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Abstract— In this work, we propose an extension of the
invariance principle for switched T-S fuzzy systems using
an auxiliary function V for the convex combination of the
subsystems which applies to unstable subsystems. The results
are given in terms of LMIs. Numerical examples illustrate the
effectiveness of the proposed design methods.

I. INTRODUCTION

Switched nonlinear systems arise in practice when model-

ing the operation of many engineering systems [1], [2], [3],

[4]. Although switching is not a new concept in engineering,

in the past decade the theory of switched systems has at-

tracted the attention of many researchers. As a consequence,

the stability theory for switched nonlinear systems has sig-

nificantly developed in this period. Despite the important

advances in stability theory, the attractor of many switched

systems may not be an equilibrium point. A classical exam-

ple is the on–off temperature control system. For this class

of problems, we are not interested in studying the stability

of a particular equilibrium point but the asymptotic behavior

of solutions [5], [6], [7], [8], [9].

An extension of the invariance principle for switched

nonlinear systems was presented in [8]. The results in [8]

can be applied to switched systems with ultimately bounded

subsystems. In this paper, invariance results for switched

systems with subsystems which are not ultimately bounded

or unstable are given. This is accomplished by allowing the

derivative of an auxiliary function V along the solutions of

the convex combination of the subsystems [10] to be positive

on some sets. The result is extended to switched T-S fuzzy

systems and then we can analyze the asymptotic behavior of

the solution just by checking properties of some sets and if

a set of linear matrix inequalities (LMIs) is feasible.

II. PRELIMINARIES

Let us consider the following switched nonlinear system

ẋ(t) = fσ(x(t))(x(t)) (1)

where x(t) ∈ IRn is the state vector, σ(x) : IRn → P =
{1, 2, ..., N} is a piecewise constant function of the state,

called switching signal with N the number of subsystems

and fp is a C1 nonlinear function for all p ∈ P . We assume
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that the state of (1) does not jump at the switching instants,

that is, the switched system solution ϕ(t, x0) is everywhere

continuous. The C1 nonlinear function fp can be exactly

represented by a T-S fuzzy model in the following subset

of the state space [11], [12]:

Sp := {x(t) ∈ IRn : |xυ(t)| ≤ x̄pυ , υ ∈ I and p ∈ P} (2)

where I ⊂ {1, 2, · · · , n} and x̄pυ is a positive real number

for all υ ∈ I , p ∈ P . Then, the switched nonlinear system

(1) can be described by fuzzy IF-THEN rules, as follows

[10], [13]:

Model rule k for subsystem p:

IF x1(t) is Mpk1 and x2(t) is Mpk2 and · · · and xq(t) is

Mpkq

THEN ẋ(t) = Apkx(t) +Bpku(t), k = 1, 2, · · · , rp
where Mpkj , j = 1, 2, · · · , q, q ≤ n, are the fuzzy sets. The

overall fuzzy subsystem p is obtained by fuzzy blending the

rules k as follows:

ẋ(t) =
∑

k∈Rp

hpk(x(t))Apkx(t) (3)

where Apk ∈ IRn×n is the matrix of the local models,

Rp = {1, ..., rp} with rp the number of model rules of the

subsystem p and

hpk(x(t)) =
wpk(x(t))

∑

k∈Rp
wpk(x(t))

with wpk(x(t)) =

q
∏

j=1

Mpkj(xpj(t)) the normalized weight

function for each local model. We assume that hpk(x(t)) is

a C1 function for all p ∈ P and k ∈ Rp.

Remark 1 If no constraints on the state are needed for

some p, then Sp = IRn.

From the properties of membership functions we have:

hpk(x(t)) ≥ 0 and
∑

k∈Rp

hpk(x(t)) = 1 (4)

for all p ∈ P and k ∈ Rp. Using (4), it follows that

∑

k∈Rβ

hβk(x(t)) −
1

N − 1









∑

p∈P
p6=β

∑

k∈Rp

hpk(x(t))









= 0 (5)
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with β ∈ P . When convenient, arguments of hpk(x(t)) and

x(t) will be omitted.

In this paper, we study the solutions of system (1) under

a particular class of switching signals, that is, the solutions

that have a nonvanishing dwell time and satisfy a switching

condition. For easy reference, some preliminary definitions

and propositions, which were taken from [10], [6] (see also

[14] and [15]), are presented.

