
Modeling and Verification of a Robotic Surgical System
using Hybrid Input/Output Automata

Marta Capiluppi2, Luzie Schreiter1, Paolo Fiorini2, Joerg Raczkowsky1, Heinz Woern1

Abstract— The area of robotic surgical systems has to deal
with several important safety aspects to ensure that the patient
and the Operating Room staff are safe. A robotic surgical
system has to fulfill specific safety requirements and to ensure
that the system reacts like its specification. To this end, a
verification process is necessary. In this paper an architecture
for robotic surgery is modeled using the framework of Hybrid
Input/Output Automata (HIOAs). A case study based on a
surgical robotic operation scenario is presented and modeled
using HIOAs. Exploiting the modularity and compositionality
theory of HIOAs, the verification of the system is performed.

Index Terms— Robotic Surgery, Hybrid systems, Hybrid I/O
Automaton, Verification.

I. INTRODUCTION

Surgical robots were first introduced for neurosurgical
intervention guidance, and have later been employed for
laparoscopy, prostatectomy, and orthopaedic surgery. More
recently, applications of robotic technology to surgery were
aimed at neurosurgical procedures. Finally, surgical robots
for soft tissues and more general procedures were introduced
into the market. The use of robots in surgery helps the
surgeons in achieving basic and repetitive tasks, leaving to
the experience of the medical staff more difficult and context-
related operations.

Hence surgical robots need to cooperate with the medical
staff (surgeons and nurses) to perform the surgical operation
and interact with patients. This leads to the necessity of
improving the safety aspects of the man-machine interaction.
Indeed safety is an important aspect both of surgical and
robotic systems [1]. Indeed, in many other related fields there
are different approaches to safety verification, for instance
in the area of autonomous vehicles [2] and in the area of
domestic robots [3]. Safety verification includes the appli-
cation of methods, procedures, tests and other evaluations,
to determine whether a system is or has been operating as
intended.

Our goal is to describe a procedure for verifying safety
in a surgical robotic system that is able to deal with the
issues created by a medical context. Safety is related to
reliability of the system under study, hence to redundancy
and component replacement. We start from an architectural

*This research has been supported by the coordination action EuroSurge
(grant no. 288233) funded by the European Commission in the 7th EC
framework program.

1Department of Informatics, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany {luzie.schreiter@kit.edu,
joerg.raczkowsky@kit.edu, woern@kit.edu}

2 Dipartimento di Informatica, Università di Verona, Strada le Gra-
zie 15 37134 Verona, Italy {marta.capiluppi@univr.it,
paolo.fiorini@univr.it}

design that should enable the verification of some component
properties that are maintained in their composition, in order
to prove that the system is still behaving in the desired way
without compromising the safety property.

In particular, since a surgical robotic system features both
continuous and discrete event dynamics, it can be seen
as a hybrid system [4]. Indeed robotic systems have been
represented as hybrid systems in different frameworks, even
for verification of safety and reachability properties, as in [5].
In [6] a surgical robot is modeled using the hybrid automata
model of [7] and some reachability properties are verified.

The scope of our work is to find a verification procedure
that is able to follow the modular nature of the system
under consideration, in order to prove its properties in a
compositional way. Hence, we decided to use the framework
of Hybrid Input/Output Automata (HIOAs) of [8] to model
the surgical robotic system under consideration, due to its
well assessed compositionality and verification theory. Verifi-
cation issues and extensions of HIOAs have been introduced
in [9], [10]. The HIOAs have been used for modelling and
verification of safety relevant applications, for instance air
traffic control [11] [12], vehicle control [13], [14], [15], [16]
and bioinformatics [17].

In our work we start from a very simple example of
surgical robotic system, where a manipulator has to reach a
desired target. The surgical aspects are not faced in this work,
because our aim is to prove in a first instance the modularity
of the properties of the system under consideration. To this
end we will use the invariant approach in [9]. Using the
compositional theory for HIOAs, we will prove that the
properties that are true for the automaton of each component,
are also true for the overall system, seen as the composition
of the automata. Although the approaches used in this paper
are not new, they have never been applied to surgical robots
with the aim of verifying the safety properties in a compo-
sitional way. We want to stress that the compositionality is
very useful in the considered context, since a surgical system
interacting with human beings has to be reliable in case of
component changes, either due to the performed task or to
faults. If we are able to verify the desired performance for
each component and derive the overall system performance
from components ones, we are able to substitute components
following a safe policy.

