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Abstract— We present a control strategy for a robot that
juggles a ball with a single actuated paddle that is attached
to the tip of a pendulum-like mechanism. The robot juggles
the ball from side-to-side by striking the ball with the paddle
when the pendulum reaches its peak angles. Sustained juggling
is only possible if the pendulum motion is synchronized to the
ball motion. We propose adapting the paddle motion to achieve
synchronization. Specifically, we exploit the dynamic coupling
between the pendulum and the paddle, which is essentially a
moving mass at the tip of the pendulum. Optimal control is
used to compute paddle motions that synchronize the pendulum
to the ball. Feedback is introduced with a lookup table that
maps a measured state to an appropriate paddle motion. In
experiments, the proposed feedback strategy enables the robot
to juggle at various amplitudes.

I. INTRODUCTION

The Swinging Blind Juggler (SBJ) can juggle balls with

a single actuated paddle that swings from side-to-side and

is attached to the tip of a pendulum. The paddle strikes the

ball when the pendulum reaches its peak angle. Then, the

pendulum swings to the other side in order to position the

paddle for the next strike. A sketch of the SBJ is shown

in Fig. 1; the juggling motion of the ball and the pendulum

are shown in snapshots in Fig. 2, and a video of the system

juggling is available in [1].

The SBJ can juggle without any sensors detecting the ball.

In [2], we derived the nominal ball trajectory and showed that

the trajectory is locally open-loop stable. Stability is provided

by two key design parameters:

1) the parabolic, concave shape of the aluminum paddle, and

2) the decelerating motion of the paddle at ball impact.

These two stabilizing parameters were initially derived for a

vertically juggling robot in [3].

For sustained side-to-side juggling, it is crucial to synchro-

nize the swinging motion of the pendulum to the ball motion.

In previous work [2], the synchronization was achieved with

two electric motors attached to the pivot of the pendulum.

In this paper, we propose to use the paddle motion to

achieve synchronization. The key idea is to exploit the

dynamic coupling between the motion of the paddle and the

pendulum. Children on a swing exploit similar dynamics to

control their amplitude.

The paddle performs the striking motion at the peak angles

of the pendulum. Between strikes, the paddle motion is

partially unconstrained and can be used for control. We use

optimal control to compute paddle motions that bring the

system to the right state at the right time in order to strike

the ball. A straightforward feedback strategy is applied to
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Fig. 1. The Swinging Blind Juggler striking the ball at the left peak angle
(black) and the right peak angle (gray). Depicted are: the pendulum angle φ;
the paddle angle ϑ; the paddle position zp; The vertical juggling height H;
the horizontal juggling distance ∆x; gravity g; and the inertial coordinate
system.

compensate for deviations in pendulum amplitude and phase.

For a bounded set of deviations, we precompute paddle

motions that compensate for the deviations and bring the

system back to the nominal trajectory. The precomputed

paddle motions are stored in a lookup table. After striking,

the deviation is measured and the appropriate paddle motion

is selected from the lookup table and then applied. In ex-

periments, the proposed feedback strategy allowed sustained

juggling at various amplitudes and was able to compensate

for disturbances.

The dynamics of children on swings and, in particular, how

they pump energy into their motion, has been the subject of

several studies [4]–[6]. In [4], pumping of a swing has been

analyzed from an optimal control point of view. Including

the SBJ, there are a range of dynamic systems similar

to children on swings, which are studied as challenging

nonlinear control problems. Examples include: the swing up

of the Acrobot [7]; damping oscillations of a pendulum that

features an actuated mass and a translationally actuated pivot

point [8]; and tracking reference trajectories with a variable
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Fig. 2. The Swinging Blind Juggler bouncing a ball at an amplitude of 25◦. The round structures at the top are brushless motors that were used to control
the pendulum motion in previous work [2].

length pendulum [9]. Juggling has been studied in robotics as

a challenging dexterous task, see, for example, [10]. Similar

to the SBJ is the Wiper robot, which consists of two actuated

aluminum beams and juggles discs on a tilted air-hockey

table [11].

The paper is organized as follows: First, we present the

system modeling and identification in Section II. Then,

the optimal control problem is introduced in Section III.

The feedback strategy is presented in Section IV. Finally,

experimental results are discussed in Section V.