Definition 1 The solution ϕ(t, x0) of (1) has a non

vanishing dwell time if there exists γ > 0 such that

inf
k
(τk+1 − τk) ≥ γ (6)

where {τk} is the sequence of switching times associated

to ϕσ(x)(t, x0). The number γ is called a dwell time for

ϕ(t, x0) and the set of all switched solutions possessing a

nonvanishing dwell time is denoted by Sdwell.

Definition 2 A compact set M is weakly invariant with

respect to the switched system (1) if for each x0 ∈ M there

exists an index p ∈ P , a solution ϕ(t, x0) of the vector field

fp(x) and a real number b > 0 such that ϕ(t, x0) ∈ M for

either t ∈ [−b, 0] or t ∈ [0, b].

Let x, a ∈ IRn, then d(x, a) = ||x − a||2. A switched

solution ϕ(t, x0) of (1) is attracted to a compact set M if

for each ǫ > 0 there exists a time T > 0 such that

ϕ(t, x0) ∈ B(M, ǫ) for t ≥ T (7)

where B(a, ǫ) = {x ∈ IRn : d(x, a) < ǫ} and B(M, ǫ) =
∪a∈MB(a, ǫ). Clearly ϕ(t, x0) is attracted to M if and only

if

lim
t→∞

dist(ϕ(t, x0),M) = 0. (8)

Definition 3 Let ϕ(t, x0) : [0,∞) × IRn → IRn be a

continuous curve. A point q is a limit point of ϕ(t, x0) if

there exists a sequence {tk}k∈IN,with tk → ∞, as k → ∞
such that limk→∞ ϕ(tk, x0) = q. The set of all limit points

of ϕ(t, x0) will be denoted by ω+(x0).

Proposition 1 Let ϕ(t, x0) ∈ Sdwell be a bounded

switched solution of (1) for t ≥ 0. Then, ω+(x0) is

nonempty, compact and weakly invariant. Moreover, ϕ(t, x0)
is attracted to ω+(x0).

Proof. See [6].

Let αp be a real number such that

αp ≥ 0, ∀p ∈ P and
∑

p∈P

αp = 1. (9)

Proposition 2 Let V : IRn → IR be a smooth function. If

there exist real numbers αp, p ∈ P satisfying (9) such that

∂V

∂x

[

N
∑

p=1

αpfp(x(t))

]

< 0 (10)

then, there exists a switching law that assures that function

V decreases along the switched solution of system (1).

Proof. Following [10], let V be a smooth function. If there

exist positive numbers αp, p ∈ P satisfying (10), then for

all t there exists at least one p ∈ P such that

∂V

∂x
[fp(x(t))] < 0. (11)

Therefore, function V decreases along the switched solution

of system (1).

From Proposition 2, a stabilizing switching law can be

established via the following condition.

Switching Condition 1: The switched system (1) with N
subsystems can be switched to or can stay at subsystem p if

at time t

∂V

∂x
fp(x(t)) < 0. (12)

III. MAIN RESULTS

The results given in [8] can be applied to switched

systems with ultimately bounded subsystems. To overcome

this limitation, in this section, invariance results for switched

systems with subsystems which are not ultimately bounded

or unstable are given. This is accomplished by allowing the

derivative of an auxiliary function V along the solutions of

the convex combination of the subsystems to be positive

on some sets. The result is extended to switched T-S fuzzy

systems and then we can analyze the asymptotic behavior of

the solution only by checking properties of some sets and if

a set of linear matrix inequalities (LMIs) is feasible.

We use the auxiliary system

ẋ(t) =

N
∑

p=1

αpfp(x(t)) := f(x(t)) (13)

where αp, p ∈ P are known numbers satisfying (9). The

solution of system (13) starting in x0 is denoted by ϕ1(t, x0).
Let V : IRn → IR be a smooth function and define the

following sets along the solution of system (13):

C = {x ∈ IRn : ∇V (x)f(x) > 0}

E = {x ∈ IRn : ∇V (x)f(x) = 0} (14)

Ωℓ = {x ∈ IRn : V (x) ≤ ℓ}
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with supx∈C V (x) < ℓ < ∞. Now, the main result of this

section is presented.

Theorem 1 Consider switched system (1), real numbers

αp satisfying (9) and V (x) : IRn → IR be a C1 function. If

there exists a real number ℓ such that supx∈C V (x) < ℓ <
∞, then there exists a switching law satisfying Condition 1
for all x /∈ Ωℓ such that every bounded solution ϕ(t, x0) ∈
Sdwell is attracted to the largest weakly invariant set of E ∪
Ωℓ.

