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Abstract— This paper is concerned with the optimal LQG
control of a system through lossy data networks. In particular
we will focus on the case where control commands are issued to
the system over a communication network where packets may
be randomly dropped according to a two-state Markov chain.
Under these assumptions, the optimal finite-horizon LQG prob-
lem is solved by means of dynamic programming arguments.
The infinite horizon LQG control problem is explored and
conditions to ensure its convergence are investigated. Finally
it is shown how the results presented in this paper can be
employed in the case that also the observation packet may
be dropped. A numerical simulation shows the relationship
between the convergence of the LQG cost and the value of
the parameters of the Markov chain.

I. INTRODUCTION

Today, an increasing number of applications demand re-
mote control of plants over unreliable networks. The recent
development of sensor web technology enables the devel-
opment of wireless sensor networks that can be immediately
used for estimation and control purposes [1]. In these systems
issues such as communication delay, data loss and time
synchronization play a critical role. As a matter of fact,
communication and control are tightly coupled and so they
cannot be addressed independently. For this reason, the
study of stability of dynamical systems where components
are connected via communication channels has received
considerable attention in the past few years, see e.g. [2],
[3], [4], [5].

In this paper we will focus on the Linear Quadratic
Gaussian (LQG) optimal control problem for the case where
control packets can be randomly lost accordingly to a two-
states Markov process. With a few notable exceptions, such
as [6] and [7], most of the work on control present in
the literature focuses on the case where packet losses are
governed by independent identically distributed Bernoulli
processes. In particular, for what concerns the LQG problem,
Schenato et al. [8] consider the case where both sensors
and command packets can be lost according to a Bernoulli
process, under the assumption that a perfect acknowledgment
mechanism is available (the so called TCP-like case [9]).
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In that paper the authors prove that the separation principle
holds and the controller and the observer are linear functions
of the estimated state. More recently, the authors of [10]
generalize the results in the TCP-like framework to the case
where multiple memoryless erasure channels are interposed
between the sensors, the controller and the actuators. In this
case partial observation and control losses may occur. De-
spite that it is possible to show that the separation principle
holds. In stark contrast, when either no acknowledgment
or only imperfect acknowledgment occurs, the separation
principle does not hold and joint design of estimator and
controller becomes a non convex problem, as shown in [11]
and [12].

This paper generalizes the aforementioned results to the
case where channels have memory. This situation is very
common in wireless communication where effects like fading
make the assumption of independent losses not suitable.
We model such phenomena using a particular Gilbert-Elliott
Channel model [13], i.e. a two-state Markov Chain. As
already stated above the packet arrival sequence is not i.i.d.
anymore.

The remainder of this paper is organized as follows.
Section 2 provides the problem formulation in the case
only control packets may be lost accordingly to a Gilbert-
Elliot Channel model. In Section 3 the design the optimal
LQG control law is addressed both in the finite and in the
infinite horizon case. Section 4 discusses how the results
can be generalized to the case where observation packets
can be dropped as well. Section 5 presents a numerical
example showing how the Markov chain parameters affect
the convergence of the LQG cost in the infinite horizon case.
Finally, Section 6 draws some conclusions.

II. PROBLEM FORMULATION

Consider the linear system

xk+1 = Axk +Buak + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rn is the state vector, uak ∈ Rp is the control
signal applied by the actuator and wk ∈ Rn is process noise,
assumed to be i.i.d. Gaussian with mean 0 and covariance
Q > 0. yk ∈ Rm is the observation vector and vk ∈ Rm is
the measurement noise, also assumed to be i.i.d. Gaussian
with mean 0 and covariance R > 0. A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n are the system matrixes. We assume that the
system is both detectable and stabilizable. The initial state
x0 ∈ Rn is assumed to be Gaussian with mean 0 and
covariance Σ. We further assume that x0, v0, . . . , w0, . . . are
independent random vectors.
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Let uk ∈ Rn be the control signal sent by the controller.
We assume that such signal is sent through an unreliable
network. The random variable νk characterizes the correct
packet communication, namely we will have νk = 1 if the
actuator receives uk and νk = 0 otherwise. Assuming that
uak = 0 if uk is dropped and uak = uk if uk is received, uak
will be

uak = νkuk. (2)

In this paper we assume that packet losses are modeled
through the particular Gilbert-Elliott channel model depicted
in Fig.1. This model consists of a two-state Markov process,
one of them representing an good behavior of the channel
(the packet is received, i.e. νk = 1) and the other the bad
one (the packet is not received, i.e. νk = 0).

