
Optimal Control of Airport Operations with Gate Capacity Constraints

Harshad Khadilkar and Hamsa Balakrishnan

Abstract— The mitigation of airport surface congestion is
an important step towards increasing the efficiency of the air
transportation system, and decreasing flight delays. This paper
proposes a strategy to control the release of departing flights
from their gates with the specific objective of reducing their
taxi times and fuel consumption, while limiting the impact
on airport throughput. The proposed strategy also explicitly
accounts for the practical constraints that arise due to limited
gate resources at the airport. A stochastic network abstraction
of the airport surface is used to model aircraft movement, and
the optimal release time for each aircraft is calculated using
dynamic programming. Simulations of operations at Boston’s
Logan International Airport in the US are used to illustrate
the advantages of the proposed policies.

I. INTRODUCTION

Airport surface congestion is one of the major problems
faced by the air traffic system, and results in a significant
amount of aircraft fuel consumption and emissions even
before takeoff. Since the total amount of surface fuel burn is
roughly proportional to the taxi times of aircraft [1], reducing
aircraft taxi times significantly reduces fuel consumption. A
promising congestion mitigation approach is to hold aircraft
at their gates until it is optimal for them to start taxiing, as
was demonstrated in [2]; however, limited gate availability
can pose a challenge to the implementation of such protocols
at major airports. It is therefore important to account for such
constraints when designing congestion control strategies.

Several studies have found that holding aircraft at the
gate when an airport is experiencing congestion can help
reduce taxi times and fuel burn. The proposed protocols
range from pure gate-holding [3], [4], [5], [6] to explicit
control of surface movement [7], [8], [9]. In contrast to
aircraft in the departure queue at a runway, aircraft waiting
at the gate have their engines turned off. These aircraft
encounter lower congestion on the surface, thus reducing
their taxi times. The primary aim of these prior studies
was to limit surface congestion, and to then evaluate the
incidental benefits in fuel burn [2]. Constraints such as the
availability of gates at the airport have not been explicitly
considered in literature. However, these factors are important
in practice, especially when departures are being held at the
gate. Arriving aircraft that are waiting for an occupied gate
to be vacated can block active taxiways and/or alleyways,

Harshad Khadilkar is a doctoral candidate in the Department of Aero-
nautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA harshadk@mit.edu.

Hamsa Balakrishnan is an Associate Professor in the Department of Aero-
nautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA hamsa@mit.edu.

This work was supported in part by NSF through a CAREER Award
(ECCS-0745237) and CPS:Large:ActionWebs (Award number 0931843).

Fig. 1. Network model of Boston Logan airport.

which is undesirable at space-constrained airports. This paper
focuses on the development of a pushback control strategy
that explicitly targets fuel savings and taxi time reduction.
At the same time, it balances airport performance with gate
availability constraints.

This paper adopts a network abstraction of airport oper-
ations, developed in prior work [10]. A gate is a parking
bay where passengers board and disembark from aircraft. A
collection of proximal gates is called a terminal. The network
model used in this paper is comprised of gates (sources),
major taxiways (links), and runways (sinks). The network
for Boston Logan International Airport (BOS) is shown in
Fig. 1. Gates at each of the four main terminals are located
at nodes 1, 2, 3 and 8 respectively. The runways are at nodes
6, 7, 10, 11, 12, 13, 14 and 15. There are some nodes (for
example, 4 and 5), that are neither sources nor sinks, but are
intersections of major taxiways.

Pushback is the process of pushing an aircraft back from
the gate, in preparation for taxi to the runway. Aircraft do not
start their engines until pushback is completed, and therefore
do not consume any fuel while at the gate. During this
time, electrical power for systems such as air conditioning is
derived from auxiliary ground-based sources which consume
much less fuel than an idling aircraft engine. Pushback
delay is an instruction given to an aircraft by the air traffic
controller, asking it to delay the start of its pushback process.
The pushback buffer is the set of aircraft that are currently
parked at a given terminal.

Sec. II of this paper describes a stochastic airport taxi
model that was developed from surface surveillance data.
Sec. III presents the development of a control strategy using

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 608

a reduced network model. Sec. IV extends the formulation to
the complete airport network, using BOS as an example. The
proposed control strategy is shown through simulations to
reduce taxi times and fuel burn, while maintaining a balance
between surface congestion and gate availability.

