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Abstract

We present hereafter a formalism for system with adaptive
structure. The axiomatic structure is fully detailed. We then
apply it to a biological problem: the modelling of the prob-
lem of coevolution in a bacteria-phage system. The results pre-
senting show how this system organises in a quasi-species like
structure under darwinian evolution.

1 Introduction

Recently there has been much interest in the study and formal-
isation of complex adaptive systems (CAS) ([7], [10], [5], [6]
and [14]). Approaches are numerous and at first glance dif-
ferent: artificial chemistries, genetic algorithm like formalism,
cellular automata. Actually, most of these systems share one
important feature: they are dynamical objects (continuous or
discrete) whose structures are sometimes modified by a top
level automata-like rule. On the basis of these observations,
we have built a two level formalism (section 2) that helped us to
design a model of coevolution in bacteria-phages system (sec-
tion 3). We finish with the presentation of some results (section
3).

2 Formal framework

2.1 Definition of the framework

Before presenting the formalisation of our approach we will
have a look at the main ideas behind the formalisation of the
concept of dynamical system by Kalman in [9]. The aim of this
approach is to demonstrate that some very common mathemat-
ical structures plus a few axioms can provide a very general
framework where the notion of dynamical sytems (of all kinds)
is captured.

Time is modelled as an ordered subset of the reals (to cover
both the continuous and discrete paradigms). The important
objects are the state set (the variables characterising the system)
and the transition function. The transition function defines the
trajectory in the state set starting from an initial state. Only a

few axioms are required to characterise these objects and allow
them to form a “dynamical system”. Among the more impor-
tant ones, we have: direction of time, consistency, composition
property and causality [9].

Now, inspired by Kalman, we propose a formalisation of our
MAS:

Definition. A metadynamical system



is a composite math-
ematical concept defined by the following axioms:

1. To be coherent with our previous 2-level description, let
us start by defining the dynamical level:

(a) �� , the time set, is modelled as an ordered subset of
the reals1

(b) Since our systems may change their state space dur-
ing their evolution, we must consider not a single
state space � but a family of state spaces suitably
indexed.� ����������� is thus the set of all possible state spaces
The definition of � is not trivial. It has, for example,
not to be necessarily countable (see example 2, after
the description of the formalism).

(c) � is the set of input values

(d) � the set of acceptable input functions ��� ��� ���"!#�$�
(e)
��% ��& '(�)')�+* are transition functions on state set �,�% ��& ' � �-�/.0��/.1� � .2�3!4� �

With these definitions we come to: 5687:9 ,� ��(7;� � 7 % ��& ' 78�<78�"� is a dynamical system respect-
ing Kalman axioms [9]

These axioms just say that the basic objects, on which we
work are “dynamical systems”.

2. Let us now deal with the metadynamical level.
Let �4�>=�?��� � � be the set of all the possible states of the

system
Let @A� ��% ��& ' � �����B& ')�+* be the set of all possible transition
functions

1Such a general definition could include exotic sets such as fractal cantor
sets, for instance, in practice, the sets used are part of IR or IN.



Then we can set a metadynamical rule as a functionC � � � .1�D.E@F!4�D.0@
(a) With � �"G � � the metadynamical time set

(b) And if CIH?J 7LK � 7 % �NMO& '�M)PRQ! H K � 7 % �TSB& 'USBP ,5 JWV � � , K � V ���NMX�ZY K � V �[�\S
If J]V � � and CIH�J 7;K^7 % P]� H K^7 % P , C is said to be mute atH?J 7LK^7 % P else H?J 7LK^7 % P is a commutation point.

Describe the metadynamical rule: it can operate on in-
stants when the system is defined and not necessarely all
(a), actually a higher level is usually slower. As the meta-
dynamical rule can change the state and the transition
function, we have to pay attention that both match well:
the resulting state has to belong to the state set on which
the new transition function operates).