Proof. First, let x0 ∈ Ωℓ and ϕ(t, x0) ∈ Sdwell be a

solution satisfying Condition 1 for all x /∈ Ωℓ. Suppose there

exists τ > 0 such that ϕ(τ, x0) /∈ Ωℓ. Then, there exist

τ̄ ∈ (0, τ) such that V (ϕ(τ̄ , x0)) = ℓ (by the continuity

of V and ϕ(t, xo)) and V (ϕ(t, x0)) > ℓ, ∀t ∈ (τ̄ , τ ], but

this is a contradiction, since supx∈C V (x) < ℓ < ∞ and

C ∈ Ωℓ. Then V (ϕ1(t, x0)) decreases outside of Ωℓ and

by Proposition 2, there exists a switching law that assures

that the function V decreases along the switched solution

of system (1) out of Ωℓ. Therefore, ϕ(t, x0) is a bounded

solution and by Proposition 1, ω+(x0) is nonempty, compact,

weakly invariant and ω+(x0) ⊂ Ωℓ. Moreover, ϕ(t, x0) is

attracted to ω+(x0). Then, the solution is attracted to a

weakly invariant set inside Ωℓ.

Now, let x0 /∈ Ωℓ and ϕ(t, x0) ∈ Sdwell be a solution

satisfying Condition 1 for all x /∈ Ωℓ. If ϕ(t, x0) enters Ωℓ

at some t, then the result follows from the first part of this

proof. Suppose the bounded solution ϕ(t, x0) /∈ Ωℓ, ∀t ≥ 0.

Since ℓ > supx∈C V (x), ϕ1(t, x0) /∈ C ⊂ Ωℓ, ∀t ≥ 0,

that is, ∆V (ϕ1(t, x0))f(ϕ1(t, x0)) ≤ 0, ∀t ≥ 0. Then by

Proposition 2, there exists a switching law, such that V
decreases along the switched solution of system (1). We

conclude that V (ϕ(t, x0)) is a lower bounded non-increasing

function of t. Then, there exists r ∈ R such that r =
limt→∞ V (ϕ(t, x0)). Since the solution is bounded, ω+(x0)
is nonempty. Let a ∈ ω+(x0), then there exists a sequence

{tk} with tk → ∞ as k → ∞ such that ϕ(tk, x0) → a.

The continuity of V ensures that V (ϕ(tk, x0)) → V (a) as

k → ∞, then V (a) = r, ∀a ∈ ω+(x0).

Finally, by Proposition 1, ω+(x0) is a weakly invariant set.

Thus there exists an interval [α, β] containing the origin and

a function υ(t) such that υ(0) = a, υ(t) ∈ ω+(x0), ∀t ∈
[α, β] and ∃j ∈ P such that υ̇(t) = fj(υ(t)), ∀t ∈
[α, β]. Then, V (υ(t)) = V (a) = r, ∀t ∈ [α, β] and

∇V (υ(t))fj(υ(t)) = 0 ∀t ∈ [α, β]. Particularly, for t = 0 we

have ∇V (υ(0))fj(υ(0)) = ∇V (a)fj(a) = 0. Hence a ∈ E .

Then ω+(x0) ⊂ E and the solution is attracted to a weakly

invariant set in E . Therefore, there exists a switching law

satisfying Condition 1 for x /∈ Ωℓ such that every bounded

solution ϕ(t, x0) ∈ Sdwell is attracted to the largest weakly

invariant set of E ∪ Ωℓ.

Example 1 We consider switched system (1) with P =

{1, 2} and

f1(x) =

[

x2 + x1x2

x2

1 − 2x2x
2

1

]

, f2(x) =

[

−2x1x2

−x1 − 2x3

2 + 2x2

]

Let V (x) =
x2

1
+x2

2

2 and α1 = α2 = 0.5. Then

∇V (x)f(x) = x1(0.5x2 + 0.5x1x2 − x1x2)

+ x2(0.5x
2
1 − x2x

2
1 − 0.5x1 − x3

2 + x2)

= x2
2(−x2

1 − x2
2 + 1).

Therefore, C = {x ∈ IR2 : x2
1 + x2

2 < 1}, E = {x ∈ IR2 :
x2 = 0 ou x2

1 + x2
2 = 1} and ℓ > 1. By Theorem 1, any

bounded solution ϕ(t, x0) ∈ Sdwell satisfying Condition 1
for all x ∈ IRn with x /∈ Ωℓ is attracted to the largest

weakly invariant set of E ∪ Ωℓ. Fig. 1 illustrates the time-

domain simulation for x0 = [−2 − 2.2] and Fig. 2 shows

the switching law. This simulation confirms the results of

Theorem 1 by showing an attractor inside circle of radius

2.2 since ℓ = 1.1 (Fig. 3). Observe in Fig. 4 that function V
increases in Ωℓ.