II. MODEL OF AIRCRAFT TAXI TIMES

A set of random processes is used to model the taxi
operations of aircraft. The taxi-out time of each aircraft,
on each link in the network, is the sum of two random
variables: (i) unimpeded taxi time, and (ii) stationary time.
The expected taxi-out time over each link increases with
congestion, that is, the number of departing aircraft already
on the surface when the current aircraft leaves its gate. In the
rest of this paper, this number is referred to as the surface
traffic level, k. For each link l, the expectation of taxi time
tl for a given surface traffic level is

E[tl|k] = ηl + k
Xl

µl
. (1)

Here, ηl is a constant denoting the expected taxi time across
link l when k = 0, that is, the expected unimpeded time.
The term Xl

µl
is also constant. The expected time of each

individual stop on the link is given by 1
µl

, while Xl defines
the sensitivity of the number of stops to the surface traffic
level. The total expected taxi-out time for a given aircraft
is calculated by summing the expected taxi times on all the
links in its path. The taxi path is assigned by the air traffic
controller, and is assumed to be known beforehand.

III. SINGLE-LINK CONTROL STRATEGY

This section develops the control strategy for a simplified
airport model, where it is assumed that the network is
composed of only one link. A set of gates (the pushback
buffer) is located at the source node of the link, and the
runway is located at the sink node.

A. Simplified model description

Consider the single-link network with taxi time parameters
η, X and µ as described in Sec. II. If this link is in steady
state at a traffic level of k, the average taxi time across it is
given by Eq. (1), and the average inter-departure time from
the link is

∆tk =
E[tl|k]

k
=
η

k
+
X

µ
. (2)

The minimum inter-departure time is achieved as k → ∞,
and is given by ∆t∞ = X

µ . This value characterizes the
theoretical maximum throughput of the link, but corresponds
to an infinite expected taxi-out time. The model predicts that
this maximum throughput will be achieved asymptotically.
This performance saturation is in agreement with empirical
studies [2], [11], which are based on operational airport data.

The single-link case assumes that there is a single terminal
with a corresponding pushback buffer that holds all the
aircraft at the airport. The setup is illustrated in Fig. 2.
Aircraft enter the buffer once they land at the airport and
pull into their gates. This arrival process is assumed to be

Controller

Arrivals at rate β

N̄ = 1

k = 2

Departure

Fig. 2. Illustration of the single-link model with a single buffer. The hashed
circle denotes the aircraft that is scheduled to push back next, the solid circle
denotes a gate that is occupied-active, and the solid square denotes a gate
that is occupied-inactive. Aircraft that are actively taxiing are denoted by
double-hashed circles.

Poisson with a rate β. Note that the gate arrival process is
stochastic even at real airports. Uncertainty in gate arrival
times is introduced both by errors in predicted landing times
as well as by the variability in taxi-in times. A probabilistic
rate is a robust way to channel arrival information to the
departure control algorithm. On arrival to the gate, each
aircraft begins a turnaround process with loading and un-
loading of passengers and cargo. Gates containing aircraft
that are being turned around are tagged as being occupied-
inactive. Once this is completed, these aircraft call the air
traffic controller for permission to pushback and are tagged
as being occupied-active. The gate capacity of the terminal
is denoted by Nmax. The available gate capacity (denoted
N̄) is therefore the total number of gates (Nmax) less the
number of gates currently occupied, and takes values N̄ ∈
{0, 1, . . . , Nmax}. If an aircraft arrives when all gates are
occupied, it is accommodated by the immediate release of a
gate-held aircraft from the pushback buffer.

B. System dynamics

As described in Sec. III-A, the surface traffic level k
drives the taxi-out times, while the available gate capacity N̄
governs the maximum alowable gate delays. The state of the
system is defined by the pair (N̄ , k). Control is implemented
by assigning a delay of u time units to the first aircraft in
the pushback buffer, thereby maintaining a First-Come-First-
Served (FCFS) order. Two independent stochastic processes
run during this time interval u: (i) Aircraft arrive as a
Poisson process with rate β, and (ii) departures that have
been previously released depart from the link. If the epochs
are defined by the instant of each pushback, state transitions
between successive epochs are stochastic. Pushback delay
(the control input) is assigned to the next aircraft in the
pushback buffer at the beginning of each epoch.