II. DYNAMIC MODEL AND SYSTEM IDENTIFICATION

A key feature of the SBJ is the four-bar linkage that

supports the paddle, see Fig. 1. The link lengths were

optimized in [2] such that the resulting paddle angle ϑ is

as perpendicular as possible to the ball impact velocity for

all pendulum amplitudes Φ up to 30◦, and that the resulting

pendulum period matches the flight time of the ball. In the

following, we introduce the dynamic model of the SBJ and

briefly discuss the system identification procedure.

A. Dynamics

For modeling, the SBJ structure is reduced to three rigid

bodies, which are sketched in Fig. 3. Both side-links of the

four-bar linkage are treated as a single body K1. The lower

link and the static parts of the linear motor are combined

into body K2, and the paddle and moving parts of the linear

motor are represented by body K3.

We use Lagrange equations of the second kind to derive

the system dynamics. Here, only the key points are stated. A

Mathematica file providing the full derivation may be found

in [1].
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Fig. 3. The reduced model of the SBJ, featuring three rigid bodies.

1) Minimal coordinates: The set of minimal coordi-

nates that describes the system shown in Fig. 3 is

{φ(t), ϑ(t), zp(t)}. In the following, we omit the time de-

pendency for clarity. The four-bar linkage shown in Fig. 1

was designed to keep the paddle perpendicular to the ball

velocity at impact. We find that for pendulum angles up to

φ = 30◦, the relation

ϑ = cφ, (1)

where c = 0.36, is a reasonable approximation: The maximal

error between the approximated ϑ and the actual angle

realized by the four-bar linkage is 0.2◦. With this holonomic

constraint, we can remove ϑ from the set of minimal coor-

dinates.

The PD controller that controls the paddle motion runs at a

much higher frequency than the pendulum’s eigenfrequency.

In addition, the linear motor provides enough control author-

ity to track trajectories independent of the pendulum’s state.

This was confirmed in experiments. In the following, we

therefore assume that the paddle is able to perfectly track
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feasible reference trajectories. Therefore, we treat z̈p as a

control input and we remove zp from the set of minimal

coordinates. This leaves us with only one minimal coordinate

q = φ, (2)

to describe the swinging motion.

2) Lagrange and Nonpotential Torques: The Lagrange

equation of motion is given by

d

dt

(

∂Ekin

∂q̇

)

−
∂Ekin

∂q
+

∂Epot

∂q
= fnp, (3)

where Ekin is the sum of the kinetic energies of the three

bodies, and Epot is the sum of the potential energy of the

three bodies. The only nonpotential torque is damping

fnp = cdφ̇, (4)

that we introduce in order to account for friction in the joints.

Solving (3) for φ̈, we obtain the nonlinear dynamics of the

pendulum angle:

φ̈ = fφ

(

φ, φ̇, zp, żp, z̈p

)

. (5)

B. System Identification

In order to identify the parameters of the pendulum

dynamics (5), i.e. masses, lengths, inertias, and friction, we

perform a system identification step. We optimize the param-

eters to best fit the model to data obtained in experiments

with the SBJ. The optimization is seeded with values for

the parameters that we obtained from the CAD model of the

SBJ. The identification was performed using a nonmoving

paddle at different positions zp; however, we also verified

the parameters in an experiment with a moving paddle. The

identified parameters are available in [1].

III. THE OPTIMAL CONTROL PROBLEM

In order to juggle the ball, the pendulum motion must be

synchronized to the flying ball. In this section, we formulate

the goal of finding a feasible paddle motion that brings the

SBJ to the right state at the right time to strike the ball.

A. Dynamics

We define the system state s(t) and the control input u(t)
as

s(t) :=









φ(t)

φ̇(t)
zp(t)
żp(t)









, u(t) := z̈p(t). (6)

Given the dynamics of the pendulum angle (5), the nonlinear

dynamics of the SBJ are

ṡ(t)=fs(s(t), u(t))=











φ̇(t)

fφ

(

φ(t), φ̇(t), zp(t), żp(t), u(t)
)

żp(t)
u(t)











.

(7)

B. Paddle Constraints

The paddle movement is subject to constraints, which are

introduced in this section. We limit the maximal achievable

acceleration to

|u(t)| ≤ 20m s−2. (8)

We choose a conservative bound such that the perfect trajec-

tory tracking assumption holds for the paddle. The limited

stroke of the linear motor limits the paddle position to

0m ≤ zp(t) ≤ 0.18m. (9)

C. Juggling Constraints

In this section, we derive the state constraints that are

imposed by juggling a ball.