The paper is structured as follows: in section II we
introduce the case study under consideration, in section III
the theory of HIOAs is recalled, in section IV this case study
is modeled using the HIOAs, in section V the verification
procedure is presented.

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 4238

II. CASE STUDY

We consider a manipulator moving freely in a room. The
end effector of the manipulator has to reach a target, that
might be a tissue in a surgical context. To design our model
we will use a simplified version of the scenario described
in [6] and [18]. A robot has to be tracked to have a global
control of the movements needed to assure a safe interaction
with humans during a surgical operation. Referring to Fig.
1, in a first area A, the end effector is tracked by Tracker 1
(T1), which is a high definition tracker with a high framerate.
The figure represents the position of the end effector in R2.
The tracker has a small sample time Ts1 and can follow the
marker on the end effector precisely. The manipulator can,
then, move following a fast trajectory, until it reaches a point
c in the room, where the tracker is changed to Tracker 2 (T2).
This second tracker has a bigger sample time Ts2 and it is
less accurate. Hence the manipulator is forced to slow down,
following a slower trajectory. This might also be due to the
end effector approaching the target.

The real setup is represented in Fig. 2, where a Staubli
Puma 260 manipulator is used: it is controlled by a Galil
4080 control board and tracked using Naturalpoint Optitrack
(Altair robotic laboratory setup) for Tracker 1 and Claron-
Tech Microtracker 2 for Tracker 2.

y

x

Target

AreaA AreaB Unsafe

T1 T2

e0 c

marker position

Fig. 1. Schema of the Case Study

Fig. 2. Possible setup of the case study. T1 and T2 are represented by the
circles: blue for T1 and red for T2.

We aim at studying a scenario where the robot moves
freely in the surgical room during the setup procedure and
its position is monitored by a tracker that controls the entire
room. Once the robot approaches the patient we could use
a smaller tracker near the end effector that controls only the
patient body area during the surgical task. The reason why
we use two different trackers is that when the robot moves
freely around the room, it has to avoid obstacles and we need
a tracker that is able to ’see’ the entire room. The second
tracker, even if less powerful, is smaller and can occupy less
space, hence it can be used near the end effector to track its
position next to the patient. Moreover, while the end effectors
approaches the target (patient), the speed slows down in any
case and the frame rate does not necessarily need to be high.
The point in the space and the time in which the tracker is
changed can be decided by the user a priori.

III. RECALLING HYBRID I/O AUTOMATA

For the sake of completeness, we report here some defi-
nitions about HIOAs that will be used in the following. A
more detailed description of HIOAs can be found in [8].

A HIOA A is a tuple ((U,X, Y), (I,H,O), Q,D,Θ, T)
where
• (U,X, Y) are disjoint sets of input, internal and output

variables. Let V denote the set U ∪X ∪Y of variables.
• (I,H,O) are disjoint sets of input, hidden and output

actions. Let A denote the set I ∪H ∪O of actions.
• Q ⊆ vals(X) is the set of states
• Θ ⊆ Q is a non-empty set of start states
• D ⊆ vals(X)×A× vals(X) is the discrete transition

relation where a is enabled in x if there exits a x′ such
that x a−→ x′ with x ∈ vals(X).

• T is a set of trajectories on V that satisfy the following
axioms:
T1 Prefix closure

For every τ ∈ T and every τ ′ ≤ τ, τ ′ ∈ T
T2 Suffix closure

For every τ ∈ T and every t ∈ dom(τ), τ � t ∈ T
T3 Concatenation closure

Let τ0, τ1, τ2, . . . be a sequence of trajectories in T
so that, for each nonfinal index i, τi is closed an
τi .lstate = τi+1 .fstate. Then t0 _ t1 _ t2 · · · ∈ T

For each variable v, we assume both a (static) type,
type(v), which gives the set of values it may take on, and a
dynamic type, dtype(v), which gives the set of trajectories
it may follow. A valuation v for a set of variables V is a
function that associates with each variable v ∈ V a value
in type(v). Let J be a left-closed interval of T (the time
axis) with left endpoint equal to 0. Then a J-trajectory for
V is a function τ : J → vals(V), such that for each v ∈ V ,
τ ↓ v ∈ dtype(v). A trajectory for V is a J-trajectory for V ,
for any J . Trajectory τ is a prefix of trajectory τ ′, denoted by
τ ≤ τ ′, if τ can be obtained by restricting τ ′ to a subset of its
domain. We define τ�t ∆