3. (Definition and evolution rule)
We describe here how dynamics and the medynamical rule
combine together to make the system change in time. We
consider the evolution of the system between two instantJ � and J � from �� .
Let K`_a� % H?J 7 J � 7;K � 7 � P with

�
an input function

(a) (Purely dynamical phase) If C is mute on H?J 7;K _ 7 % P ,5 JWVcb J � 7 J � b d � �
Then



is defined between J � and J � and:e If J �gfV � � , then
 H�J � 7 J � 7LK � 7 % 7 � PR� H Kh_?S�7 % Pe Else J � V � � and
 H�J � 7 J � 7LK � 7 % 7 � Pi� CjH Kh_?S+7 % P
(b) (Concatenation rule) If k J � VlTJ � 7 J � b such as



is

defined between J � and J � and between J � and J � then

is defined between J � and J � and
 H?J � 7 J � 7LK � 7 % 7 � P� 
 H?J � 7 J � 7 
 H?J � 7 J � 7;K � 7 % 7 � P)7 � P

(c) (Stopping rule)



is defined between J � and J � if,
respecting previous axioms, there is only a finite
number of commutation points in b J � 7 J � l .

Remarkse In 3.(a) in the second case, when J � V � � , we consider thatH?J � 7 CIH K _ S�7 % P;P is mute. We “forget” the case where the
metadynamics would “rebound” and have several commu-
tations at the same time. If the system has several commu-
tationd, it is always possible to consider this set of com-
mutation as one, with the final state of the last commuta-
tion (providing that, we know from 3.(c) that the number
of commutations is finite).

e axiom 3.(c) is to avoid Zeno-style system with an infinite
number of commutations in a finite amount of time (e.g.

with a quantity K H�J Pm�onLp\q0r�sut ��Ov _)w with a commutation

each time that K H?J Pi�yx . . . ).

Example. On fig.1, we can see a metadynamical system in
action. At J;z � J;{ , we pass from a 2-dimensional state set
to a 3-dimensional one. The dynamics are continuous, so� � � b J � 7 J;|~}+��l and the metadynamical time set � � is discrete:� � � � J � 7 J � 7 J �(�T�T� J�� � . Since the metadynamics is mute on J � ,J � , J � and J 	 , the evolution from J � to J z is a purely dynamical
phase, ended by a commutation (Axiom 3.(a)). Evolution fromJ z to J;|�}�� is also purely dynamical (the metadynamics mute
on J;� , J�� and J � . Junction between the two is made by using
the concatenation rule. As we have only one commutation the
system is defined.

3 Example: The coevolution of bacteria and
phage populations

In this section, we will apply our formalism to a given exam-
ple: the modelling of the coevolution of bacteria and phages.
Coevolution in general and coevolution of bacteria and phage
in particular are currently subjects of first importance in evo-
lution biology [lenski], [4]. Phages (short for bacteriophages)
are the viruses of bacteria. Bacteria attack by phages is done by
the lysis process: a phage hang on the surface of a bacterium
cell, injects its DNA in it and then force the bacterium to yield
its own replicas inside the cell. When the cell is full, it bursts,
releasing a huge quantity of copies of the infecting phage (see
diagram 2). The efficiency of the attack, depend of the couple
bacterium-phage.

One of the other characteristic of bacterial and phages popula-
tions are their high variability: they frequently mutate, creating
new populations with new properties.

Such a system has two dynamics to be taken into account: the
dynamics of the populations of bacteria and phages (growth of
bacteria populations and bacterial-phages interactions), and the
“meta”dynamics of evolution geared by mutations and exctinc-
tion. It is without any doubt a model which is not in the scope
of the classical theory of dynamical system, but our formalism
applied well to it.

Our variable structure objects are populations of bacteria and
phages, with their dynamical interactions as described for in-
stance in ODEs similar to those of population dynamics. The
metadynamical rule represents the operations that change the
structure of the dynamical equations (mutations and extinc-
tions).