1) Paddle Striking Motion: First, we introduce the pad-

dle motion required for juggling the ball, i.e. the striking

motion. The parameters derived in the following depend on

the specific juggling amplitude Φ. However, we omit this

dependency in the notation for clarity. The natural pendulum

period of the SBJ is T . The resulting nominal ball flight time

between two impacts is

tF =
1

2
T (10)

and the nominal apex height is

H =
1

2
g

(

tF
2

)2

, (11)

where g = 9.8m s−2 is the gravitational acceleration. The

constant, nominal horizontal ball velocity during flight is

ẋb =
∆x

tF
, (12)

where ∆x is the horizontal distance that the ball travels

between impacts, see Fig. 1. At the maximal specified swing

amplitude of 30◦ for the SBJ, the ball travels ∆x ≈ 1m. The

vertical ball velocity just before impact is

żb = −
tF
2
g. (13)

The magnitude of the impact velocity is

|v| =
√

ẋ2
b + ż2b . (14)

We model damping losses at impact with Newton’s impact

law

|v+| = ez|v
−|+ (1 + ez)|żp,i|, (15)

where żp,i is the paddle velocity at impact and the super-

scripts +,− denote post- and pre-impact, respectively. The

coefficient of restitution ez was determined experimentally

in [12]. In (15), we further assume that the ratio of the ball

mass to the paddle mass is negligible. Given that nominally,

|v+| = |v−| = |v| and żb < 0, the paddle velocity at impact

is

żp,i = |v|
1 − ez
1 + ez

. (16)
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D. Juggling State Constraints

Next, we derive the full system state during the striking

motion. In the following, we consider a single juggling

motion of the system, where the pendulum swings from the

left side (φ = Φ) to the right side (φ = −Φ), see Fig. 1.

The reverse motion can be derived analogously. We define

the nominal impact time on the left side as ti,l and on the

right side as ti,r. The relation between the two impact times

is

ti,r = ti,l + tF = ti,l +
T

2
. (17)

The system states at nominal impact are defined as

si,l := s (ti,l) =









Φ
0
zp,i
żp,i









, si,r := s (ti,r) =









−Φ
0
zp,i
żp,i









. (18)

The paddle height zp,i may be chosen freely as long as

the paddle constraints (8) and (9) are satisfied. The paddle

velocity żp,i can be calculated with (10)–(16).

In order to account for balls that come in contact with the

paddle too early or too late, the striking motion is performed

over a time of 2τ . The motion starts τ before the nominal

impact and ends τ afterwards. We use τ = 0.05 s, which is

based on ball impact time statistics as described in [3]. We

define the starting times of the left and right striking motions

as t−i,l and t−i,r, and the end times as t+i,l and t+i,r, respectively.

The relation between these times and the nominal impact

times is:

t−i,l = ti,l − τ, t+i,l = ti,l + τ (19)

t−i,r = ti,r − τ, t+i,r = ti,r + τ. (20)

We showed in [2] that the ball trajectory is locally open-

loop stable if the paddle has a specific parabolic shape and

if it is decelerating with z̈p = −g/2 while performing the

striking motion. The system state s(t) during the striking

motion can be fully defined by this paddle deceleration, the

impact states (18), the time τ , and the dynamics (7). We

obtain the system state after striking on the left side, and

before striking on the right side

s+i,l := s(t+i,l), s−i,r := s(t−i,r), (21)

by integrating the dynamics (7) forward and backward in

time with initial conditions si,l and si,r, respectively.

E. The Optimal Control Problem

We use optimal control to find a feasible system trajectory

that connects the system state after striking on the left

side s+i,l to before striking on the right side s−i,r, while

not violating any constraints. Using the dynamics (7), the

boundary constraints (21), and the paddle constraints (8)

t−i,l t+i,l t−i,r t+i,r

−20

0

20

φ
[◦
]

t−i,l t+i,l t−i,r t+i,r
0.0

0.2

z p
[m

]

t−i,l t+i,l t−i,r t+i,r
−1

0

1

Time [s]

ż p
[m s

]

Fig. 4. Nominal trajectory s̄(t) for juggling at Φ = 20◦, featuring the
striking motion ( ) with the nominal impact ( ) and the optimized
transition ( ) connecting the boundary constraints ( ).

and (9), we formulate the optimal control problem:

minimize
u(t)

t
−

i,r
∫

t
+

i,l

u(t)2 dt

subject to ṡ(t) = fs (s(t), u(t))

s(t+i,l) = s+i,l

s(t−i,r) = s−i,r

|u(t)| ≤ 20m s−2

0m ≤ zp(t) ≤ 0.18m.