Let pθ1θ2(u) denote the transition probability from state
θ1 = (N̄1, k1) to θ2 = (N̄2, k2) after a time u. Since N̄
and k are governed by two independent random processes,
the state transition probability can be decomposed into the
probability of transition from N̄1 to N̄2 and the one from k1

to k2 as
pθ1θ2(u) = pN̄1N̄2

(u) pk1k2(u). (3)

The first term in the right hand side is easy to calculate, since
it is governed by a Poisson process of rate β. The second
term is more difficult to estimate, since aircraft already on the

609

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Final state k
2

p k1
k2

(u
)

Starting state: k
1
 = 12, delay: u = 50

Simulation
Theoretical

Fig. 3. Comparison of transition probabilities of surface traffic for one
link, calculated using Monte Carlo simulations and using the theoretical
approximation.

link will be randomly distributed at the time of delay assign-
ment. A good approximation can be obtained by one of two
methods. The most straightforward solution is to carry out
Monte Carlo simulations. Alternatively, approximate transi-
tion probabilities can be calculated using the expected time-
to-go ζk for each aircraft. The memoryless property of the
component processes in the taxi time model allows ζk to be
estimated for a given taxi path [10]. The probability pk1k2(u)
can be calculated by assuming that the departure time of
each aircraft is an exponential random variable with mean ζk.
The resulting estimates are a good match with the simulated
empirical distributions, as illustrated for a sample link in Fig.
3. Similar matches are seen for realistic multi-link paths in
the BOS network. The theoretical approximation procedure
is more useful than the Monte Carlo simulations, since it
allows transition probabilities to be calculated quickly for
arbitrary networks.

C. Dynamic programming formulation

As seen in Sec. III-B, the state of the system is given by
(N̄ , k), that is, the available gate capacity and the surface
traffic level. The control variable is the pushback delay
assigned to the first aircraft in the pushback buffer, which
follows an FCFS order. State transition probabilities can be
calculated using simulation or a theoretical approximation.
However, while there is a finite number of buffer states
(available gate capacity), the surface traffic level k can take
any non-negative integer value, and the set of possible control
inputs is the entire positive real line. To be able to compute
optimal control values, the problem is reduced to a finite size
by limiting the maximum traffic level to a value kmax. The set
of control variables is also discretized and restricted to a set
U. Thus the state space is limited to N̄ ∈ {0, 1, . . . , Nmax}
and k ∈ {0, 1, . . . , kmax}, while the allowed control values
are limited to the finite discrete set U. The elements of U
can be defined by the granularity required and any additional
user preferences, such as the maximum gate delay acceptable
to airlines. It is important to note that the traffic level is
assumed to be bounded for policy calculation only, and not
for the simulations presented in Sec. IV-C.

The costs in the current formulation are incurred by

individual aircraft and by the airport. The cost for each
aircraft is its fuel burn on the ground, which is proportional
to its taxi time [1]. From Eq. (1), this component is η+kXµ .
Since η is a constant, it can be omitted from the cost function.
A second component of cost is incurred by the airport, as a
result of the loss of throughput compared to the theoretical
maximum. Since the cost function is in time units, this
throughput loss is represented by the difference between the
actual and the theoretical minimum inter-departure times.
From Eq. (2), the penalty for throughput loss is given by
∆tk − ∆t∞ = η

k . This term is negligible for moderate to
large traffic levels, but heavily penalizes low traffic levels.
As a consequence, it drives the system away from states in
which the runway may remain unused due to unavailability
of departing aircraft. Finally, the pushback delay itself is part
of the cost function. It corresponds to fuel consumption by
auxiliary ground-based power sources at the gate. This cost
component is thus proportional to the delay u. In summary,
the expected per-stage cost for the system is given by

g(θ, u) = g(N̄ , k, u) = E
[
kp(u)

X

µ
+ c1

η

kp(u)

]
+ c2 u.

