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Abstract—1In this work, we propose an extension of the
invariance principle for switched T-S fuzzy systems using
an auxiliary function V' for the convex combination of the
subsystems which applies to unstable subsystems. The results
are given in terms of LMIs. Numerical examples illustrate the
effectiveness of the proposed design methods.

I. INTRODUCTION

Switched nonlinear systems arise in practice when model-
ing the operation of many engineering systems [1], [2], [3],
[4]. Although switching is not a new concept in engineering,
in the past decade the theory of switched systems has at-
tracted the attention of many researchers. As a consequence,
the stability theory for switched nonlinear systems has sig-
nificantly developed in this period. Despite the important
advances in stability theory, the attractor of many switched
systems may not be an equilibrium point. A classical exam-
ple is the on—off temperature control system. For this class
of problems, we are not interested in studying the stability
of a particular equilibrium point but the asymptotic behavior
of solutions [5], [6], [7], [8], [9].

An extension of the invariance principle for switched
nonlinear systems was presented in [8]. The results in [8]
can be applied to switched systems with ultimately bounded
subsystems. In this paper, invariance results for switched
systems with subsystems which are not ultimately bounded
or unstable are given. This is accomplished by allowing the
derivative of an auxiliary function V along the solutions of
the convex combination of the subsystems [10] to be positive
on some sets. The result is extended to switched T-S fuzzy
systems and then we can analyze the asymptotic behavior of
the solution just by checking properties of some sets and if
a set of linear matrix inequalities (LMIs) is feasible.

II. PRELIMINARIES

Let us consider the following switched nonlinear system

E(t) = fo(a)) (@(t)) (1

where z(t) € R" is the state vector, o(x) : R" — P =
{1,2,...,N} is a piecewise constant function of the state,
called switching signal with N the number of subsystems
and f, is a C! nonlinear function for all p € P. We assume

*This work was supported by the Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico (CNPq) from Brazil under grants 142246/2010-7,
150838/2012-3 and 304985/2009-0.

1 Departamento de Engenharia Elétrica e de Computacio, Escola de
Engenharia de Sao Carlos, USP - Universidade de Sao Paulo, 13566-590,
Sdo Carlos, Sdo Paulo, Brazil

978-3-952-41734-8/©2013 EUCA

Fldvio A. Faria!
flaviofl5@yahoo.com.br

Vilma A. Oliveiral

vilma@sc.usp.br

that the state of (1) does not jump at the switching instants,
that is, the switched system solution ¢(t,x¢) is everywhere
continuous. The C! nonlinear function f, can be exactly
represented by a T-S fuzzy model in the following subset
of the state space [11], [12]:

Sp:={z(t) e R" : |z(t)| < ZTpy, vEZ and p € P} (2)

where Z C {1,2,---,n} and T, is a positive real number
for all v € Z, p € P. Then, the switched nonlinear system
(1) can be described by fuzzy IF-THEN rules, as follows
[10], [13]:

Model rule k for subsystem p:
IF z1(t) is Mpr1 and xo(t) is Mpre and - --
Mpiq
THEN i(t) = Aprpz(t) + Bpru(t), k=1,2,---,1)
where My, j =1,2,---,q, ¢ < n, are the fuzzy sets. The
overall fuzzy subsystem p is obtained by fuzzy blending the
rules k as follows:

B(t) = > hpr(x(t) Apra(t) 3)

kER,

and x,(t) is

where A, € IR"™ " is the matrix of the local models,
Ry, ={1,....,r,} with r, the number of model rules of the
subsystem p and

B wyk (2(1))
hpk(x(t)) = Zkeijpk(x(t))

q

with wpr(x(t)) = H Mpyj(zp;(t)) the normalized weight
j=1

function for each local model. We assume that A, (z(t)) is

a C! function for all p € P and k € R,,.

Remark 1 If no constraints on the state are needed for
some p, then S, = IR".