(22)

To avoid large peaks in the paddle acceleration, we choose to

minimize a quadratic cost on the control input. We solve (22)

with a direct transcription method implemented according

to [13]. We solve the resulting nonlinear program with the

sequential quadratic programming package SNOPT [14]. All

Matlab files used to solve the problem can be found in [1].

The resulting nominal trajectory, which features the striking

motion and the optimized transition trajectory is denoted as

s̄(t) and is shown in Fig. 4.

IV. A FEEDBACK STRATEGY

A feedback strategy is required to compensate for mod-

eling errors and disturbances acting on the system. In this

section, we present a straightforward feedback strategy. The

main idea is to measure the system state at impact and then

choose a precomputed paddle motion that brings the system

back to the nominal trajectory s̄(t). For the paddle, we do

not consider deviations since we assume that the control

loop can perfectly track a given reference trajectory. For the

pendulum, we consider deviations at nominal impact time

in pendulum angle ∆φ and angular velocity ∆φ̇. Based on

empirical data, we consider deviations in the intervals

∆φ ∈ [−0.5◦, 0.5◦] , ∆φ̇ ∈ [−3 ◦/s, 3 ◦/s] . (23)
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Fig. 5. Selection of trajectories for perturbed initial conditions ( )
pushing the system back to the nominal trajectory. ( ).

We precompute the paddle motions for a discrete set of

deviations. Therefore, we discretize the intervals (23):

∆φ(a) = −0.5◦ + a ·
1

6
◦ a ∈ {0, 1, . . . , 6}

∆φ̇(b) = −3 ◦/s + b · 1◦/s b ∈ {0, 1, . . . , 6}.
(24)

We define the perturbed system state at nominal impact time

using (18):

s̃i,l (a, b) :=









Φ +∆φ(a)

∆φ̇(b)
zp,i
żp,i









. (25)

For every combination of ∆φ(a) and ∆φ̇(b) in (24), we

precompute a paddle motion that brings the system from

the perturbed state s̃i,l (a, b) back to the nominal trajectory

s̄(t). First, we compute the perturbed state at the end of the

left striking motion s̃+i,l(a, b) by integrating the dynamics (7)

starting at s̃i,l (a, b) for τ . In order to find a feasible paddle

motion that links s̃+i,l(a, b) to the nominal s−i,r, we reformu-

late the optimal control problem (22) with the new initial

condition s(t+i,l) = s̃+i,l (a, b). The resulting system trajectory

s(∆φ(a),∆φ̇(b), t) is stored in a lookup table. A selection

of trajectories is shown in Fig. 5.

For some combinations of ∆φ(a) and ∆φ̇(b) the final

state constraint cannot be satisfied, i.e. no feasible solution

to the optimal control problem (22) can be found. In this

case, we relax the final state constraint. A small error in

pendulum state is acceptable and does not cause the ball

to fall off the SBJ. However, we still constrain the final

paddle state in order to obtain smooth paddle trajectories and

accurately perform the striking motion on the right side. With

this approach, we may not find a paddle motion that pushes

the system back onto the nominal trajectory in one swing.

However, the tracking errors reduce from swing to swing,

until they reach an initial state from which the nominal

trajectory can be reached again.

We define the final error in the pendulum state as

∆ef :=

[

φ(t−i,r)

φ̇(t−i,r)

]

−

[

φ−
i,r

φ̇−
i,r

]

, (26)

where φ−
i,r and φ̇−

i,r are the nominal pendulum angle and

velocity at the beginning of the right striking motion. The

partial relaxation of the final state constraint on the pendulum

angle and angular velocity is achieved with a quadratic cost

on ∆e. The adapted optimal control problem reads

minimize
u(t)

∆e⊺fQf∆ef +

t
−

i,r
∫

t
+

i,l

u(t)2 dt

subject to ṡ(t) = fs (s(t), u(t))

s(t+i,l) = s̃+i,l (a, b)

zp(t
−
i,r) = z−p,i,r

żp(t
−
i,r) = ż−p,i,r

|u(t)| ≤ 20m s−2

0m ≤ zp(t) ≤ 0.18m,

(27)

where z−p,i,r and ż−p,i,r are the nominal paddle position

and velocity at the beginning of the right striking motion,

respectively. Qf is a matrix for tuning the trade-off between

minimizing the control effort and achieving the nominal

pendulum state. We found that

Qf =

[

104 0
0 104

]

(28)

resulted in an acceptable trade-off.

