EKF; for more details see [12, 24]. But, both EKFs

and EIFs are only suitable for ‘mild’ nonlinearities where

the first-order approximations of the nonlinear functions are

suitable and require analytical Jacobians for state estimation.

Recently, a cubature information filter (CIF) is proposed

as an alternative to EIF [14, 15]. The CIF is a derivative

free filter and is suitable for multi-sensor nonlinear state

estimation in the presence of Gaussian noises.

In this paper, we extend the CH∞F and CIF to form a

cubature H∞ information filter (CH∞IF). The CH∞IF is not

only useful for multi-state estimation but it can also handle

nonlinear and non-Gaussian systems.

The rest of the paper is structured as follows. Section

II includes the preliminaries of the EIF, EH∞F and CKF.

Section III describes the proposed cubature H∞ information

filter and its extension for multi-sensor state estimation.

Section IV is devoted to numerical simulations and Section

V concludes the paper.

II. Extended information filter, H∞ Filter and Cubature

Kalman filter

This section presents a brief introduction to EIF, H∞ Filter

and CKF. For detailed formulation and derivation of these

filtering algorithms, please see for example [12] for EIF, [16]

for H∞ filter and [3] for CKF.

A. Extended information filter

In EIF, the information state vector and the information

matrix are propagated rather than state vector and covariance.

Similar to EKF, EIF can also be represented by a recursive

process of prediction and measurement update. The EIF

equations are summarized below.

The nonlinear process and measurement models can be

represented as

xk = f(xk−1, uk−1) + wk−1 (1)

zk = h(xk, uk) + vk (2)

where k is the time index, xk is the state vector, uk is the

control input, zk is the measurement, wk−1 and vk are the

process and measurement noises, respectively. These noises

are assumed to be zero mean Gaussian-distributed random

variables with covariances of Qk−1 and Rk.

The predicted information state and information matrix are

ŷk|k−1 = Yk|k−1x̂k|k−1 (3)

Yk|k−1 = P−1
k|k−1 =

[

∇fxY−1
k−1|k−1∇fT

x +Qk−1

]−1
(4)
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where Pk|k−1 is the predicted covariance matrix and

x̂k|k−1 = f(x̂k−1|k−1, uk−1). (5)

The updated information state and information matrix are

ŷk|k = ŷk|k−1 + ik (6)

Yk|k = Yk|k−1 + Ik. (7)

The information state contribution, ik, and its associated

information matrix, Ik, are

ik = ∇hT
x R−1

k

[

νk + ∇hxx̂k|k−1

]

(8)

Ik = ∇hT
x R−1

k ∇hx (9)

where the measurement residual, νk, is

νk = zk − h(x̂k|k−1, uk) (10)

and ∇fx, and ∇hx are the Jacobians of f and h evaluated at

the best available state.

For the nonlinear information filter, the state vector and

covariance matrix can be recovered from information vector

and information matrix using MATLAB’s left division [18]

x̂k|k = Yk|k\ŷk|k (11)

Pk|k = Yk|k\In (12)

where In is the state vector sized identity matrix.

It is easy to initialise the information filter than the Kalman

filter. The update stage of information filter is computation-

ally simpler than the Kalman filter. EIF can be shown to

be more efficient than the EKF. But some of the drawbacks

inherent in the EKF still affect the EIF. These include the

nontrivial nature of the derivations of the Jacobian matrices

(and computation) and linearisation instability [12].

B. H∞ Filter

This section presents a brief introduction to an H∞ filter.

For a detailed formulation and derivation see for example

[27], [17], [16] and [8].

Consider the discrete process and measurement models

given in (1) and (2). The noise terms wk and vk may be

random with possibly unknown statistics, or they may be

deterministic. They may also have a nonzero mean.

A solution to the H∞ filter based on the game theory is

given in [17]. In H∞ filter, instead of directly estimating the

state one can estimate a linear combination of states

zk = Lkxk (13)

By replacing L with the identity matrix, the state vector can

be estimated.

The performance measure for the H∞ filter is

J∞ =

∑N−1
k=0 ‖zk − ẑk‖2Mk

‖x0 − x̂0‖2
P−1

0

+
∑N

k=0(‖wk‖2Q−1
k

+ ‖vk‖2R−1
k

)
(14)

where P0, Qk, Rk, and Mk are symmetric positive definite

weighing matrices chosen by the user based on the problem

at hand. The norm notation used in this section is ‖e‖2
S k
=

eT S ke.