The quantity kp(u) is the projected traffic level after time u
and is characterized by pk1k2(u). The constants c1 and c2 are
weights placed on the throughput loss and pushback delay,
respectively. Finally, an overflow tolerance γ is defined,
which is the maximum allowable probability of exceeding
gate capacity given the current gate availability N̄ and delay
u. For the single-link case, γ corresponds to the probability
of there being more than N̄ arrivals to the buffer in time u. In
physical terms, an overflow corresponds to an arrival waiting
for a gate to be vacated by a departing aircraft. The value
of γ sets an upper bound on the maximum delay assigned at
any current state θ1, thus defining a feasible subspace U(θ1)
of the complete control space U.

Once the stage cost and overflow tolerance are defined
and the state transition probabilities are known, it is possible
to solve for the optimal pushback delay at each state. The
operating period for an airport lasts for the entire day, while
the length of assigned pushback delays is expected to be a
few minutes. Therefore, an infinite horizon formulation is
the most suited to the current system. For computational
simplicity, future costs are discounted by a factor α =
0.99. By keeping the discount factor close to 1, sufficient
importance is given to future states of the airport. As shown
in [12], solving the set of Bellman equations in Eq. (4) yields
the optimal policies u(θ1) and costs J(θ1):

J(θ1) = min
u∈U(θ1)

(
g(θ1, u) + α

∑
θ2

pθ1θ2(u) J(θ2)

)
. (4)

D. Results for single-link formulation

The system of equations defined by Eq. (4) can be solved
using the method of policy iteration, since this ensures
termination in a finite number of steps [13]. Fig. 4 shows the
resulting optimal policies for a given set of link and policy

610

0 5 10 15 20
0

20

40

60

80

100

120

140

Surface traffic level, k

O
pt

im
al

 d
el

ay
, u

 (
se

c)

Nbar = ∞
Nbar = 9

Nbar = 8

Nbar = 7

Nbar = 6

Nbar = 5

Nbar = 4

Nbar <= 3

Fig. 4. Optimal policies for a single link. The link parameters are η = 55,
X = 0.2, µ = 0.02, β = 0.06, and Nmax = 10. The policy parameters
are α = 0.99, c1 = 5, c2 = 0.9 and γ = 0.05. Policy parameters are
kmax = 20 and U = {0, 10, . . . , 180}.

parameters. The value of β corresponds to an average inter-
arrival time at the gates of 16.6 sec. As described in Sec. III-
C, c1 and c2 weigh taxi time and fuel against throughput loss
and pushback delay respectively. In this case, it is assumed
that c1 = 5 and c2 = 0.9. An intuitive understanding of their
effects can be gained by considering the tradeoff at some
specific traffic level, say E[kp(u)] = 10. Changing this value
to E[kp(u)] = 11 would increase the expected taxi time cost
by X

µ = 10, and reduce the expected throughput cost by
c1η (1

10 −
1
11) = 2.5. Thus the total additional cost would

be 7.5 units, which would have to be offset by an 8.3 sec
reduction in pushback delay. Note that this tradeoff is only
approximate, since the transition probabilities also depend
on the available gate capacity N̄ , and because the algorithm
considers future costs as well.

In Fig. 4, the x-axis denotes the surface traffic level at
the time of delay calculation, while the different curves
denote the current availability of gates. The y-axis shows the
optimal delay to be assigned to each (N̄ , k) combination. The
uppermost solid curve shows the policy calculated without
consideration for the number of available gates, which is
equivalent to an infinite gate capacity. A comparison of this
curve with the other ones shows the effect of the overflow
tolerance γ. As the buffer becomes full, the assigned delays
decrease to the point where all aircraft are released immedi-
ately for N̄ ≤ 3. Note that this does not guarantee that gate
capacity will never be exceeded; for example, closely spaced
arrivals during a delay assigned at some state with N̄ ≥ 4
may still lead to an early pushback from the buffer.