νk = 0 νk = 1
β

α
1− α 1− β

Fig. 1. The Gilbert-Elliott model of the communication channel.

We denote with α the probability of passing from the bad
state to the good one and with β the one of passing from
the good to the bad one. As a consequence the probabilities
that a packet is received or not, depending on the previous
packet, are[
P (νk+1 =0|νk=0) P (νk+1 =1|νk=0)
P (νk+1 =0|νk=1) P (νk+1 =1|νk=1)

]
=

[
1−α α
β 1−β

]
.

(3)
Furthermore, the latter Markov process is assumed to be:
• Irreducible: the variables are such that 0 < α ≤ 1,

0 < β ≤ 1;
• Stationary: in absence of any past information, the

probability that, at a certain instant k, νk = 0 is always
the same and in particular P (ν0 = 0) = . . . = P (νk =
0) = β/(α+ β),∀k > 0.

We assume that the information set Fk available to the
controller at each time instant k is

Fk,(y0, . . . , yk, ν0, . . . , νk−1, u0, . . . , uk−1, x0). (4)

Please note that this information set contains the sequence
{νt}kt=0, which means that a reliable acknowledgment mech-
anism is implemented (the so called TCP-like case [9]). As
pointed out in [10], this assumption is reasonable in many
practical cases.

The goal of this paper is to determine the optimal control
input sequence {uk} as a function of the available infor-
mation set, i.e. uk = fk (Fk), such that the following cost
function is minimized:

JT , inf
{uk}:uk=fk(Fk)

E

[
T∑
k=0

x′kWkxk + (uak)
′
Uku

a
k

]
, (5)

where Wk, Uk are strictly positive definite matrices. Since
uak = νkuk, the above equation can be simplified as

JT = inf
{uk}:uk=fk(Fk)

E

[
T∑
k=0

x′kWkxk + νku
′
kUkuk

]
. (6)

III. MAIN RESULTS

A. Estimator Design

Using arguments similar to standard Kalman filtering, we
can prove that the following estimation equations hold when
the control packets are dropped according to a Markov chain:

x̂k = E[xk|Fk] = x̂k|k−1 +Kk(yk − Cx̂k|k−1), (7)
Pk = E[(xk−x̂k)(xk−x̂k)′|Fk]=Pk|k−1−KkCPk|k−1, (8)

where

x̂k|k−1 = Ax̂k−1 + νk−1Buk−1, (9)
Pk|k−1 = APk−1A

′ +Q, (10)

Kk = Pk|k−1C
′(CPk|k−1C

′ +R)−1 (11)
x̂0 = 0, P0 = Σ. (12)

Moreover, it is worth to recall the following lemma, whose
proof is reported in [14]

Lemma 1: For any matrix S, the following equality holds:

E(x′kSxk|Fk) = x̂′kSx̂k + tr(SPk). (13)

where tr(SPk) denotes the trace of the matrix SPk.