The H∞ filter is designed to minimize the state estimation

error so that J∞ is bounded by a prescribed threshold under

the worst case wk, vk, and x0

sup J∞ < γ
2 (15)

where “sup” stands for supremum, γ > 0 is the error

attenuation parameter.

Based on (15), the designer should find x̂k so that J∞ <
γ2 holds for any disturbances in wk, vk, and x0. The best

the designer can do is to minimize J∞ under worst case

disturbances, then the H∞ filter can be interpreted as the

following ‘minimax’ problem

min max J∞

x̂k wk ,vk ,x0

(16)

For detailed analysis and solution to the H∞ filtering problem

see [17] and [16]. In this paper, we have used the EH∞F

algorithm given in [19]. The predicted state vector and

auxiliary matrix are

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (17)

Pk|k−1 = ∇fxPk−1|k−1∇fT
x +Qk (18)

and the inverse of the updated auxiliary matrix can be

obtained as

P−1
k|k = P−1

k|k−1 + ∇hT
x R−1

k ∇hx − γ−2In (19)

where In denotes the identity matrix of dimension n × n.

The updated state is

x̂k|k = x̂k|k−1 +K∞[zk − h(x̂k|k−1, uk)] (20)

where

K∞ = Pk|k−1∇hT
x [∇hxPk|k−1∇hT

x + Rk]−1 (21)

The Jacobians of f and h, ∇fx and ∇hx, are evaluated at

x̂k−1|k−1 and x̂k|k−1, respectively.

C. Cubature Kalman filter

The CKF is an appealing option for nonlinear state es-

timation when compared with EKF or UKF [3]. CKF use

the cubature rule to approximate different n-dimensional

Gaussian weighted integrals. See [3] for more details on the

problem formulation and derivation of CKF.

Consider the discrete process and measurement models

with Gaussian noises given in (1) and (2). The cubature

points required for the prediction step are

χi,k−1|k−1 =
√

Pk−1|k−1ξi + x̂k−1|k−1 (22)

where i = 1, 2, ..., 2n, n is the size of the state vector and ξi
is the i − th element of the following set

√
n
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. (23)

The propagated cubature points through the process model

are

χ
∗
i,k|k−1 = f(χi,k−1|k−1, uk−1). (24)
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The predicted mean and error covariance matrix are

x̂k|k−1 =
1

2n

2n
∑

i=1

χ
∗
i,k|k−1 (25)

Pk|k−1 =
1

2n

2n
∑

i=1

χ
∗
i,k|k−1χ

∗T
i,k|k−1 − x̂k|k−1x̂T

k|k−1 +Qk−1 (26)

Along with the obtained measurements and predicted states

and covariance matrix,the measurement update can be ob-

tained. The predicted measurement and the associated co-

variances required for the measurement update are

ẑk|k−1 =
1

2n

2n
∑

i=1

zi,k|k−1 (27)

Pzz,k|k−1 =
1

2n

2n
∑

i=1

zi,k|k−1zT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 + Rk (28)

Pxz,k|k−1 =
1

2n

2n
∑

i=1

χi,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1 (29)

where

zi,k|k−1 = h(χi,k|k−1, uk) (30)

χi,k|k−1 =
√

Pk|k−1ξi + x̂k|k−1. (31)

The updated state and covariance are

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1) (32)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (33)

with the Kalman gain is

Kk = Pxz,k|k−1P−1
zz,k|k−1. (34)

III. The Cubature H∞ Information Filter

This section describes the EH∞IF and CH∞IF. CH∞IF uses

CKF and H∞ filter in an EIF framework.

Consider the discrete process and measurement models

given in (1) and (2). The noise terms wk and vk may be

random with possibly unknown statistics, or they may be

deterministic. They may also have a nonzero mean. The

update step of EH∞IF is required to derive the CH∞IF and

is given below.

Let the updated information state vector and information

matrix of EH∞IF are ŷk|k and Yk|k. The updated information

matrix of EH∞IF is

P−1
k|k = P−1

k|k−1 + ∇hT
x R−1

k ∇hx − γ−2In

Yk|k = Yk|k−1 + ∇hT
x R−1

k ∇hx − γ−2In

= Yk|k−1 + Ik (35)

where

Ik = ∇hT
x R−1

k ∇hx − γ−2In (36)

The updated information state vector is the same as in

Section II. A.