Fig. 5 shows a simulation of the single-link network, with
the control policies from Fig. 4. The infinite gate capacity
policy results in an overflow of gates during a large portion
of the simulation. By contrast, the finite gate capacity policy
admits buffer overflow only once, approximately 6250 sec
from the start of the simulation. When there is sufficient
available gate capacity, the average taxi times for both poli-
cies are comparable. The finite gate capacity policy achieves
the same benefits as the infinite capacity policy for moderate

departure demand. When demand is high, the finite capacity
policy allows some deterioration in taxi time performance
in exchange for smooth operations. The apparent advantage
of the infinite capacity policy in terms of taxi times under
high demand, is an artifact of the simulation procedure. As
explained earlier, frequent gate conflicts result in operational
difficulties that lead to large delays that are not simulated
here.

IV. AIRPORT NETWORK CONTROL STRATEGY

While the single-link case is useful for simple networks,
airports typically have complex layouts as well as several
terminals (source nodes). In this section, the control strategy
developed in Sec. III is extended to the full airport network
with some modifications.

A. Configuration-specific network model

The network model for an airport is composed of several
interconnecting links, as explained in Sec. II. Since most
airports typically use only one or two departure runways at
a time, only a subset of these links are active simultaneously.
For example, when BOS is using Runway 27 for departures,
only the highlighted part of the network in Fig. 1 is active.
There are multiple pushback buffers in the network model,
one corresponding to each source node (airport terminal).
There are four such nodes at BOS (labeled 1, 2, 3 and 8), with
their capacities defined by the gate capacity at each terminal
of the airport. The runway (sink node) is labeled node 6.
Since aircraft do not taxi in circular paths, the configuration-
specific graphs are directed. There are only a few unique
paths from each source node to the sink, which are assumed
to be known a priori as described earlier.

The gate capacities of the four terminals are assumed to be
25, 20, 25 and 20 aircraft, which reflects the actual BOS gate
capacity [14]. For policy calculation, the total arrival rate to
these buffers is assumed to be β = 0.02, or an average of one
arrival every 50 seconds. The terminal-specific arrival rates

50

100

150

200

250

A
v.

 ta
xi

 ti
m

e
(s

ec
)

Infinite gate capacity policy
Finite gate capacity policy

0

10

20

S
ur

fa
ce

 tr
af

fic
le

ve
l,

k

0 2000 4000 6000 8000 10000
0

5

10

Time of pushback call (sec)

G
at

es

oc
cu

pi
ed

Fig. 5. Simulation of two control policies applied to a single-link network.
The link parameters are η = 55, X = 0.2, µ = 0.02, β = 0.06, and
Nmax = 10. The policy parameters are α = 0.99, c1 = 5, c2 = 0.9 and
γ = 0.05. Policy parameters are kmax = 20 and U = {0, 10, . . . , 180}.

611

Departure

Arrivals at rate β

k

β1

β2

β3

β4

N̄1 = 1

N̄2 = 0

N̄3 = 2

N̄4 = 2

Controller
umax

snext

Fig. 6. Illustration of the multiple terminal model. The maximum delay
corresponding to the combination of the four gate occupancy levels is umax.
The hashed circle denotes the aircraft that is scheduled to push back next,
and this source information is encoded in snext. As before, the solid circles
are the active aircraft in the pushback buffers, and the solid squares denote
aircraft that are inactive (at their gates, but not ready to pushback). Aircraft
that are actively taxiing are denoted by double-hashed circles.

βi are assumed to be proportional to their gate capacities with∑
βi = β. Aircraft that arrive at their gates are assumed to

be inactive for the duration of their turnaround process, after
which are ready to pushback.

B. State aggregation procedure

It is possible, in theory, to extend the single-link policy cal-
culation procedure described in Sec. III-B to the calculation
of optimal policies for the full network model. As shown in
Fig. 6, the Poisson arrival process with rate β is split into four
Poisson processes to the various terminals, each with rate βi.
Changes in gate occupancy levels are independent of changes
in the surface traffic level, thus maintaining the decoupled
nature of Eq. (3). However, the size of the resulting problem
is very large, for two main reasons. Firstly, the optimal policy
can vary depending on which source the next aircraft is
leaving from. Additionally, with the given gate capacities,
assuming that the maximum modeled traffic level is kmax =
25 and that the control input set is U = {0, 60, . . . , 300},
the system has 31 million possible states. Solving the exact
dynamic programming problem for a realistic airport model
is therefore computationally infeasible.