From the properties of membership functions we have:
hpr(z(t) >0 and Y hpe(a(t) =1 4)
kER,

for all p € P and k € R,. Using (4), it follows that

S hane®) — 5 | 2 3 ) [ =0 )

kERs pEP kER,
P#B

4322



with 8 € P. When convenient, arguments of hp(z(t)) and
x(t) will be omitted.

In this paper, we study the solutions of system (1) under
a particular class of switching signals, that is, the solutions
that have a nonvanishing dwell time and satisfy a switching
condition. For easy reference, some preliminary definitions
and propositions, which were taken from [10], [6] (see also
[14] and [15]), are presented.

Definition 1 The solution ¢(t,20) of (1) has a non
vanishing dwell time if there exists v > 0 such that

i%f(Tk-l-l —Tk) > (6)

where {71} is the sequence of switching times associated
t0 Qo(x)(t; T0). The number v is called a dwell time for
o(t, o) and the set of all switched solutions possessing a
nonvanishing dwell time is denoted by Sguyeri-

Definition 2 A compact set M is weakly invariant with
respect to the switched system (1) if for each o € M there
exists an index p € P, a solution ¢(t, zo) of the vector field
fp(x) and a real number b > 0 such that (¢, z¢) € M for
either ¢ € [—b,0] or ¢ € [0, b].

Let z,a € R", then d(z,a) = ||z — al|2. A switched
solution ¢(t, zp) of (1) is attracted to a compact set M if
for each € > 0 there exists a time 7" > 0 such that

o(t,zg) € B(M,e¢) fort > T (7

where B(a,€) = {z € R" : d(x,a) < ¢} and B(M,¢€) =
UaemB(a, €). Clearly (¢, x¢) is attracted to M if and only
if

lim dist(o(t,x0), M) = 0. (8)

t—o0

Definition 3 Let ¢(t,20) : [0,00) x R" — TIR" be a
continuous curve. A point ¢ is a limit point of (¢, x¢) if
there exists a sequence {{j}rem,with tx — 00, as k — oo
such that limg_, o ¢ (tk, o) = ¢. The set of all limit points
of ¢(t,z9) will be denoted by w™ (zg).

Proposition 1 Let ¢(t,z9) € Sgwen be a bounded
switched solution of (1) for ¢ > 0. Then, oﬁ(:vo) is
nonempty, compact and weakly invariant. Moreover, ¢(t, z¢)
is attracted to w¥ (o).

Proof. See [6].

Let a, be a real number such that

ap, >0, YpeP and » oy, =1 9)
peP

Proposition 2 Let V : IR" — IR be a smooth function. If
there exist real numbers «,, p € P satisfying (9) such that

Z apfp(x(t))] <0

then, there exists a switching law that assures that function
V' decreases along the switched solution of system (1).

(10)

Proof. Following [10], let V' be a smooth function. If there
exist positive numbers «,,, p € P satisfying (10), then for
all ¢ there exists at least one p € P such that

oV
o ()] <0.

Therefore, function V' decreases along the switched solution
of system (1).

Y

From Proposition 2, a stabilizing switching law can be
established via the following condition.

Switching Condition 1: The switched system (1) with NV
subsystems can be switched to or can stay at subsystem p if
at time ¢

ov

%fp(:zr(t)) < 0. (12)

III. MAIN RESULTS

The results given in [8] can be applied to switched
systems with ultimately bounded subsystems. To overcome
this limitation, in this section, invariance results for switched
systems with subsystems which are not ultimately bounded
or unstable are given. This is accomplished by allowing the
derivative of an auxiliary function V along the solutions of
the convex combination of the subsystems to be positive
on some sets. The result is extended to switched T-S fuzzy
systems and then we can analyze the asymptotic behavior of
the solution only by checking properties of some sets and if
a set of linear matrix inequalities (LMIs) is feasible.