B. Finite Horizon

In order to derive the optimal control law and the cor-
responding value for the objective function we follow a dy-
namic programming approach based on a cost-to-go iterative
procedure. To this end, let us define the following optimal
value function

Vk(xk) , inf
uk,...,uT

E

[
T∑
i=k

x′iWixi + νiu
′
iUiui|Fk

]
. (14)

which can be rewritten as follows by dynamic programming:

Vk(xk) = inf
uk

E [x′kWkxk + νku
′
kUkuk + Vk+1(xk+1)|Fk] ,

The following lemma can be proved
Lemma 2: The value function Vk(xk) is given by the

following equation:

Vk(xk) =

{
E(x′kSkxk|Fk) + ck (νk−1 = 0)

E(x′kRkxk|Fk) + dk (νk−1 = 1)
, (15)

where Sk, Rk, ck, dk can be defined recursively as

Sk=Wk + (1− α)A′Sk+1A+ αA′Rk+1A−
−αA′Rk+1B(Uk +B′Rk+1B)−1B′Rk+1A,

(16)

Rk=Wk + βA′Sk+1A+ (1− β)A′Rk+1A−
−(1−β)A′Rk+1B(Uk +B′Rk+1B)−1B′Rk+1A,

(17)

ck=(1− α)tr(Sk+1Q) + αtr(Rk+1Q)+

+(1− α)ck+1 + αdk+1+

+αtr(A′Rk+1B(Uk+B
′Rk+1B)−1B′Rk+1APk),

(18)

dk=βtr(Sk+1Q) + (1− β)tr(Rk+1Q)+

+βck+1 + (1− β)dk+1

+(1−β)tr(A′Rk+1B(Uk+B′Rk+1B)−1B′Rk+1APk),

(19)
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with the following initial conditions

ST = RT = WT , cT = dT = 0. (20)

Moreover, the optimal control uk is

uk = − (Uk +B′Rk+1B)
−1
B′Rk+1Ax̂k. (21)

Proof: The proof is similar to the ones presented by
Costa et al. [15] and hence is omitted due to space limit.
Since JT = E(V0(x0)), the following theorem can be
proved:

Theorem 1: The optimal JT for finite-horizon LQG prob-
lem (6) is given by the following equation:

JT = 1
α+β tr

[
βΣS0+αΣR0+

T−1∑
k=0

(βSk+1Q+αRk+1Q)

+
T−1∑
k=0

(
αARk+1B(Uk +B′Rk+1B)−1B′Rk+1APk

)] (22)

where Sk, Rk and Pk are defined recursively in (16), (17)
and (8) with initial condition ST = RT = WT , P0 = Σ.
Moreover, the optimal control uk is given by (21).

Proof: Since JT = E(V0(x0)), it follows that

JT = P (ν−1 = 0)(E(x′0S0x0|F0) + c0)

+ P (ν−1 = 1)(E(x′0R0x0|F0) + d0)

=
1

α+ β
tr(βΣS0 + αΣR0) +

1

α+ β
(βc0 + αd0).

Since the Markov process is assumed to be irreducible and
stationary, P (ν−1 = 0) = β/(α + β) and P (ν−1 = 1) =
α/(α+ β) and then

JT =
1

α+ β
tr(βΣS0 + αΣR0) +

1

α+ β
(βc0 + αd0).

By (18) and (19), we have

βc0 + αd0 = tr(βS1Q+ αR1Q+
+αA′R1B(U1 +B′R1B)−1B′R1AP0) + βc1 + αd1
=
∑T−1
k=0 tr(βSk+1Q+ αRk+1Q+

+αARk+1B(Uk +B′Rk+1B)−1B′Rk+1APk).

As a result, the optimal JT is given by (22).

C. Infinite-Horizon LQG and Convergence

This subsection tackles the the convergence of the infinite-
horizon LQG problem. Throughout this subsection, it is
assumed that W0 = . . . = WT = . . . = W and U0 =
. . . = UT = . . . = U . Since Q > 0 is assumed to be
strictly positive definite, the covariance matrix Pk of the
Kalman filter converges to an unique positive definite matrix
P, regardless of the initial condition Σ. Therefore, let us
define

P , lim
k→∞

Pk. (23)

Moreover let us also define the infinite-horizon cost function
as

J∞ = lim sup
T→∞

JT /T.

