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Abstract

A mixed-potential model is proposed for the electroless
nickel-plating process. It is tested against measured data and
used for monitoring of the thickness and phosphorous content
of plating film. The bath-loading process with strong effect on
chemical reactions is evaluated as Markov pure jump process
and applied in control. The thickness and phosphorous con-
tent are stabilized at desired levels using electrochemically
balanced tracking trajectory for pH-index and nickel concen-
tration. The latter processes are controlled at the balanced
trajectory using the precise controls developed.

1 Introduction

Electroless nickel plating is an established process in many
industries including electronics, oil and gas industry, motor
industry, machinery, etc. Usually it does not require advanced
control like in microelectronics (e.g. PTH-board and micro-
processors manufacturing) where contactor thickness is meas-
ured in microns and they are packed tightly together. They are
made electrically isolated using precise technology.

The purpose of the paper is to develop precise controls for the
electroless nickel-plating technology for stabilisation of the
thickness and phosphorous content of the plating film at de-
sired levels using a mixed-potential model developed for
evaluation of the unobservable processes.

The electroless nickel plating has been analysed in both the
chemical reaction theory and electrochemical reaction theory
[8]. The mixed-potential model [6] developed in the latter is
similar to the electrochemical cell model originally developed
for batteries [4]. In addition to the mixed-potential model, the
cell model is applied in this paper for plating process estima-
tion and control.

The plating chemistry is affected strongly by bath loading
which is an unobservable jumping process. The estimation
and control theory for a linear process with jump parameters
in a non-linear relationship has been analysed in [3]. How-
ever, the model of plating process is different – it is non-linear
by observable state variables and linear by unobservable jump
parameters. In this case, non-linear filtration theory developed
for a finite-state Markov process [7] can be applied to convert

the partially observable plating process into completely ob-
servable process and solved approximately as a regulator
problem as shown in [1], [2].

2 Model

Several reaction mechanisms have been proposed for plating
chemistry [8], including an electrochemical reaction mecha-
nism, which was found to match with measured data (also
confirmed in this paper). This mechanism can be represented
as the following system of anodic and cathodic reactions.

Anodic reaction - hypophosphite oxidation

H2PO2
- + H2O → H2PO3

- + 2H+ + 2e-, U1 = -0.50 V (1)

Cathodic reactions - phosphorous deposition, hydrogen evo-
lution, nickel deposition

H2PO2
- + 2H+ + e- → P + 2H2O, U2 = -0.25 V      (2)

2H+ + 2e- → H2,      U3 = 0 V            (3)

Ni2+ + 2e- → Ni.      U4 = -0.23 V      (4)

The pH-index is controlled in plating process through feeding
of ammonia, which is a weak base – its dissolution with water
gives a strong conjugate acid ammonium that does not ionize
completely in water.

The discharge of hydrated nickel ions in aqueous solution is
subject to a series of transformations and displacements. Al-
though these steps play an important role in the electrochemi-
cal behavior, they are not rate determining. The discharge
reaction is controlled by the deposition process. This reaction
can be represented as the following electrochemical cell
model, originally developed for a porous electrode [4].

2.1. Electrochemical cell model

The discharge reaction on lattice metal is controlled by a
mixed potential formed from the equilibrium potentials of the
partial reactions through the electrode reaction. The current
densities of the electrode reactions (1)-(4) can be represented
as single-directional model processes: anodic reaction model
for oxidation and cathodic reaction model for others



 i1 = i01µ1exp(α12kη1),     in = -i0nµnexp(-αnpnkηn),     (5)
where
n - reaction number: 1 - oxidation,…,4 - nickel deposition,
in - current density, A/cm2,
i0n - exchange current density, A/cm2,
ηn - overpotential, ηn = φ - un, φ - mixed potential, V,
un - thermodynamic equilibrium potential, V,
µn - dimensionless concentration of species,
k - temperature voltage, k = F/RT, 1/V, T - temperature, K,
R - universal gas constant, 8.3145 J/mol-K,
F - Faraday’s constant, 96487 C/mol,
pn - number of exchanged electrons, pn = 2, p2 = 1,
α1 - anodic, αn - cathodic apparent transfer coefficients.

The anodic current density is equal to the sum of cathodic
current densities, i.e. the electrical neutrality requirement

i1 + i2 + i3 + i4 = 0.                   (6)

The mixed potential is a self-adjusting parameter - it main-
tains the electrical neutrality (6) irrespective to changes in the
partial reactions like changes in concentrations or equilibrium
potentials.