ŷk|k = ŷk|k−1 + ik (37)

where

ik = ∇hT
x R−1

k

[

νk + ∇hxx̂k|k−1

]

(38)

The evaluation of Jacobains are required for (35) and (37).

By using the below linear error propagation property [32, 33,

34] of the error covariance and cross covariance along with

CKF equations, these Jacobians can be avoided.

Pzz,k|k−1 ≃ ∇hxPk|k−1∇hT
x (39)

Pxz,k|k−1 ≃ Pk|k−1∇hT
x (40)

From (40), transpose of the measurement Jacobian can be

written as

∇hT
x = P−1

k|k−1Pxz,k|k−1 (41)

Using (41) in (38) and (36), we get

Ik = P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 − γ
−2In (42)

ik = P−1
k|k−1Pxz,k|k−1R−1

k [νk + PT
xz,k|k−1P−T

k|k−1x̂k|k−1] (43)

The derivative free error covariance and cross error co-

variance, Pk|k−1 and Pk|k−1, can be obtained from (28) and

(29). The CH∞IF is summarised in Algorithm 1. In a similar

way, the unscented H∞ information filter (UH∞IF) can also

be derived.

A. CH∞IF in Multi-Sensor State Estimation

One of the main advantages of the information filter

is its ability to deal with multi-sensor data fusion [12,

28]. The information from different sensors can be easily

fused by simply adding the information contributions to the

information matrix and information vector [12, 28]. In multi-

sensor state estimation, the available observations consist of

measurements taken from different sensors. The prediction

step for multi-sensor state estimation is similar to that of

the Kalman or information filter. In the measurement update

step, the data from different sensors are fused for an efficient

and reliable estimation [29].

Let the different sensors used for state estimation be given

by

z j,k = h j,k(xk, uk) + v j,k; j = 1, 2, ...D (44)

where ‘D’ is the number of sensors.

The CH∞IF algorithm can be easily extended for multi-

sensor data fusion in which the basic update step of CH∞IF

is similar to CIF [15]. The updated information vector and

information matrix for multi-sensor CH∞IF are

ŷk|k = ŷk|k−1 +

D
∑

j=1

i j,k (45)

Yk|k = Yk|k−1 +

D
∑

j=1

I j,k. (46)

The information contributions of multi-sensor CH∞IF are

I j,k = MT
j,k|k−1R−1

j,kM j,k|k−1 − γ−2In (47)

i j,k = MT
j,k|k−1R−1

j,k[ν j,k +M j,k|k−1x̂k|k−1] (48)

where

MT
j,k|k−1 = P−1

k|k−1P j,xz,k|k−1. (49)
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Algorithm 1 Cubature H∞ Information Filter

Prediction

1: Evaluate the information matrix and the information state

vector

Yk|k−1 = P−1
k|k−1

ŷk|k−1 = Yk|k−1

1

2n

2n
∑

i=1

X
∗
i,k−1|k−1

where,

Pk|k−1 =
1

2n

2n
∑

i=1

χ
∗
i,k|k−1χ

∗T
i,k|k−1 − x̂k|k−1x̂T

k|k−1 +Qk−1

χi,k−1|k−1 =
√

Pk−1|k−1ξi + x̂k−1|k−1

χ
∗
i,k|k−1 = f(χi,k−1|k−1, uk−1).

Measurement Update

1: Evaluate the information state contribution and its asso-

ciated information matrix

Ik = Yk|k−1Pxz,k|k−1R−1
k PT

xz,k|k−1YT
k|k−1 − γ

−2In

ik = Yk|k−1Pxz,k|k−1R−1
k [νk + PT

xz,k|k−1YT
k|k−1x̂k|k−1]

where

Pxz,k|k−1 =
1

2n

2n
∑

i=1

χi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑT

k|k−1.

2: The estimated information vector and information matrix

of CH∞IF are given as:

Yk|k = Yk|k−1 + Ik

ŷk|k = ŷk|k−1 + ik.