= (τ d[t,∞))−t. The concatenation
_ of two trajectories is obtained by taking the union of

4239

the first trajectory and the function obtained by shifting the
domain of the second trajectory until the start time agrees
with the limit time of the first trajectory; the last valuation
of the first trajectory, which may not be the same as the first
valuation of the second trajectory, is the one that appears in
the concatenation. Prefix, suffix and concatenation operations
return trajectories. We define τ.fval , the first valuation of τ ,
to be τ(0), and if τ is closed (J is a closed interval), we
define τ.lval , the last valuation of τ , to be τ(τ.ltime). Given
a trajectory τ ∈ T we denote τ.fval dX by τ.fstate and, if
τ is closed, we denote τ.lval dX by τ.lstate . We write f dP
for the restriction of function f to set P , that is, the function
g with dom(g) = dom(f) ∩ P such that g(c) = f(c) for
each c ∈ dom(g). If f is a function whose range is a set of
functions and P is a set, then we write f ↓ P for the function
g with dom(g) = dom(f) such that g(c) = f(c) dP for each
c ∈ dom(g).

An execution fragment of A is a sequence α =
τ0, a0, τ1, a1, τ2, a2.... where ai ∈ A is an action, τi ∈ T
is a trajectory and if τi is not the last trajectory in α then
τi.lstate

ai+1−−−→ τi+1.fstate . An execution fragment is closed
if the final trajectory is a finite closed interval. A state of
A is reachable if it is the last state of a closed execution of
A. Thus an execution fragment α is reachable if α.fstate is
reachable.

A property of a HIOA A is a boolean derived variable.
A property of A is stable if the property is true at a certain
state ψ and in all reachable states from ψ. A property of A
is invariant if it is stable for all initial states of A [17].

IV. MODELLING THE CASE STUDY WITH HIOAS

As presented in Section 2, the system is composed of
the two trackers following their markers on the robot end
effector and returning the position of the end effector itself.
This position is used by the controller to design its control
law based on a reference trajectory. The control variable
(joints torques) is then sent to the robot, which moves the
end effector and sends the marker signals to the trackers.
Coordination is achieved by a supervisor, who receives the
trackers positions and their sample times. With this infor-
mation the supervisor can check which tracker is working
at each instant of time and detect the tracker change (i.e.
position c of Fig. 1). Moreover, the supervisor computes the
reference trajectory according to the speed limits given by
the tracker working at that instant of time and sends it to
the controller. The supervisor also has to switch on and off
the trackers according to the area where the robot is moving
and to notify it to the controller.

Each component is modeled with a HIOA. To describe
HIOAs we use a variant of the TIOA language [19], with
some extensions for hybrid systems [20].

The tracker is represented by the automaton in Fig. 3.
It has an internal variable called ID, as identifier, that is
used to distinguish Tracker 1 from Tracker 2. In this way
we can use the same model for each tracker component,
only modifying its ID, and respecting modularity. The tracker
input variables are: marker position, representing the signal

hioa Tracker
variables

input marker position: Real, change: Boolean
internal p: Real := 0, ts: Real := 0,

c: Boolean := 0, ID: {1, 2}:=1
output pe: Real, Ts: Real

actions
internal SWITCH, SAMPLE

transitions
SWITCH
pre c = 1
eff ID := 2
SAMPLE
pre ts = Ts
eff p(t) := marker position(t), ts := 0

trajectories
c(t) := change(t);
pe(t) := p(t) ;
ṫs(t) := 1;

Ts(t) :=

{ 1
fs1

if ID = 1
1

fs2
if ID = 2

Fig. 3. HIOA of the component: Tracker

sent by the marker positioned on the end effector of the
robot; change, representing the signal sent by the supervisor
and indicating that the robot crossed point c. The tracker
returns the position pe of the end effector with a delay given
by its sample time Ts. The position is stored in an internal
variable p and is calculated using the sample time related
to each tracker. The action SAMPLE is used to assign to
variable p the value of marker position when a sampling
instant is reached. To this end, internal variable ts keeps
track of the elapsing time, and when its value reaches the
sample time Ts, action SAMPLE arises and ts is reset to
0. When the action SWITCH arises the ID is changed from
1 to 2. This occurs when the supervisor sends the variable
change, which is stored in an internal variable c. In our model
the only parameter that changes due to the ’switch’ action is
the sample frequency, which goes from fs1 to fs2. Indeed,
based on this parameter, the position and the current sample
time are calculated.

hioa Robot
variables

input u: Real
internal q: Real, x: Real
output marker position: Real

trajectories
M(q)q̈(t) := u(t);
x(t) := k(q(t));
marker position(t) := x(t).