We have first to model the evolution of a set of B/P popula-
tions when no special event occur, we choose to use a modified
version2 of Mosekilde equations [11]. This set of ordinary dif-

2We consider only the interactions with phages originally present in the
chemostat and not the population arriving at random by supply, the number of
different strains is not necessarily equal in our model ( �������(� in Mosekilde



ferential equations describe the interactions of bacterial popu-
lations � � and phage populations � ' in a well-stirred tank re-
actor (a chemostat) ( � � and � ' are the concentration of that
populations and � the nutrient). The process of infection of
bacteria by phages 9 is modelled by three infection stages �)';M ,��'US and ��'U� . That means that our transition function

%
is given

by the integration of the following set of equations:���������������������������������������� ���������������������������������������

�8���� _ ��� �a� ��$� �� �)� ��8 8¡L¢ _�£ ¤ � �
}¦¥§'L¨ ��© � �ª' � '� �)� �� }�«¦| { _ � ¡ } ¤ ¬ � ��¦�O�¦�� �\¯® _ � ¡ }� �:° M� _ �y� ' }+±§ �\¨ �^© � �²' � �� �O� �� }�«¦| { _ � ¡ } ¤ ³ ��';M´ '� �)� �� } { ®¦µU¶ _ � ¡ } ¤·¬ � ' M�¦�O�¦�� �\¯® _ � ¡ }� �:° S� _ � ³´ ' H � ' M ¤ � ' S�P� �O� �� } { ®uµ:¶ _ � ¡ } ¤·¬ � ' S�¦�O�¦�� �\¯® _ � ¡ }� � ° �� _ � ³´ ' H ��'US ¤ �8'U��P� �O� �� } { ®uµ:¶ _ � ¡ } ¤·¬ ��'U��¦�O�¦�� �\¯® _ � ¡ }�8¸ °� _ � ³Z¹ ' � ' �´ '� �O� �¯º�» | ¤ � 'g¼½
} ±§ �T¨ �¾© � � � } ±§'L¨ � �§¿ ¨ � © � '�ÀuÁÂ� �O� �£ ¶ } � � } � ¤Ã¬ � '���)���� �\¯®+Ä�OÅ� _ � ¬ HÇÆ���O�¦�»~®BÈ8È)¯º ¤ ����)���� �¯\® _ � ¡ } P ¤

} ±§ �\¨ � �jÉ �a� ��$� �� �O� �{ ¡ } » ¡;Ê<Ê ¶ _ � ¡ }
(1)

with:

. ¬ , the rate of dilution ( ¬ �yx � x+x(ËjÌ�Í�p\q v�� )

. � , � respectively the saturation term and the growth from
the Monod equation ( � �oÎ�x�ÏÐ � Ñ vZ� , � �yx � x+suËiÍÒpTq v�� )

. © , the theoritical adsorption constant depending on phage
and bacteria size ( © �ÓÎ�x v-Ô)Õ Ñ;� Í�p\q vZ� )

. ´ ' , a time constant ( ´ ' � ³ xaÍ�p\q )

. ¹ ' , the number of copies of phage 9 released during the
burst of the infected bacterial cell ( ¹ �oÎ�x+x )

. Æ , the continuous supply of substrate ( Æ �ÓÎ�x(ÏÐ � Ñ v�� )

. É , the amount of nutrient consumed in each cellular divi-
sion ( É �Öx � x�Î�×Ð )

In the previous equations, we have still to define
� �²' , the prob-

ability of infection of � � by � ' . To do that, we must define a
characteristic of bacterial population � � and a characteristic of

equations), we have more than two values for ØhÙ²Ú and they depend of some
characteristic of the populations, and finally it seems righter to make the in-
fected state depend of the phage which infect and not the bacteria infected.

a viral population � ' which together allow us to compute
� �ª'

To this end, to each bacteria and phage population is attached
a symbolic binary string coding its behaviour facing B/P inter-
actions (defense for B, attack for P).