The equilibrium potentials of the partial reactions can be
evaluated from the Nernst equation using unit activity for
solid materials (deposed nickel and phosphorous) and water,
and unit partial pressure of hydrogen

u1 = U1 + κ(log c1 - log c5 + 2pH),                            (7)

u2 = U2 + 2κ(log c1 - 2pH),                                        (8)

u3 = U3 - 2κ pH,                                                         (9)

u4 = U4 + κ log c4,                                                    (10)

where cn - ion concentration of species, mol/cm3, κ-1
 = 2k log e.

The phosphorous deposition rate decreases if the pH-index
increases. The nickel deposition rate decreases if the nickel
concentration decreases. This inhibition of the deposition
rates can be accounted for as a limitation due to low concen-
tration
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1ref
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4ref
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,          (11)

where cn.ref - reference concentration of species, mol/cm3.

The nickel deposition rate is proportional to the current den-
sity (5) of the deposition reaction (4)

Nidx
dt

= - 4

Ni

i
C

,                                                          (12)

where
t - immersion time, sec,
xNi - partial thickness of nickel, i.e. ratio volume per plate area,

i4 - current density of nickel deposition, A/cm2,
CNi - charge density of nickel ions, 29258 C/cm3.

The deposition rate of phosphorous is proportional to the cur-
rent density (5) of the deposition reaction (2)

pdx

dt
= -i2

2

P

i
C

,              (13)

where
xP - partial thickness of phosphorous, cm,
i2 - current density of phosphorous deposition, A/cm2,
CP - charge density of phosphorous ions, 5665 C/cm3.

The thickness xa = xNi + xP of Ni-P-alloy film can be calcu-
lated by integration of (12), (13) over the plating period (22
min) with respect to the deposition reaction current densities.

2.2. Concentration dynamics

Feeding and utilisation of the reagents along with formation of
the by-products induces related reactions with effect on the
concentrations of species.

1. Hypophosphite consumption

dc1 = [A(2i2 - i1)/2F + Q1fc1f]dt + σ1dW, c1(t0) = c1ref, (14)

c1 - hypophosphite concentration, c1ref = 0.27 mol/dm3,
c1f - feeding solution concentration, 5.2 mol/dm3,
A - bath loading, 50-100 cm2/dm3,
Q1f - hypophosphite dilution rate, 1/s,
t0 - makeup moment for a new bath,
σ1 - model inaccuracy,
W - model-prediction error: Wiener process.

2. Hydrogen formation, consumption and pH neutralization

dc3 = [A(i1 + 2i2 + i3)/F - KrQ3fc3f]dt + σ3dW, c3(t0) = c3ref, (15)

c3 - hydrogen concentration, c3ref = 104.8 mol/dm3,
c3f - feeding concentration, 6 mol/dm3,
Q3f - ammonia dilution rate, 1/s,
Kr - dissociation constant.

3. Nickel consumption

dc4 = [Ai4/2F + Q1f c4f]dt + σ4dW, c4(t0) = c4ref,      (16)

c4 - nickel concentration, c4ref = 0.1 mol/dm3, c4f = 1.9 mol/dm3.

Accumulation of the orthophosphite as a by-product can be
represented as

dc5 = Ai1dt/2F + σ5dW, c5(t0) = 0,                           (17)

c5 - orthophosphate concentration, mol/dm3.

The plating chemistry is rather complex and still not com-



pletely understood [8], especially with respect to the hydrogen
(15), the formation, utilisation and evolution of which are
more complicated than shown in the reactions (1)-(4). The
Weiner processes are introduced to deal with the inaccuracy
of the models – they are applied to render the estimation and
control strategy insensitive to inaccuracy.

2.3. Bath loading

The bath loading is defined as a total area of plates immersed
in the solution per bath volume

A = zAP,                                        (18)
where
AP - overall plates area per bath volume (constant), cm2/dm3,
z - loading level: z = Z/N, Z - number of baskets immerged,
N - maximum number of baskets in use, N = 2 or 3.

2.4. Measurements

Typically two types of analysers are used in a plating process
control in industry.

1. Nickel analyser

ξ4 = 103(c4+ r4ε),                                                   (19)
where
ξ4 - measured nickel concentration in relative units, %,
r4 - analysis accuracy,
ε - analysis error: standard Gaussian variable.