Fig. 4. HIOA of the component: Robot

Automaton in Fig. 4 represents the Robot (or manipulator).

4240

In this HIOA no action is present. The input variable is the
control variable u, given by the joints torques. The manipula-
tor sends the marker signal (variable marker position) to the
trackers monitoring the end effector position. The dynamical
law is given by the simplified version of the robot dynamics
M(q)q̈+C(q, q̇)q̇+F (q, q̇)+G(q) = u−JT (q)h where q is
the vector of generalized coordinates, related to the position
and orientation of the end effector by the direct kinematics
function x = k(q).

hioa Controller
variables

input (pe, xd, ẋd, ẍd): Real, change: Boolean
internal (uint, xc):Real, changepar:Boolean:=0,

c: Boolean := 0
output u: Real

actions
internal NEWPAR

transitions
NEWPAR
pre c = 1
eff changepar := 1

trajectories
c(t) := change(t);
xc(t) := pe(t);

uint(t) :=



Msẍd(t) +Ds(ẋd − ẋc)(t)+
Ks(xd − xc)(t)

if changepar = 1

Mf ẍd(t) +Df (ẋd − ẋc)(t)+
Kf (xd − xc)(t)

if changepar = 0

u(t) := uint(t)

Fig. 5. HIOA of the component: Controller

The Controller automaton, represented in Fig. 5, receives
as input the position pe sent by the tracker, the estimated
trajectory given by variables xd, ẋd, ẍd sent by the supervi-
sor, and the change variable, from the supervisor, indicating
when the tracker switching has occurred and the controller
has to change its parameters accordingly. Indeed when the
change variable is received and active (= 1) action NEWPAR
arises and the internal variable changepar is set to 1. In this
case the tracker is the slowest one, and the parameters of
the controller are Ms, Ds,Ks. We used here the model of
control law for the free movement. Variable changepar is
initialized to 0, indicating that at the beginning the active
tracker is Tracker 1, and the used parameter for the control
variables are Mf , Df ,Kf .

The Supervisor is described by the automaton in Fig.
6. Its input variables are the end effector position pe and
the tracker sample time Ts sent by the active tracker. Input
variable pe is stored into internal variable p∗. The supervisor
compares p∗ with the change position c (which is know a
priori): when it is reached, i.e. p∗ = c the supervisor arises

hioa Supervisor
variables

input (pe, Ts): Real
internal γ: Trajectory, (fast, slow): Boolean,

p∗: Real := 0
output (xd, ẋd, ẍd): Real,

change: Boolean := 0

actions
internal TRACKER SLOW, TRACKER FAST

transitions
TRACKER SLOW
pre p∗ = c
eff slow := 1, change := 1;

TRACKER FAST
pre p∗ ≤ c
eff fast := 1;

trajectories
p∗(t) := pe(t);

γ(t) :=

{
γf (pe(t), Ts(t)) if fast
γs(pe(t), Ts(t)) if slow

[xd(t) ẋd(t) ẍd(t)] := f(γ(t))

Fig. 6. HIOA of the component: Supervisor

action TRACKER SLOW indicating that Tracker 2 becomes
active and Tracker 1 becomes inactive. Hence variables slow
and change are set to 1. Variable change is then sent to the
Tracker and the Controller. Variables slow and fast are used
by the supervisor to know which tracker is active at each
instant of time and to calculate the right trajectory: fast move-
ment for Tracker 1 and slow movement for Tracker 2. The
action indicating that Tracker 1 is active is TRACKER FAST
and it is active when p∗ ≤ c, setting internal variable fast to
1. The trajectories are calculated using function γf for fast
movement and γs for slow movement and stored in internal
variable γ. These functions are not better specified because
it is out of the scope of this work. The same for function f
used to compute variables xd, ẋd, ẍd from the trajectory γ
and sent to the Controller.