We use the auxiliary system

t) = Z ap fp(a(t))

where «y,, p € P are known numbers satisfying (9). The
solution of system (13) starting in x¢ is denoted by 1 (¢, xo).
Let V : R™ — IR be a smooth function and define the
following sets along the solution of system (13):

= f(z(?)) (13)

C = {zeR":VV(x)f(zx) >0}
E = {zeR":VV(x)f(z) =0} (14)
Q = {zeR":V(z) </{}
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with sup,c V(z) < ¢ < co. Now, the main result of this
section is presented.

Theorem 1 Consider switched system (1), real numbers
ay, satisfying (9) and V(z) : R™ — IR be a C! function. If
there exists a real number ¢ such that sup,. V(z) < £ <
00, then there exists a switching law satisfying Condition 1
for all = ¢ Q, such that every bounded solution ¢(t, o) €
Saweir 18 attracted to the largest weakly invariant set of £ U
Q.

Proof. First, let o € Q; and ¢(t,29) € Sawen be a
solution satisfying Condition 1 for all « ¢ €. Suppose there
exists 7 > 0 such that ¢(7,29) ¢ €. Then, there exist
7 € (0,7) such that V(p(7,x0)) = ¢ (by the continuity
of V and ¢(t,x,)) and V(p(t,z0)) > ¢,¥t € (T,7], but
this is a contradiction, since sup, .o V(z) < ¢ < oo and
C € Q. Then V(p1(t,z0)) decreases outside of €y and
by Proposition 2, there exists a switching law that assures
that the function V' decreases along the switched solution
of system (1) out of €. Therefore, ¢(t,x0) is a bounded
solution and by Proposition 1, w™ (z¢) is nonempty, compact,
weakly invariant and w™ (zg) C Q. Moreover, ¢(t,z¢) is
attracted to w™(zg). Then, the solution is attracted to a
weakly invariant set inside 2.

Now, let g ¢ Q and ¢(t,20) € Sqwen be a solution
satisfying Condition 1 for all = ¢ Q. If (¢, zo) enters §2
at some ¢, then the result follows from the first part of this
proof. Suppose the bounded solution (¢, zq) ¢ €, Vt > 0.
Since ¢ > sup,co V(x), p1(t,z0) ¢ C C Qp,Vt > 0,
that is, AV (¢1(t,z0))f(p1(t,20)) < 0,¥t > 0. Then by
Proposition 2, there exists a switching law, such that V'
decreases along the switched solution of system (1). We
conclude that V' (p(t, 20)) is a lower bounded non-increasing
function of ¢. Then, there exists » € R such that r =
lim; o0 V ((t,z0)). Since the solution is bounded, w™ ()
is nonempty. Let a € w (), then there exists a sequence
{tx} with t, — oo as k — oo such that ¢(t,z9) — a.
The continuity of V ensures that V(o(tx,z0)) — V(a) as
k — oo, then V(a) = r, Va € w™ (x0).

Finally, by Proposition 1, w™(zg) is a weakly invariant set.
Thus there exists an interval [«, 8] containing the origin and
a function v(t) such that v(0) = a, v(t) € w'(zg),Vt €
[, 5] and 35 € P such that 0(t) = f;(v(t)),Vt €
[, B]. Then, V(v(t)) = V(a) = r, ¥t € [a,p] and
VV(v(t))fi(v(t)) = 0Vt € [o, . Particularly, for ¢ = 0 we
have VV (v(0)) f,;(v(0)) = VV(a)f;(a) = 0. Hence a € £.
Then wt(z) C € and the solution is attracted to a weakly
invariant set in £. Therefore, there exists a switching law
satisfying Condition 1 for « ¢ Q, such that every bounded
solution ¢(t,xg) € Sqweu is attracted to the largest weakly
invariant set of £ U ().

Example 1 We consider switched system (1) with P =

{1,2} and

o T2 + T1X2 - —2x17T2
fi(z) = [ 3 — 2wox? ] , fa(z) = { —x1 — 225 + 2a
2 2
Let V(z) = Zl;—zz and oy = ay = 0.5. Then

VV(x)f(z) = z1(0.522 + 0.5z120 — 2122)
+  22(0.52% — 2275 — 0.5z1 — 25 + 22)

2
= zi(—2? —2i+1).