In order to simplify notations, we will also introduce the
following functions

g(X,Y ) ,W + (1− α)A′XA+ αA′Y A (24)

− αA′Y B(U +B′Y B)−1B′Y A,

h(X,Y ) ,W + βA′XA+ (1− β)A′Y A (25)

− (1− β)A′Y B(U +B′Y B)−1B′Y A.

and

gk(X,Y ) , g(gk−1(X,Y ), hk−1(X,Y )), (26)

hk(X,Y ) , h(gk−1(X,Y ), hk−1(X,Y )). (27)

Please note that the latter functions are such that Sk =
g(Sk+1, Rk+1) and Rk = h(Sk+1, Rk+1) and moreover
Sk = gT−k(ST , RT ), Rk = hT−k(ST , RT ).

Theorem 2: If two positive semidefinite matrices X̄ ≥ 0
and Ȳ ≥ 0 exist such that

X̄ ≥ g(X̄, Ȳ ), Ȳ ≥ h(X̄, Ȳ ). (28)

Then, the following hold:
1) The following equations

X = g(X,Y ), Y = h(X,Y ),

has a unique positive definite solution X∗, Y∗.
2) For all positive semidefinite matrices X0 ≥ 0, Y0 ≥ 0,

the following holds

lim
k→∞

gk(X0, Y0) = X∗, lim
k→∞

hk(X0, Y0) = Y∗.

On the contrary, if there do not exist positive semidefinite
matrices X̄, Ȳ , such that (28) holds, then for all positive
semidefinite matrices X0 ≥ 0, Y0 ≥ 0,

lim
k→∞

gk(X0, Y0) =∞, lim
k→∞

hk(X0, Y0) = Y∗.

Proof: The proof is reported in the appendix for the
sake of readability.
By exploiting the latter result the following theorem can be
proved:

Theorem 3: Suppose that there exist two positive semidef-
inite matrices X ≥ 0 and Y ≥ 0, such that (28) holds, then
the optimal J∞ is given by

J∞=
tr(βSQ+ αRQ+ αARB(U +B′RB)−1B′RAP∞)

α+ β
,

(29)
where S, R are the unique solutions of the following equa-
tions

S = g(S,R), R = h(S,R). (30)

The optimal control law is given by

uk = − (U +B′RB)
−1
B′RAx̂k. (31)

On the contrary, if there does not exist X ≥ 0, Y ≥ 0, such
that (28) holds, then

J∞ =∞. (32)
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As it is well known, when A is asymptotically stable, the
LQG cost is always finite. For the case of unstable A, it can
be easily seen that the finiteness of LQG control depends
on functions g and h, which further depend on α and β. In
the following theorem, we give a necessary condition on α
for the convergence of the LQG control. Such a condition is
also sufficient if B is invertible.

Theorem 4: Suppose that A is unstable, then the following
condition is necessary for the LQG control cost J∞ to be
finite:

α > 1− 1

ρ2
, (33)

where ρ is the spectral radius of A matrix. Moreover, if B
is invertible, then (33) is also sufficient.

Proof: Since J∞ is finite, by Theorem 3 there exist
matrices X > 0, Y > 0, such that

X ≥ g(X,Y ) = W + (1− α)A′XA+ αA′Y A

− αA′Y B(U +B′Y B)−1B′Y A

By using the matrix inversion lemma Y − Y B(U +
B′Y B)−1B′Y = (Y −1 +BU−1B′)−1, it can be seen that

X ≥W + (1− α)A′XA+ αA′(Y −1 +BU−1B′)−1A

≥W + (1− α)A′XA.

By the properties of Lyapunov equation, we know that to
be true

√
1− αA must be strictly stable, which implies that

α > 1−ρ−2, which concludes the first part of the proof. For
the second part , if B is invertible, then as a consequence:

g(X,Y ) = W + (1− α)A′XA+ αA′(Y −1 +BU−1B′)−1A

≤W + αA′(BU−1B′)−1A+ (1− α)A′XA,

and

h(X,Y ) ≤W + βA′XA+ (1− β)A′(BU−1B′)−1A.