V. MODEL VERIFICATION

In this section we present a verification procedure based
on invariants (see [9]) to verify that our system is able
to change the tracker after position c is crossed. As an
overall property for the system we want that the component
Tracker is correctly changed when the end effector reaches a
predefined point in the space. In this way the system will be
able to perform its task even after the component substitution.
Hence, we are interested in verifying that before position c
Tracker 1 (and only Tracker 1) is active, while after position
c Tracker 2 (and only Tracker 2) is active.

To this end, we start from verifying that each component
in the system behaves correctly with respect to the global
requirements. Hence we prove some invariants on the com-

4241

ponents that are related to the composed system invariants,
and show that we can obtain the global invariants from the
local ones. This is useful to make the verification procedure
modular, in the sense that if we change a component, we
only have to prove local properties and not the global ones.

To this end, some assumptions on the executions of the
overall system must be made.

Since the robot has to reach the target point, we assume
that point c is crossed only one time and that the reference
trajectories for the end effector (both slow and fast) respect
this assumption. Point c is constant and it is > 0. We assume
that the robot starts from position 0, i.e. at time t = 0 the
Robot is still and x(0) = marker position(0) = 0. The other
initial conditions are Ts(0) = Ts1, ID = 1, change = 0, p(0) =
p∗(0) = pe(0) = 0, c(0) = 0. Note that all the other internal
variables will have a value determined by the internal initial
conditions and by the trajectories of each automaton. When
these are not specified, the value of these variables is not
interesting.

A consideration due to the delay given by the tracking, is
the fact that at instant t∗ in which the end effector crosses
point c the value of x(t∗) = marker position(t∗) becomes
c. Nevertheless this value is not immediately transmitted to
the Supervisor, since it receives the value of pe delayed
by Tracker 1. So basically pe will take value c when
x(t∗) =marker position(t∗) = c + ε. The constant ε is due
to the delay of transmission of the end effector position
which is present between the marker position and variable
pe, calculated using the sample time of the tracker. Indeed
between point c and point c+ ε Tracker 1 is still active (as
we will prove using the invariants). Tracker 2 is activated
when pe = c, i.e. after a delay due to fs1. It is possible
to calculate ε if we consider the maximum speed of the
reference trajectory for Tracker : if we call this speed ẋmax,
then we have ε = ẋmax × 1/fs1. Nevertheless, to have an
exact perception of what happens between c and c + ε it is
sufficient to define numerically the delays due to the trackers
and the two reference trajectories.

We are indeed not interested in what happens between c
and c+ ε since we only want to prove that before c Tracker
1 is active, and after c Tracker 2 is active, i.e. the switching
between the two tracker has occurred at some time.

We now prove some invariants on the different compo-
nents and show that the invariants of the overall composed
system can be obtained by composition of the invariants on
components.

Note that the system has other invariants in which we
are not interested to the scope of this work. We start from
the properties on the components Tracker and Supervisor,
that are the only two components that are involved in the
final task verification. Indeed we want to prove the following
global invariants:
P6 = (marker position < c⇒ ID=1)
P7 = (marker position > c+ ε⇒ ID=2)

with ε = ẋmax × 1/fs1
We prove the invariants by induction on the length of

a closed execution of Supervisor, following the algorithm

presented in [9].

P1 = (pe < c ⇒ change= 0) is an invariant for HIOA
presented in Fig. 6. This invariant is extended with pe(t) =
p∗(t). It is true for the initial state, since pe(0) = 0, c > 0
and change = 0. For the discrete part, the only action for
which precondition is pe < c is TRACKER FAST and this
action does not affect variable change, which keeps its initial
value 0, so the state does not change for the considered
variables. For the continuous part, since the variable pe and
change are not internal variables, the invariant does not affect
the state of the system.

P2 = (pe ≥ c ⇒ change= 1) is an invariant for HIOA
presented in Fig.6. It is possible to define the property P2 as
C ∨ Ĉ with C = (pe = p∗ ≥ c∧change = 1) and Ĉ = (pe =
p∗ < c). From the initial state pe(0) = p∗(0) = 0, c > 0 it
follows that Ĉ is true at the initial state. If we assume that
pe will reach c in an unknown time t (because it is the aim
of the surgical task to reach the target point and this point
is after c) and under the assertion that pe(t) = p∗(t) we can
assume that C will be true at some state s when pe reaches
c. For the discrete part, we assumed that point c is crossed
only once, and the action TRACKER SLOW is arisen when
pe = p∗ = c causing the variable change to take value 1.
After point c no other action occurs that can affect the value
of variable change, so the state for pe = p∗ > 0 is always
the same. For the continuous part, since the variable pe and
change are not internal variables, the invariant does not affect
the state of the system.