� �ª' is then depending of
the similarity between bit strings Û µ� (attached to bacteria popu-
lation �Ü� ) and Û È' (attached to viral population �^' ).� �ª' ��Ý�Î ¤ßÞáà H Û µ� 78Û È' P× { â � (2)

avec Þ à H Û µ� 7�Û È' P the Hamming distance (the number of differing
bits) between Û µ� and Û È' .
The metadynamical rule is:e During a simulation step ã J , the probability that a popu-

lation give birth to ä mutant strains is:åæH ä�Pi�yç vèæé ¿äê (3)

with é � ���ë-ì å | , å | being the elementary probability that
a viable population of concentration í | arise during timeã J . Then the apparition of all the one-bit-different strains
is equiprobablee All population under a given threshold (different for bac-
teria and phages) is removed from the system.

4 Results

4.0.1 Presentation of the experiment

We will now discuss in detail a numerical experiment. We took
two populations of bacteria and phages, and tuned the muta-
tion rates such as Ï � �îx . That means that bacteria popu-
lation is stuck in its gene space. At the opposite phages are
allowed to mutate. This is to simulate what could happend
when Ï ¸Óï/ï Ï � , when viruses are much more variable. We
can see how the concentrations (dynamical point of view) and
the composition in term of genotype (metadynamical point of
view) evolve (Fig.3).

It is interesting to see the trajectory of the cloud of phages in
gene space (by this, we mean the different populations weighed
by their concentrations). For visualising them we chose to plot
two values: the trajectory of the centroı̈des (the “gravity cen-
tres”) and their entropies (a measure of their dispersion). The
centroı̈de ð of phage population

� �^'(� , is the vector ð Vcb x�7BÎ l }�ñ
( × { is the size of the binary string coding our genes) given by :ð ¿ � Î� } ¥§'L¨ � �Z'¦Û ¿'
where ð ¿ is the k-th component from ð and Û ¿' the k-th one fromÛ ' the string coding for the behaviour of the population � ' and



�o�óò } ¥'L¨ � � ' .
The entropy is very classicaly given by

ç¦�o� ¤ } ¥§'L¨ � �Z'� ô\õ+ö ��'�
Storing then the trajectory of the centroı̈des of phage popu-
lations during our simulation, we are able to plot them using
a method from statistical analysis called Principal Component
Analysis (PCA) [13]. This method allow us to find the best
projection from b x�7�Î l } { to b x�7�Î l � (in the sense of maximal con-
servation of distances inside the set of points). We did it for
nine different simulations (same initial conditions but different
seed for the random number generator) and we observe that,
though the populations “chose” very different paths, eventu-
ally they all reach the zone in the gene space corresponding to
the best predation (4).

Figure 4: Plot of the centroı̈des of phage populations from nine
different simulations

A look at the evolution of entropy vs time and the values of the
populations at different distances of area of best predation give
us an idea of the scenario leading these experiments: after a
period of strong expansion with strong increase of entropy, the
cloud contract in a favourable area in a state of low entropy (see
5). It reaches an oscillating regime where two kinds of species
coexist, the best fitted phages and the ones at a distance of one
bit. This organisation in few mutants genotypes closed in a
small area of the gene space make us think of a quasi-species-
like organisation [12].

5 Conclusions

At the level of modelling adaptive systems, our work provides a
formalism able to capture a wide range of examples in a com-
mon axiomatic structure. This would provide us with a basis
for both the theorotical characterisation of metadynamical ob-
jects and for the simulation of these systems. At the biological
level, our work shows a scenario of how evolution can lead to a
structure of populations with close genomes. It paves also the
way toward a simulation of a complete bacterial-phage ecosys-
tem and a study of its properties and their evolution.
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Figure 1: Illustration of some axioms of a metadynamical system
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Figure 3: Description of the numerical experiment



Figure 5: Entropy of the population (above) Dynamics of the different n-bit-distant populations [n] (below)
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