2. pH analyzer  

ξ3 = 10-pH = c3 + r3ε,                                             (20)

where ξ3 - measured hydrogen concentration, pH = -log ξ3.

Beside these standard analyses the flow rates of ammonia Q3f

and hypophosphite/nickel Q1f are measured.

3 State estimation

The deposition rate depends on the bath loading, which is a
finite-state pure jump process that can be specified as a simple
birth and death process [5] with two parameters characterizing
loading and interruption (equipment service) rates. These pa-
rameters can be estimated statistically from the measured
loading process. In the simplest case of single basket they can
be evaluated from the average plating time τ = 22 min and
mean loading Mz = 0.8 using the simplest relationship τ = µ-1,
Mz = µ/(µ + λ) as the loading rate λ = 5.5 h-1 and interruption
rate µ = 2.7 h-1. In general other properties of the birth and
death process should be applied. They can be specified as
properties of a Markov pure jump process with N+1-non-
absorbing states. This process satisfy the following Kol-
mogorov forward equation [5] for the transition probabilities

xydp

dt
= qy.y-1px.y-1 + qyypxy + qy.y+1px.y+1, pxy(0) = δ(x-y), (21)

where
x, y - loading levels: 0,1,…N,
pxy - transition probability that loading process started in the
state x at moment t will be in the state y at moment s ≥ t,
qyx - infinitesimal operator parameters defined through the
loading and interruption rates as the 3-diagonal matrix ele-
ments:

Lower diagonal: qy.y-1 = λ, 1 ≤  y ≤ N,
Upper diagonal: qy,y+1 = µ, 0 ≤  y < N,
Diagonal:    q00 = -λ, qyy = -λ - µ, 1 ≤ y < N, qNN = -µ.

The loading process beside other unobservable processes can
be evaluated from measured data as the following partially
observable process with observable (19), (20) and unobserv-
able (14), (17) components represented as the system

Zt – finite-state Markov process,                             (22)

dθ = [a1u1(t) + a2(i)Zt]dt + bdw,                              (23)

dξ = [G(ξt)ut + A(i)Zt]dt + Bdv,                              (24)
where
Zt, θt - unobservable processes,
ξt - observable process,
a1, a2, G, A - system elements shown in Tables 1, 2, ω = AP/NF,
b1 - model accuracy: diagonal matrix in Table 1,
B - model and measurements accuracy: matrix in Table 2.

θ a1 u 2a2/ω diag b

Hypophosphite c1 c1f Q1f 2i2 - i1 σ1

Ortophosphite c5 0 0 i1 σ5

Table 1. Specification of the unobservable processes.

ξ diag G u diagA/ω diag BB

Hydrogen ξ3 -Krc3f Q3f i1+2i2+i3-i4 σ3
2 + r3

2

Nickel ξ4 c4f Q4f 2i4 σ4
2 + r4

2

Table 2. Specification of the observable processes.

The current densities shown in Tables 1, 2 are dependent on
each other through the mixed potential; they depend also on
the concentrations of used chemicals through the limitation
coefficients (11) and equilibrium potentials (7)-(10). This is
an implicit relationship that can be solved numerically with
respect to the current densities. Analytically it can be repre-
sented as a structure. For example, the nickel deposition cur-
rent can be represented as the following structure

i4 = F{i1(c1,c3,c5), i2(c1,c3), i3(c3), i4(c4), c4}

that can be simplified by replacement of the observable proc-
esses c3, c4 with available measurements ξ3, ξ4 and unobserv-
able processes θ = [c1, c5]

T with conditional average value m =
M{θtFt

ξ}. As a result of these replacements the nickel depo-
sition current can be represented as a progressively measur-



able process with respect to σ-algebra of Wiener and Poisson
processes and therefore adapted to the measured processes.
Similarly adapted processes are the system coefficients a2(i) =
a2(t,ξ), A(i) = A(t,ξ) because the same ideas of measurable
functions can be applied with respect to the other current den-
sities in Tables 1, 2. Eventually the system (22)-(24) can be
represented as a Markov process with respect to the unobserv-
able process (Zt, θt) and non-anticipative process with respect
to the observable process (ξt)

dθ = [a1ut + a2(t,ξ)Zt]dt + bdw,                                (25)

dξ = [G(ξt)ut + A(t,ξ)Zt]dt + Bdv.                           (26)

The estimation problem is to evaluate the state of loading pro-
cess and the hypo- and orthophosphite concentrations using
available measurements of the pH-index and nickel concen-
tration as well as the ammonia and nickel feeding rates.