Therefore, C = {x € R? : 27 + 23 < 1}, £ = {z € R?*:
29=0 ou 2% +2%=1} and ¢ > 1. By Theorem I, any
bounded solution ¢(t,xo) € Sawen satisfying Condition 1
SJor all x € R"™ with x ¢ Q is attracted to the largest
weakly invariant set of £ U . Fig. 1 illustrates the time-
domain simulation for vy = [—2 — 2.2] and Fig. 2 shows
the switching law. This simulation confirms the results of
Theorem 1 by showing an attractor inside circle of radius
2.2 since ¢ = 1.1 (Fig. 3). Observe in Fig. 4 that function V
increases in ).

05F P L e N L
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t
Fig. 1.  Switching solution for initial condition zg = [-2 — 2.2] for
Example 1.
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Fig. 2. Switching law o(x) for Example 1.

A. An extension of the invariance principle for switched T-S
fuzzy systems

In what follows, an extension of Theorem 1 for switched
T-S fuzzy systems is presented. The result allows the analysis
of the asymptotic behavior of switched system solution just
by verifying the feasibility of LMIs and some properties of
the sets defined.
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45
4
35
8
-~
5 25
=~ 2
15
1
05 :
0 2 4 6 8 10
t

Fig. 4. Function V along the switched system solution for Example 1.

Now, f, in the auxiliary system (13) is described by a T-S
fuzzy model, that is

B(t) =D o

peP

Z hpk Apk x(t)

kER,

15)

The result is developed using the following scalar function:

V(z) =21 Z Z hpkPpr | @

pEP kEG,

(16)

where G, is a subset of R, for all p € P, which is previously
chosen.
We define the following sets

Z = ﬂsp, (17)
peP

D 2 |J{zeZ:Vhu(x)f(x)>0}. (18)
peP
kEG,

Theorem 2 Consider system (15) and real numbers «,
satisfying (9). If set D is bounded, closed and there exist
matrices positive definites P, € IR"*" satisfying (19)-(25),
then there exists a switching law satisfying Condition 1 for
all x ¢ €, such that every bounded solution ¢(t,zg) €
Sawetr Oof switched system (1) is attracted to the largest
weakly invariant set of £ U .

Proof. Consider the property (5) and real numbers «,
satisfying (9). The derivative of function (16) along the
solution of the system (15) is given by (28), where Py =
Z Z hkapk. If there exist matrices positive definites
peEP kEG,

P,. € R™™"™ such that the LMIs (19)-(25) are feasible,
then P, is the only term that can make (28) positive. As
P, is positive definite for all p € P and k € G, then
C C D. Since set D is compact and V is continuous,

there exists £; € R such that max V(z) = ¢;1. Thus, there
rE

exists a real number ¢ such that sup,. V(zr) < £ < {1 <
o0. Therefore, by Theorem 1 there exists a switching law
satisfying Condition 1 for all ¢ £ such that every bounded
solution ¢(t,x0) € Saqweu is attracted to the largest weakly
invariant set of £ U ().

Example 2 We consider system (1) with the following T-S

models:
1 0 1 0
All |: 0 10 :| ) A12 - |: 0 0 :| ) (26)
-3 0 -3 0
An { 1 10 }  An= [ 0 -10 }

and membership functions

x? =+ x2
11 10 ) 12 11,
ey — A1 27)
21 - 257 22 — 21

in the set 7 = {x € R?: |x1| <5 and |xo| < 5}. Using
MATLAB to solve (19)-(24) with parameters oy = 0.8 and
ag = 0.2 forallp € Pand k € R, , we obtain the following
matrices:

P, — _ | 1031 0.003 p., | 0375 0.008
= 0.003 1.273 |> 27| 0.008 0.127 |’

p., _ | —0777 0005 p., — | 0897 0.024
2= 0.005 —0.528 |’ © 227 | 0.024 0.316 |-

Let Gy = {2} and Gy = {2}, then
22(—0.2 — 0.087125) — 0.422 (2?2 + 23 — 2.5)

hl? = 5 )
. —0.222
hos = !
22 oF
thus, D = {x € WR? : a3 + a3 < 2.5}, which is

compact. Therefore, by Theorem 2, there exists a switching
law satisfying Condition 1 for all x ¢ ) such that every
bounded solution ¢(t,x0) € Saweir is attracted to the largest
weakly invariant set of £ U Q. Fig. 5 illustrates the time-
domain simulation for vy = [—2 2| and Fig. 6 shows
the switching law. This simulation confirms the results of
Theorem 2 by showing that the solution is attracted to the
largest weakly invariant set of £ Uy, which was obtained
numerically for { = 0.2 (Fig. 7). Observe in Fig. 8 that
function V' increases in €)y.
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aﬁ(AlﬁkPﬁk + PﬁkA[jk) + Q. <0, ke g[j, (19)

ap(AL Py +PijAg) + Qo <0, kERz—Gg, i€P, jEG, (20)

(Al Ps; + PajAgy + APk + PoeAy;) +2Qa <0, jikeGs, j <k, @1

(AL P+ PoAyy) — ﬁqa <0, peP—1{8}, keg,, (22)

ap(AL Py + PiA) — ﬁ@a <0, peP—1{B}, keR,—G,, icP, jeGs (23)
(AP + PijAp) + (AL Py + PriAy) — o2 Qu <0, ipeP— {8}, KeGy jEG, (4
op(AB P + PijApy) + ai(AlPsr + PgrAyj) + %Qa <0, keGg, i€P, i<fB, jeGg, (25)

where

Qu = Z Z ap(Alkapk; + PpkApk).

PEP kE(Rp—Gp)

V(x(t)) = x(t), Z Z hkapk + ZapzhpkApk Z Z hp P

peP keg, pEP j=1 peEP kEG,
{22 D P | { Do D A
peEP kEG, pEP keg,
1
+ ( Do her | — | 22 D e DD ok | Qg a(t)
kER pgg kER, pEP kEG,
P

/ )
= 2(t) § DD harhy (aﬁ(AlﬁkPij +PijAgk) + ai(A} P + PgrAyj) + —>
KEGs iCP j€G:

2
DD DD kb <Ozp(A;kPij +PijApi) + ai(AyPrp + Prp Ayj) — = 1Qa)

pEP kEG, i€EP jEG;
Pizp

p#p
+ Y Ba(ap(AlPar + ParAgs) + Qo)
kegp
+ DY hprhsi(ap(AlPsj + PgjAs, + Al Pac + ParAg;) +2Qq)
keGg jegg
i<k
1
+ Z Z hzk(ap(A;kak + PprApr) — mQa)
pEP keg,
p#B
+ Z Z Z hgihij (04,3 (A/BkPij +Pi;Apk) + Qa) (28)

ke(Gs—Rp)i€P j€G:

D DD kg (ap(A;kPij +PijAp) — ﬁ‘%) + Py o x(t)

PEP kE(Rp—Gp) tEP jEG:
p#B o
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IV. CONCLUSIONS

An invariance principle for switched T-S fuzzy systems,
which can be applied to unstable systems was presented. In
this result, we are not interested in analysing the stability of
a particular equilibrium point but the asymptotic behavior
of solutions. However, many existing results using Lyapunov
direct method can not be used for this analysis. Hence, we
first presented an invariance principle for switched nonlinear
systems and after this result was extended to switched T-
S fuzzy systems. Theorem 2 can be improved by using
properties of the membership functions [16] to obtain less
conservative LMIs.
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Fig. 5. Switching solution for initial condition z¢g = [—2 2] for Example 2.
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Fig. 6. Switching law o(x) for Example 2
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Fig. 7. Phase portrait for Example 2.
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