Instead, state aggregation can be used to reduce the size
of the problem [13]. Note that the combined effect of all
four buffer states is the imposition of a constraint on the
maximum delay that can be assigned. Using the maximum
delay value umax instead of the buffer states for policy
calculation significantly reduces the size of the problem. In
the BOS example being considered in this paper, the number
of states decreases from 31 million to 624, corresponding
to the product of 4 source nodes, 26 traffic levels and 6
choices for assigned delay. The state definition for policy
calculation is now (snext, k, umax), where snext is the source
corresponding to the next aircraft cleared for pushback.
Sources for future states are assumed to be stochastic, with
probabilities proportional to the gate capacities. Note that
each gate availabilty state [N̄1, N̄2, N̄3, N̄4] defines a unique
umax, but the mapping is not unique in the opposite direction.
Pushbacks are assumed to be First-Come-First-Served across
all sources, except when one of the buffers exceeds its
capacity, and a pushback is immediately released from that
particular buffer. The aggregate formulation can be solved

0 5 10 15 20 25
0

60

120

180

240

300

Surface traffic, k

D
el

ay
 (

se
c)

u

max
 = 300

u
max

 = 240

u
max

 = 180

u
max

 = 120

u
max

 = 60

u
max

 = 0

Fig. 7. Optimal policies for Boston Logan, when departures take place
from Runway 27.

using the corresponding Bellman equations, analogous to the
procedure described in Sec. III-C.

C. Results for airport network model formulation

The optimal delays calculated using the complete BOS
network model for departures from Runway 27 are shown
in Fig. 7. The policy illustrated in the figure is only for the
departures leaving from source node 1. Similar policies are
calculated for all four source nodes, and exhibit a similar
staircase structure, as was previously seen in Fig. 4. The
main difference is that in the complete network case, the
different curves correspond to different umax values, each of
which encompasses several thousand buffer states. Since all
the umax curves level off before kmax = 25, it is assumed
that the corresponding maximum allowable delay is assigned
to all traffic levels above kmax.

0

20

40

S
ur

fa
ce

 tr
af

fic
, k

0

25

G
at

es
 o

cc
up

ie
d

source = 1
source = 3

0 5000 10000 15000 20000
0

20

Time (sec)

G
at

es
 o

cc
up

ie
d

source = 2
source = 8

Surface traffic

Fig. 8. Simulation of BOS operations for the runway configuration with
departures from Runway 27. Pushback delays are calculated using the
dynamic programming formulation proposed in Sec. IV-B.

612

0 5000 10000 15000 20000
0

10

20

30

40

50

60

Time (sec)

S
ur

fa
ce

 tr
af

fic
, k

Controlled
Unrestricted

Fig. 9. Comparison of traffic levels with unrestricted pushbacks and the
proposed control strategy.

0 900 1800 2700 3600
0

1

2

3

4

5

6
x 10

−4

Taxi time (sec)

E
m

pi
ric

al
 fr

eq
ue

nc
y

Controlled
Unrestricted

Fig. 10. Empirical distribution of taxi times under the two pushback
strategies. The proposed control strategy is seen to result in significantly
lower taxi times.

A simulation of the full departure process using the
optimal policies calculated above is shown in Fig. 8. Note
that the arrival rate β = 0.02 is very high considering
the usual operational characteristics of BOS. However, this
somewhat unrealistic level of demand emphasizes the dif-
ferences between the proposed strategy and current control
procedures. The simulation parameters are the same as those
used previously, and the turnaround times are drawn from a
uniform distribution that ranges from 30 to 45 min [15].

Fig. 8 (top) shows the variation of the surface traffic level
with time. The middle plot shows the gate occupancy levels
for the two larger terminals, while the bottom plot shows the
gate occupancies for the smaller terminals. Two clear traffic
peaks are seen in the simulation. In this example, both peaks
are caused by the buffer corresponding to node 8 becoming
full, thus necessitating pushbacks in rapid succession. There
are 7 cases of buffer overflow amongst the 450 aircraft
that pushed back during this period, which is reasonable
compared to the overflow tolerance value (γ) of 5%.