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

 

 

t

x
(t
)

Fig. 1. Switching solution for initial condition x0 = [−2 − 2.2] for
Example 1.
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1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t

σ
(x
)

Fig. 2. Switching law σ(x) for Example 1.

A. An extension of the invariance principle for switched T-S

fuzzy systems

In what follows, an extension of Theorem 1 for switched

T-S fuzzy systems is presented. The result allows the analysis

of the asymptotic behavior of switched system solution just

by verifying the feasibility of LMIs and some properties of

the sets defined.
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Fig. 3. Phase portrait for Example 1.
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Fig. 4. Function V along the switched system solution for Example 1.

Now, fp in the auxiliary system (13) is described by a T-S

fuzzy model, that is

ẋ(t) =
∑

p∈P

αp





∑

k∈Rp

hpkApk



x(t). (15)

The result is developed using the following scalar function:

V (x) = x′





∑

p∈P

∑

k∈Gp

hpkPpk



 x (16)

where Gp is a subset of Rp for all p ∈ P , which is previously

chosen.

We define the following sets

Z =
⋂

p∈P

Sp, (17)

D ⊇
⋃

p∈P
k∈Gp

{x ∈ Z : ∇hpk(x)f(x) > 0}. (18)

Theorem 2 Consider system (15) and real numbers αp

satisfying (9). If set D is bounded, closed and there exist

matrices positive definites Ppk ∈ IRn×n satisfying (19)-(25),

then there exists a switching law satisfying Condition 1 for

all x /∈ Ωℓ such that every bounded solution ϕ(t, x0) ∈
Sdwell of switched system (1) is attracted to the largest

weakly invariant set of E ∪ Ωℓ.

Proof. Consider the property (5) and real numbers αp

satisfying (9). The derivative of function (16) along the

solution of the system (15) is given by (28), where Pφ =
∑

p∈P

∑

k∈Gp

ḣpkPpk. If there exist matrices positive definites

Ppk ∈ IRn×n such that the LMIs (19)-(25) are feasible,

then Pφ is the only term that can make (28) positive. As

Ppk is positive definite for all p ∈ P and k ∈ Gp then

C ⊆ D. Since set D is compact and V is continuous,

there exists ℓ1 ∈ R such that max
x∈D

V (x) = ℓ1. Thus, there

exists a real number ℓ such that supx∈C V (x) < ℓ ≤ ℓ1 <
∞. Therefore, by Theorem 1 there exists a switching law

satisfying Condition 1 for all x /∈ Ωℓ such that every bounded

solution ϕ(t, x0) ∈ Sdwell is attracted to the largest weakly

invariant set of E ∪ Ωℓ.

Example 2 We consider system (1) with the following T-S

models:

A11 =

[

1 0
0 10

]

, A12 =

[

1 0
0 0

]

, (26)

A21 =

[

−3 0
1 −10

]

, A22 =

[

−3 0
0 −10

]

and membership functions

h11 =
x2
1 + x2

2

10
, h12 = 1− h11,

h21 =
x2
1

25
, h22 = 1− h21 (27)

in the set Z = {x ∈ IR2 : |x1| ≤ 5 and |x2| ≤ 5}. Using
MATLAB to solve (19)-(24) with parameters α1 = 0.8 and
α2 = 0.2 for all p ∈ P and k ∈ Rp , we obtain the following
matrices:

P11 = −

[

1.031 0.003
0.003 1.273

]

, P12 =

[

0.375 0.008
0.008 0.127

]

,

P21 =

[

−0.777 0.005
0.005 −0.528

]

, P22 =

[

0.897 0.024
0.024 0.316

]

.

Let G1 = {2} and G2 = {2}, then

ḣ12 =
x2
1(−0.2− 0.08x1x2)− 0.4x2

2(x
2
1 + x2

2 − 2.5)

5
,

ḣ22 =
−0.2x2

1

25

thus, D = {x ∈ IR2 : x2
1 + x2

2 ≤ 2.5}, which is

compact. Therefore, by Theorem 2, there exists a switching

law satisfying Condition 1 for all x /∈ Ωℓ such that every

bounded solution ϕ(t, x0) ∈ Sdwell is attracted to the largest

weakly invariant set of E ∪ Ωℓ. Fig. 5 illustrates the time-

domain simulation for x0 = [−2 2] and Fig. 6 shows

the switching law. This simulation confirms the results of

Theorem 2 by showing that the solution is attracted to the

largest weakly invariant set of E ∪ Ωℓ, which was obtained

numerically for ℓ = 0.2 (Fig. 7). Observe in Fig. 8 that

function V increases in Ωℓ.
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αβ(A
′
βkPβk +PβkAβk) +Qα ≺ 0, k ∈ Gβ , (19)