In practice with the SBJ, we measure the deviation in

angle ∆φ̂ and angular velocity ∆
˙̂
φ at nominal impact. Then

we select the precomputed paddle motion from the lookup

table, which brings the system back to the nominal trajectory

s̄(t). We only precompute paddle motions for a discrete set

of deviations (24). Therefore, we apply the precomputed

trajectory s(∆φ(â),∆φ̇(b̂), t) according to

â = arg min
a∈{0,1,...,6}

|∆φ̂−∆φ(a)|

b̂ = arg min
b∈{0,1,...,6}

|∆
˙̂
φ−∆φ̇(b)|.

(29)

We considered only paddle motions where the system swings

from the left side to the right side. However, the problem is

symmetric and the same paddle motions can by applied on

the swing back from the right side to the left side.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed feedback strategy is

evaluated in experiments. In the following, we present and

discuss the experimental data.

A. Tracking Performance

The feedback strategy presented in this paper achieved ro-

bust tracking of the nominal trajectory s̄(t). Precise tracking

at ball impact is crucial for juggling. Therefore, we evaluate

the tracking error at nominal impact for Φ = 20◦ over 60 s,
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i.e. 64 impacts. The mean of the error in pendulum angle is

+0.05◦ with a standard deviation of 0.18◦. The mean of the

error in angular velocity is −0.36
◦

s
with a standard deviation

of 1.01
◦

s
. In experiments, the resulting tracking performance

enabled the SBJ to continuously juggle a ball.

B. Juggling At Various Amplitudes

The presented feedback strategy is not limited to a single

juggling amplitude Φ. We precomputed the lookup table

presented in Section IV for the following amplitudes:

Φ ∈ {20◦, 21◦, . . . , 28◦, 28.5◦, . . . , 30◦}. (30)

It was not only possible to juggle at the various amplitudes

in (30), but to change the amplitude reference while juggling.

To change the amplitude, we simply activated the lookup

table for the new Φ. In experiments, the feedback strategy

handled the step in the reference signal without problems. We

adapted Φ every 10th impact in small increments according

to (30). The quasi-static change in the amplitude reference

ensured that the ball was able to follow and did not fall off

the robot. We found that at larger amplitudes Φ > 28◦, we

had to reduce the step size from 1◦ to 0.5◦ in order to sustain

juggling.

C. Disturbance Rejection

In experiments without a ball, the feedback strategy was

further able to handle larger disturbances, which we tested

by manually pushing the pendulum. Experimental data is

shown in Fig. 6. The deviations after introducing the dis-

turbance were ∆φ = 3.9◦ and ∆φ̇ = −53.5
◦

s
. Although

the deviations were outside the interval (23) for which we

precomputed paddle motions, the proposed feedback strategy

was able to push the system back to the nominal trajectory. A

video showing the disturbance rejection can be found in [1].

D. Swing Up

We also tested the proposed feedback strategy to swing

up from the hanging position. We found that for small

pendulum amplitudes, the strategy could not control the

pendulum. We suspect that this is mainly due to modeling

errors in combination with limited control authority because

the dynamic coupling between the paddle and the pendulum

is a second-order effect. For small pendulum amplitudes Φ,

the resulting angular velocities are small. For small angular

velocities, the dynamic coupling between the pendulum and

the paddle motion is weak. We will address the swing up

with the paddle in future work.

For the experiments presented here, we used the brushless

motors at the pivots, see Fig. 2, to swing up to Φ = 20◦. Once

the desired amplitude was reached, the brushless motors

at the pivots were disabled and the swinging motion was

controlled solely by the paddle.
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Fig. 6. The SBJ reacting to a push at 2.8 s. The paddle motion adapts to
bring the measured state ( ) back to the nominal trajectory ( ). The
nominal impact is depicted with ( ).
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