Since we assume that α > 1 − ρ−2, we could always find
X > 0, such that

X ≥W + αA′(BU−1B′)−1A+ (1− α)A′XA ≥ g(X,Y ).

Then we choose

Y = W + βA′XA+ (1− β)A′(BU−1B′)−1A ≥ h(X,Y ).

Finally by Theorem 3, J∞ is finite, which concludes the
proof.

Remark 1: It is interesting to note that, for the sake of
convergence, the role of the parameters α and β and in
general the recursions X = g(X,Y ) and Y = h(X,Y ) is
not the same. In particular it is possible to see that α and
X = g(X,Y ) are in a sense ”more critical” than β and
Y = h(X,Y ). The reason is that α is strictly connected to
the probability to have long ”bursts” of packet losses which
is a critical condition for the convergence of the cost.

IV. GENERALIZATION TO SENSORS PACKET LOSSES

The seen results can be summarized by the following
theorem:

Theorem 5: Let the system (1)-(3) with A,C detectable
and A,B stabilizable. Let the information set (4) be available
to the controller. Then, considering the problem of minimiz-
ing (6)
• (Finite Horizon) The optimal control law is (21) a

linear function depending only on the estimated system
state x̂ and where Rk is recursively obtained by (16)-
(17) . The separation principle holds true since the
optimal estimator is independent of the control input
uk and the two can be designed separately. The optimal
estimator is the Kalman filter (8) and the optimal cost
is (22).

• (Infinite Horizon) The optimal cost J∞ is finite if and
only if there exist two positive semidefinite matrices
X ≥ 0 and Y ≥ 0, such that (28) holds true. In this
case, the optimal cost is given by (29) where S, R are
the unique solutions (30). The optimal control law is
linear (31).

Remark 2: Please note that νk does not explicitly appears
in the control law. Nevertheless, this information cannot be
dropped from the information set, since it is used in the
estimation. In fact, by resorting to the same arguments pre-
sented in [12], it can be proved that with the information set
Gk,(y0, . . . , yk−1, u0, . . . , uk−1, x0) the separation principle
does not hold anymore.

Interestingly enough, the above results can be generalized
also to the case where observation packets are lost according
to a stochastic variable γk such that γk = 1 if the measure-
ments packets are correctly received and γk = 0 otherwise.
The only difference is that the Kalman filter update (8)
becomes

x̂k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1), (34)
Pk = γkPk|k−1−KkCPk|k−1, (35)

and that the cost depends on E[Pk] rather than on Pk as
shown below for the finite horizon case

JT = 1
α+β tr

[
βΣS0+αΣR0+

T−1∑
k=0

(βSk+1Q+αRk+1Q)

+
T−1∑
k=0

(
αARk+1B(Uk+B′Rk+1B)−1B′Rk+1AE[Pk]

)] (36)

and for the infinite horizon case

J∞ =
tr(βSQ+αRQ+αARB(U +B′RB)−1B′RAEP∞)

α+ β
.

(37)
Clearly in this case, in order to have a finite J∞ cost, also
E[P∞] has to be finite. Conditions to obtain a finite E[P∞]
in the case that γk is modeled as a Markov processes can be
found in [16], [17].

V. NUMERICAL EXAMPLES

We consider the following system

A =

[
1.05 0

0 −1.05

]
, B =

[
1
1

]
, C =

[
1 0
0 1

]
,
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with W = Q = R = I , U = 1. Figure V shows the region with
finite optimal LQG cost, with respect to the possible values
of α and β. Note that the unstable region is actually not
connected. The system is chosen in such a way that (A2, B)
is not controllable. Therefore, if α = β = 1, then the system
can only be controlled at either odd or at even times, causing
the loss of controllability, thus explaining why the upper right
corner of the plot is unstable.

Moreover, intuitively speaking, a “good” channel is a
channel with a small β and a large α. However, this may
not be the case for LQG control, as is shown in Figure V,
where increasing α may result in instability.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

β

Fig. 2. Convergence Region. The green region corresponds to finite J∞
and the blue region corresponds to infinite J∞.