Fig. 9 compares the results of the proposed control strategy
with the current protocol, which is to release each aircraft as
soon as it is ready. Aircraft called ready for pushback at the
same times in both simulations. It is seen that for most of the
simulation period, the traffic levels are higher in the case of
unrestricted pushbacks. Fig. 10 shows that the corresponding
taxi times are also higher. In this simulation, the proposed
control strategy reduced taxi-out times by an average of 565
sec per aircraft.

V. CONCLUSIONS

This paper proposed a strategy for controlling pushbacks at
an airport, that explicitly accounted for practical constraints
such as gate availability. The objectives of the proposed
optimization formulation were reduced taxi times, fuel burn
and flight delays, with a limited impact on airport throughput.
A realistic model of the airport surface, based on actual
surface surveillance data, was used for taxi time prediction
and simulation, and optimal control inputs were calculated
using dynamic programming. The proposed strategy was
shown through simulations to significantly reduce both taxi-
out times and situations in which arrivals are delayed waiting
for a gate. By generating a lookup table for pushback
delays based on easily observable quantities such as the
surface traffic level and gate occupancy, this method can be
easily implemented at airports without requiring significant
procedural modifications.

REFERENCES

[1] H. Khadilkar and H. Balakrishnan, “Estimation of aircraft taxi-out
fuel burn using Flight Data Recorder archives,” in AIAA Guidance,
Navigation, and Control Conference, Portland, OR, August 2011.

[2] I. Simaiakis, H. Khadilkar, H. Balakrishnan, T. G. Reynolds, R. J.
Hansman, B. Reilly, and S. Urlass, “Demonstration of reduced airport
congestion through pushback rate control,” in USA/Europe Air Traffic
Management Research and Development Seminar, Berlin, Germany,
June 2011.

[3] E. Feron, R. J. Hansman, A. R. Odoni, R. Cots, B. Delcaire, W. Hall,
H. Idris, A. Muharremoglu, and N. Pujet, “The departure planner: A
conceptual discussion,” White paper, MIT, International Center for Air
Transportation, December 1997.

[4] H. Idris, B. Delcaire, I. Anagnostakis, W. Hall, N. Pujet, E. Feron, R. J.
Hansman, J.-P. Clarke, and A. Odoni, “Identification of flow constraint
and control points in departure operations at airport systems,” in AIAA
Guidance, Navigation and Control Conference, August 1998.

[5] N. Pujet, B. Delcaire, and E. Feron, “Input-output modeling and
control of the departure process of congested airports,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit, Portland,
OR, 1999, pp. 1835–1852.

[6] P. Burgain, “On the control of aircraft departure operations,” Ph.D.
dissertation, Georgia Institute of Technology, November 2010.

[7] C. Brinton, J. Krozel, B. Capozzi, and S. Atkins, “Improved taxi
prediction algorithms for the surface management system,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit, Monterey,
CA, August 2002.

[8] H. Balakrishnan and Y. Jung, “A framework for coordinated surface
operations planning at Dallas-Fort Worth International Airport,” in
AIAA Guidance, Navigation, and Control Conference, Hilton Head,
NC, August 2007.

[9] H. Lee, I. Simaiakis, and H. Balakrishnan, “A comparison of aircraft
trajectory-based and aggregate queue-based control of airport taxi
processes,” in Digital Avionics Systems Conference, Salt Lake City,
UT, October 2010.

[10] H. Khadilkar and H. Balakrishnan, “Network congestion control of
airport surface operations,” to appear in Journal of Guidance, Control
and Dynamics.

[11] ——, “Metrics to evaluate airport operational performance using
surface surveillance data,” to appear in Air Traffic Control Quarterly.

[12] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1.
MA: Athena Scientific, 2005.

[13] ——, Dynamic Programming and Optimal Control, Vol. 2. MA:
Athena Scientific, 2007.

[14] “About Logan,” http://www.massport.com/logan-airport/about-
logan/Pages/Default.aspx, retrieved September 2012.

[15] C.-L. Wu and R. Caves, “Modelling and optimization of aircraft
turnaround time at an airport,” Transportation Planning and Technol-
ogy, vol. 27, no. 1, pp. 47–66, 2004.

613