P3 = (change= 0 ⇒ ID=1) is an invariant for HIOA
presented in Fig. 3. This invariant is extended with change
= c(t). It is true for the initial state, since change = c(0) = 0
and ID = 1. For the discrete part, the only action of
automaton Tracker which has influence on the variable ID is
SWITCH, with precondition change = c(t) = 1, so it is not
related to the considered invariant which keeps the state as
the initial state. For the continuous part, since the internal
variable ID does not change trajectory due to the continuous
evolution, it will keep its previous state.

P4 = (change= 1 ⇒ ID=2) is an invariant for HIOA
presented in Fig. 3. Since change(t) = c(t) at each instance
of time, it is possible to define the property P4 as B ∨ B̂
with B = (change(t) = c(t) = 1 ∧ ID = 2) and B̂ =
(change 6= 1). The variable change is of type boolean, thus,
based of the initial state, the variable B̂ is true because if
change 6= 1 the variable change is 0. From invariant P2, the
variable change becomes 1 in some state, and change=1 is
precondition of action switch that provokes ID to become
equal to 2. Hence B is valid in that state. For the discrete
part, since the only action affecting ID is SWITCH, whose
precondition is c = 1, ID keeps its previous value, i.e. ID=2.
For the continuous part, since the internal variable ID does
not change trajectory due to the continuous evolution, it will
keep its previous state.

P5 = (ts = Ts ⇒ pe = marker position) is an invariant for
HIOA presented in Fig. 3. The initial state of the automaton
Tracker is (for the above assertion) ts(0) = 0, and pe(0) =

4242

p(0), and variable ts increase its value linearly (trajectories)
until it reaches the value of Ts either if ID is 1 or 2. When
ts = Ts action SAMPLE arises and variable p changes its
value to the value of the input variable marker position. Since
pe(t) = p(t) for all time instants t, there will be at least one
state when P5 is satisfied. For the discrete part, the only
action arising in automaton Tracker which has influences on
pe is SAMPLE. Since it arises every time that ts reaches the
value of Ts and its effects are to reset the value of ts to 0
and to assign to p the value of marker position, P5 is still
valid, keeping in mind that pe(t) = p(t). For the continuous
part, the internal variable p does not change trajectory due
to the continuous evolution, it will keep its previous state
under the assumption that p(t) =marker position.

In the next steps transitivity is used to prove invariants on
the overall composed system.

P6 = (marker position < c⇒ ID = 1) is an invariant for
composition: P1∧P3∧P5⇒P6.

P7 = (marker position > c+ ε⇒ ID = 2)
with ε = ẋmax × 1/fs1 is an invariant for composition:

P2∧P4∧P5⇒P7.

VI. CONCLUSIONS
In this paper we presented a simple case study to introduce

a modular verification procedure for surgical robotic systems.
Although the case study is simplified and no surgical aspect
is taken under consideration, the main aim of this work is
to propose a way of decomposing a robotic system (with a
surgical aim in our mind) following its components. Since
the surgical context needs procedures for verifying safety, we
chose to present a system where a component can be changed
without losing the performance of the system, which is very
important in a surgical context. To this end we decided
to adopt the formalism of Hybrid I/O Automata of [8] to
model the system in a modular way and take advantage
of the compositionality theory behind this model to verify
the overall system properties starting from each component
property. In the future we aim at extending these results
including some typical man-machine interaction issues, due
to the surgical context. Moreover, more complex techniques,
including simulation and constraint-based methods, will be
applied to the same kind of systems, generalizing the results
to a class of surgical robotic scenarios.

ACKNOWLEDGMENTS
The authors would like to thank Prof. Roberto Segala for

his help with the theory of HIOAs and Fabrizio Boriero for
his help in creating the real set-up of Fig. 2.