αβ(A
′
βkPij +PijAβk) +Qα ≺ 0, k ∈ Rβ − Gβ , i ∈ P , j ∈ Gi, (20)

αβ(A
′
βkPβj +PβjAβk +A′

βjPβk +PβkAβj) + 2Qα ≺ 0, j, k ∈ Gβ , j < k, (21)

αp(A
′
pkPpk +PpkApk)−

1

N − 1
Qα ≺ 0, p ∈ P − {β}, k ∈ Gp, (22)

αp(A
′
pkPij +PijApk)−

1

N − 1
Qα ≺ 0, p ∈ P − {β}, k ∈ Rp − Gp, i ∈ P , j ∈ Gi, (23)

αp(A
′
pkPij +PijApk) + αi(A

′
ijPpk +PpkAij)−

2

N − 1
Qα ≺ 0, i, p ∈ P − {β}, k ∈ Gp, j ∈ Gi, (24)

αβ(A
′
βkPij +PijAβk) + αi(A

′
ijPβk +PβkAij) +

N − 2

N − 1
Qα ≺ 0, k ∈ Gβ , i ∈ P , i < β, j ∈ Gi, (25)

where

Qα =
∑

p∈P

∑

k∈(Rp−Gp)

αp

(

A′
pkPpk +PpkApk

)

.

V̇ (x(t)) = x(t)
′















∑

p∈P

∑

k∈Gp

ḣpkPpk +





∑

p∈P

αp

∑

j=1

hpkApk





′ 



∑

p∈P

∑

k∈Gp

hpkPpk





+





∑

p∈P

∑

k∈Gp

hpkPpk









∑

p∈P

αp

∑

k∈Gp

hpkApk





+













∑

k∈Rβ

hβk



−
1

N − 1









∑

p∈P
p6=β

∑

k∈Rp

hpk





















∑

p∈P

∑

k∈Gp

hpk



Qα















x(t)

= x(t)
′











∑

k∈Gβ

∑

i∈P
i<β

∑

j∈Gi

hβkhij

(

αβ(A
′
βkPij +PijAβk) + αi(A

′
ijPβk +PβkAij) +

N − 2

N − 1

)

+
∑

p∈P
p6=β

∑

k∈Gp

∑

i∈P
i6=β

∑

j∈Gi

hpkhij

(

αp(A
′
pkPij +PijApk) + αi(A

′
ijPkp +PkpAij)−

2

N − 1
Qα

)

+
∑

k∈Gβ

h2
βk(αβ(A

′
βkPβk +PβkAβk) +Qα)

+
∑

k∈Gβ

∑

j∈Gβ

j<k

hβkhβj(αβ(A
′
βkPβj +PβjAβk +A′

βjPβk +PβkAβj) + 2Qα)

+
∑

p∈P
p6=β

∑

k∈Gp

h2
pk(αp(A

′
pkPpk +PpkApk)−

1

N − 1
Qα)

+
∑

k∈(Gβ−Rβ)

∑

i∈P

∑

j∈Gi

hβkhij

(

αβ(A
′
βkPij +PijAβk) +Qα

)

(28)

+
∑

p∈P
p6=β

∑

k∈(Rp−Gp)

∑

i∈P

∑

j∈Gi

hpkhij

(

αp(A
′
pkPij +PijApk)−

1

N − 1
Qα

)

+Pφ















x(t)

4326



IV. CONCLUSIONS

An invariance principle for switched T-S fuzzy systems,

which can be applied to unstable systems was presented. In

this result, we are not interested in analysing the stability of

a particular equilibrium point but the asymptotic behavior

of solutions. However, many existing results using Lyapunov

direct method can not be used for this analysis. Hence, we

first presented an invariance principle for switched nonlinear

systems and after this result was extended to switched T-

S fuzzy systems. Theorem 2 can be improved by using

properties of the membership functions [16] to obtain less

conservative LMIs.
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Fig. 5. Switching solution for initial condition x0 = [−2 2] for Example 2.
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Fig. 6. Switching law σ(x) for Example 2.
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Fig. 7. Phase portrait for Example 2.
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Fig. 8. Function V along the switched system solution for Example 2.
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