VI. CONCLUSIONS

In this paper we considered the problem of LQG optimal
control in the case control and observation packets may be
lost according to a particular Gilbert-Elliot channel model.
It has been shown that, interestingly enough, under the
assumption of a TCP-like acknowledgment mechanism, the
separation principle still holds and that the optimal controller
is still a linear function of the state. The problem of infinite
horizon LQG has also been investigated, showing how, in this
case, differently from the memoryless one, stability depends
on the parameters of the Markov chain.

APPENDIX:PROOF OF THEOREM 2

This section is devoted to proving Theorem 2, which
requires several intermediate results.

First let us define function ϕ(K,X, Y ) and φ(K,X, Y )
as follows:

ϕ(K,X, Y ) ,W+(1−α)A′XA+α(F ′Y F+K ′UK),

φ(K,X, Y ) ,W+βA′XA+(1−β)(F ′Y F+K ′UK),

where F = A+BK. Moreover, we define ϕk, φk as

ϕk(K,X, Y ) , ϕ(K,ϕk−1(X,Y ), φk−1(X,Y )), (38)

φk(K,X, Y ) , φ(K,ϕk−1(X,Y ), φk−1(X,Y )). (39)

Now we have the following lemma:
Lemma 3: The following statements on functions

g, h, ϕ, φ are true:
1) ϕ and φ are monotonically increasing with respect to

X and Y .
2) For any K, the following inequalities hold:

g(X,Y ) ≤ϕ(K,X, Y ), h(X,Y ) ≤ φ(K,X, Y ).

Furthermore, the equalities hold if

K = KY = −(U +B′Y B)−1B′Y A.

3) g and h are monotonically increasing with respect to
X and Y .

Proof:
1) It directly follows from the structure of ϕ(K,X, Y )

and φ(K,X, Y ).
2) It is enough to notice that by construction ϕ(K,X, Y )

and φ(K,X, Y ) are such that

ϕ(K,X, Y ) = g(X,Y )

+α(K −KY )′(B′Y B + U)(K −KY ),

φ(K,X, Y ) = h(X,Y )

+(1−β)(K−KY )′(B′Y B+U)(K−KY ),

3) Suppose that X1 ≥ X2 and Y1 ≥ Y2, we know that

g(X1, Y1) = ϕ(KY1
, X1, Y1) ≥ ϕ(KY1

, X2, Y2)

≥ g(X2, Y2).

By the same argument, we know that h is also mono-
tonically increasing.

Lemma 4: Suppose there exist positive semidefinite ma-
trices X̄ ≥ 0, Ȳ ≥ 0 and some matrix K, such that

X̄ ≥ ϕ(K, X̄, Ȳ ), Ȳ ≥ φ(K, X̄, Ȳ ). (40)

Then there exists X∗ > 0, Y∗ > 0, such that for all X0 ≥
0, Y0 ≥ 0, we have

lim
k→∞

ϕk(K,X0, Y0) = X∗, lim
k→∞

φk(K,X0, Y0) = Y∗.

Proof: First let us consider Xk = ϕk(K, 0, 0) and Yk =
φk(K, 0, 0). Since Y0 = 0 and X0 = 0, then X0 < X1 and
Y0 < Y1. By applying ϕ and φ recursively, we know that the
sequences of Xi, Yi is increasing, i.e.,

0 = X0 < X1 ≤ · · · ≤ Xk, 0 = Y0 < Y1 ≤ · · · ≤ Yk.

By the same argument, the following sequences are decreas-
ing

X̄ ≥ ϕ(K, X̄, Ȳ ) ≥ · · · ≥ ϕk(K, X̄, Ȳ )

Ȳ ≥ φ(K, X̄, Ȳ ) ≥ · · · ≥ φk(K, X̄, Ȳ )
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Now since X̄, Ȳ ≥ 0, by monotonicity of ϕ, φ, we have

Xk ≤ ϕk(K, X̄, Ȳ ) ≤ X̄, Yk ≤ φk(K, X̄, Ȳ ) ≤ Ȳ .