REFERENCES

[1] K. Cleary and C. Nguyen, “State of the art in surgical robotics: clinical
applications and technology challenges,” Computer Aided Surgery,
vol. 6, no. 6, pp. 312–328, 2001.

[2] M. Althoff, D. Althoff, D. Wollherr, and M. Buss, “Safety verifica-
tion of autonomous vehicles for coordinated evasive maneuvers,” in
Intelligent Vehicles Symposium (IV), 2010 IEEE, June 2010, pp. 1078
–1083.

[3] E. Mitka, A. Gasteratos, N. Kyriakoulis, and S. G. Mouroutsos, “Safety
certification requirements for domestic robots,” Safety Science, vol. 50,
no. 9, pp. 1888 – 1897, 2012.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3–34, 1995.

[5] J. Ding, J. Gillula, H. Huang, M. Vitus, W. Zhang, and C. Tomlin,
“Hybrid systems in robotics: Toward reachability-based controller
design,” Robotics Automation Magazine, IEEE, vol. 18, no. 3, pp.
33 –43, sept. 2011.

[6] R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, and T. Villa, “Robotic
surgery: Formal verification and plans,” Robotics Automation Maga-
zine, IEEE, vol. 18, no. 3, pp. 24 –32, sept. 2011.

[7] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid Au-
tomata: An Algorithmic Approach to the Specification and Verification
of Hybrid Systems,” in Hybrid Systems, 1992, pp. 209–229.

[8] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid i/o automata,”
Information and Computation, vol. 185, no. 1, pp. 105 – 157, 2003.

[9] S. Mitra and D. Liberzon, “Stability of hybrid automata with average
dwell time: an invariant approach,” in Decision and Control, 2004.
CDC. 43rd IEEE Conference on, vol. 2, dec. 2004, pp. 1394 – 1399
Vol.2.

[10] M. Capiluppi and R. Segala, “Modelling implicit communication in
multi-agent systems with hybrid input/output automata.” in Proceed-
ings of the Third International Symposium on Games, Automata, Log-
ics and Formal Verification (GandALF 2012), Naples, Italy, September
2012.

[11] J. Lygeros and N. Lynch, “On the formal verification of the tcas
conflict resolution algorithms,” in Decision and Control, 1997., Pro-
ceedings of the 36th IEEE Conference on, vol. 2, dec 1997, pp. 1829
–1834 vol.2.

[12] C. Livadas, J. Lygeros, and N. Lynch, “High-level modeling and
analysis of the traffic alert and collision avoidance system (tcas),”
Proceedings of the IEEE, vol. 88, no. 7, pp. 926 –948, july 2000.

[13] H. Weinberg and N. Lynch, “Correctness of vehicle control systems-a
case study,” in Real-Time Systems Symposium, 1996., 17th IEEE, dec
1996, pp. 62 –72.

[14] J. Lygeros and N. Lynch, “Strings of vehicles: Modeling safety
conditions,” in Proceedings of the First International Workshop on
Hybrid Systems. Springer-Verlag, 1998, pp. 273–288.

[15] E. Dolginova and N. Lynch, “Safety verification for automated platoon
maneuvers: A case study,” in Proc. of HART, LNCS 1201, 1997, pp.
154–170.

[16] E. Marinica, M. Capiluppi, J. Rogge, R. Segala, and R. Boel, “Dis-
tributed collision avoidance for autonomous vehicles: world automata
representation,” in 4th IFAC Conference on Analysis and Design of
Hybrid Systems (ADHS), 2012.

[17] K. Koutroumpas and J. Lygeros, “Modeling and verification of
stochastic hybrid systems using hioa: a case study on dna replication,”
in Proceedings of the 13th ACM international conference on Hybrid
systems: computation and control, ser. HSCC ’10. New York, NY,
USA: ACM, 2010, pp. 263–272.

[18] D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, and
T. Villa, “Open problems in verification and refinement of autonomous
robotic systems,” in Digital System Design (DSD), 2012 15th Euromi-
cro Conference on, 2012, pp. 469–476.

[19] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory of
timed i/o automata,” Synthesis Lectures on Computer Science, 2006.

[20] S. Mitra, Y. Wang, N. Lynch, and E. Feron, “Safety verification
of model helicopter controller using hybrid input/output automata,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science, O. Maler and A. Pnueli, Eds., vol. 2623. Springer-
Verlag, Berlin, 2003, pp. 343–358.

4243