Measurement Update for multi-sensor State estimation

ŷk|k = ŷk|k−1 +

D
∑

j=1

i j,k

Yk|k = Yk|k−1 +

D
∑

j=1

I j,k

where

I j,k = MT
j,k|k−1R−1

j,kM j,k|k−1 − γ−2In

i j,k = MT
j,k|k−1R−1

j,k[ν j,k +M j,k|k−1x̂k|k−1]

MT
j,k|k−1 = P−1

k|k−1P j,xz,k|k−1.

Recovery of Estimated State

x̂k|k = Y−1
k|kŷk|k

IV. State estimation for a Permanent Magnet Synchronous

Motor

In this section, we will consider the state estimation of a

two phase permanent magnet synchronous motor (PMSM)

in the presence of Gaussian and non-Gaussian noises. The

nonlinear model of PMSM is [16, 15]
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the outputs and inputs are

[

y1,k

y2,k

]

=

[

x1,k

x2,k

]

,

[

u1,k

u2,k

]

=

[

sin(0.002πk)

cos(0.002πk)

]

.

The first two states, x1 and x2, are currents, x3 is speed

and x4 is rotor angular position. The objective is to estimate

the rotor angular position and speed of PMSM using the x1

and x2. The remaining parameters are: R = 1.9Ω, λ=0.1, L

= 0.003H, J = 0.00018, F = 0.001 and T s = 0.001 s.

A. State estimation in presence of Gaussian noises

The Gaussian noises for simulations are generated using

the Matlab command ‘randn’. For the process noise, the

standard deviations of the four states are 3.33, 3.33, 0.5 and

0.001, respectively. For the measurement noise, the standard

deviations of both the outputs are 0.005.

The initial conditions for all the plant states are

0, the initial information vector is selected from

N
(

[

1 1 1 1
]T
, I4

)

. The tuning parameter γ for

CH∞IF is considered as 1. 500 Monte-Carlo runs were

performed to analyse the performance of the estimates. The

accumulated root mean square error (RMSE) for EH∞IF,

UH∞IF and CH∞IF are shown in Figure 1. The UH∞IF

tuning parameters are α = 0.001, β = 2 and κ = 3 − n

[30]. The CH∞IF performance is superior than EH∞IF

and UH∞IF. The convergence rate of CH∞IF is faster than

EH∞IF and UH∞IF. The average accumulated RMSEs are

0.8491, 0.6312 and 0.2747 for EH∞IF, UH∞IF and CH∞IF,

respectively.

B. State estimation in presence of non-Gaussian noises

In some of the control applications, the process and

measurement noise can be approximated by a Rayleigh

probability distribution function [31]. Rayleigh noise can be

generated using the Matlab command ‘raylrnd’. To show the

efficacy of the proposed method in the presence of non-

Gaussian noise, the simulations in Section IV-A are repeated

with Rayleigh noise. In the presence of Rayleigh noise, the

accumulated RMSEs using EH∞IF, UH∞IF and CH∞IF are

shown in Figure 2. In this case also, the performance of

CH∞IF is superior than EH∞IF and UH∞IF. The average

accumulated RMSEs are 6.9391, 2.3498 and 2.3284 for

EH∞IF, UH∞IF and CH∞IF, respectively.

The proposed cubature H∞ information filter can be further

tested for non-Gaussian noises using high frequency sinusoid

disturbances.
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Fig. 1. Accumulated RMSEs of PMSM in the presence of Gaussian
noises. Solid, dashed and dashed-dotted lines represents CH∞IF, UH∞IF
and EH∞IF , respectively.
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Fig. 2. Accumulated RMSEs of PMSM in the presence of Rayleigh
noises. Solid, dashed and dashed-dotted lines represents CH∞IF, UH∞IF
and EH∞IF , respectively.

V. Conclusions

In this paper, we presented a cubature H∞ information

filter. The proposed filter is derived from cubature Kalman

filter, extended H∞ filter and from an extended information

filter. Some of the desirable features of the proposed filter

includes derivative free nonlinear state estimation, compu-

tationally easier measurement update, capability to handle

non-Gaussian noises, easy extension for multi-sensor state

estimation.

The efficacy of the proposed algorithm is verified on a

simulation example of PMSM. The superior performance

of cubature H∞ information filter over extended H∞ and

unscented H∞ information filters was demonstrated in the

presence of Gaussian and non-Gaussian noises.
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