Therefore, {Xk} and {Yk} are bounded and monotone,
which implies that they converge to positive definite matrices
X∗ and Y∗ respectively.

Now consider the case of an arbitrary X0 ≥ 0 and Y0 ≥ 0.
Since X∗ and Y∗ are strictly positive definite, we could find
a scalar q > 0, such that X∗ ≥ qX0 and Y∗ ≥ qY0. At this
point, due to the fact ϕ and φ are increasing w.r.t. X and Y
we have:

ϕk(K, 0, 0) ≤ ϕk(K, qX0, qY0) ≤ ϕk(K,X∗, Y∗) = X∗,

φk(K, 0, 0) ≤ φk(K, qX0, qY0) ≤ φk(K,X∗, Y∗) = Y∗.

By taking the limit on both sides, and exploiting the above
result we have that:

limk→∞ ϕk(K, qX0, qY0) = X∗,
limk→∞ φk(K, qX0, qY0) = Y∗.

To complete the proof it is enough to remark that the
following equations holds true

ϕk(K, qX0, qY0)−ϕk(K, 0, 0)=q(ϕk(K,X0, Y0)−ϕk(K, 0, 0)),

φk(K, qX0, qY0)−φk(K, 0, 0)=q(φk(K,X0, Y0)−φk(K, 0, 0)).

and that by taking the limit on both sides again we obtain

lim
k→∞

ϕk(K,X0, Y0) = X∗,

lim
k→∞

φk(K,X0, Y0) = Y∗,

which ends the proof.
Using the latter Lemmas it is now possible to prove Theo-
rem 2. Proof: [Proof of Theorem 2] Assume that there
exist X̄ ≥ 0 and Ȳ ≥ 0, such that

X̄ ≥ g(X̄, Ȳ ), Ȳ ≥ h(X̄, Ȳ ).

Let us define Xk = gk(0, 0) and Yk = hk(0, 0). By
following the exact same arguments of the proof of Lemma 4,
it results that the sequences Xk and Yk converge to X∗ > 0
and Y∗ > 0 respectively, which implies that

X∗ = g(X∗, Y∗) = ϕ(K∗, X∗, Y∗),

Y∗ = h(X∗, Y∗) = φ(K∗, X∗, Y∗),

where K∗ = −(U+B′Y∗B)−1B′Y∗A. By choosing arbitrary
X0 ≥ 0 and Y0 ≥ 0, and exploiting Lemma 3 we can write
the following inequalities

gk(0, 0) ≤ gk(X0, Y0) ≤ ϕk(K∗, X0, Y0),

hk(0, 0) ≤ hk(X0, Y0) ≤ φk(K∗, X0, Y0).

Finally, by taking the limit on the above terms, we have

X∗ ≤ lim
k→∞

gk(X0, Y0) ≤ X∗,

Y∗ ≤ lim
k→∞

hk(X0, Y0) ≤ Y∗,

which proves that

lim
k→∞

gk(X0, Y0) = X∗, lim
k→∞

hk(X0, Y0) = Y∗.

To prove the necessity of the stated condition, suppose
matrices X̄ ≥ 0 and Ȳ ≥ 0, such that

X̄ ≥ g(X̄, Ȳ ), Ȳ ≥ h(X̄, Ȳ ).

do not exist. Then the following monotone sequences must
be unbounded:

g(0, 0) ≤ g2(0, 0) ≤ . . . , h(0, 0) ≤ h2(0, 0) ≤ . . . .

Since gk(X0, Y0) ≥ gk(0, 0) and hk(X0, Y0) ≥ hk(0, 0), it
results that for all initial condition X0, Y0,

lim
k→∞

gk(X0, Y0) =∞, lim
k→∞

hk(X0, Y0) =∞.
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