The state of loading process can be evaluated based on the
filtrated probabilities; they satisfy [7] the following filtration
equation obtained from the partially observable processes
(25), (26)

dπ = Λπtdt + (D - ktI)πtA
T(t,ξ)B-1dWu, π(0) = δ(y-MZ), (27)

where
πy - probability that y baskets are immersed at moment t,
Wu - innovation process with new measurements: Weiner pro-
cess

dWu = B-1{dξ - [G(ξt)ut + A(t,ξ)kt]dt},                    (28)

Λ - infinitesimal matrix operator, Λ = {qyx: x,y = 0,1,…N},
I - unity matrix, D - diagonal matrix: D = diag(0,1,…,N),
kt - loading level: conditional average value, kt = M{ZtFt

ξ}.

The loading process can be evaluated as a least-square esti-
mate or maximum likelihood estimate. The least-square esti-
mate is an average value of the loading process calculated as a
sum of the filtrated probabilities kt = LTπt weighed with load-
ing levels L = [0,1,…,N]T. The maximum likelihood estimate
is equal to the loading level corresponding to the biggest fil-
trated probability.

A future loading program required for control can be fore-
casted on average ks/t = LTπs/t, s ≥ t using extrapolated prob-
abilities πs/t = eΛ(s-t)πt.

The hypo- and orthophosphite concentrations can be evalu-
ated on average as a solution of the following filtration equa-
tion obtained from the processes (22), (25), (26)

dm = [a1u1(t) + a2(t,ξ)kt]dt + γ21A1
T(t,ξ)B-1dWu,     (29)

where mt - vector of hypo- and orthophosphite concentrations.
This is the least-square estimate m = M{θtFt

ξ} with covari-
ance γ21 = cov{Zt,θtFt

ξ} constant for simplicity. A1 = [A, 0]T.

4 Optimal tracking trajectory

The geometrical and physical properties of a PTH-board are
defined with several parameters. Among them, the thickness
of Ni-P-alloy film and phosphorous content are crucial. In
plating process they are controlled through choice of refer-
ences for pH-index and nickel concentration. The latter proc-
esses are kept at desired references with adjustment of the
ammonia and hypophosphite/nickel feeding rates.

The desired thickness of plating film is a constant xa = 4 µm as
well as the desired phosphorous content Pvol = 31 %. The par-
tial thicknesses of nickel and phosphorous can be calculated
as target values for control from the desired levels xNi

* = xa -
xP

*, xP
* = xaPvol/100. These references can be achieved if an

electrochemically balanced tracking trajectory is used for the
pH-index and nickel concentration adjustment along with the
mixed potential. This triple, if optimal, satisfies the electro-
chemical system, which includes the electrical neutrality
equation (6) solved with respect to electrode reactions (5) and
thermodynamic equilibrium potentials (7)-(10). It also in-
cludes the deposition rate requirements derived from the
deposition rates (12), (13) based on the target values for
thickness of nickel xNi

* and  phosphorous xP
*

- 4

Ni

i
C

 =
*

Nix
τ

, - 2

P

i
C

=
*

Px
τ

,                            (30)

The balanced trajectory is a triple for the pH-index, nickel
concentration and mixed potential calculated as adjoint proc-
esses in dependence on the hypo- and orthophosphite concen-
trations or on their estimated values

ζ3 = c3(m1,m5),  ζ4 = c4(m1,m5), φ = φ(m1,m5).        (31)

The plating process is controllable as long as this relationship
between target values holds. Otherwise an automatic change
of the mixed potential takes place with effect on all partial
reactions, even if the pH-index and nickel concentration are
kept constant.

5 Bath control

The thickness and phosphorous content can be maintained at
the desired levels through stabilization of the pH-index and
nickel concentration at the electrochemically balanced trajec-
tory. This tracking problem can be formulated as a minimiza-
tion problem of the square functional

vu = Mu
0

0

T

t
∫ {(ξt - ζt)

T(ξt - ζt) + (ut - νt)
TΨ(ut - νt)}dt (32)

with respect to the partially observable stochastic process
(22), (25), (26).
Here
ζ - desired trajectory for pH-index and nickel percentage,
u - controls: ammonia and nickel feeding rates,
ν - setpoint for controls,
Ψ - cost of agitation: positively defined matrix of weights,
T0 - control horizon equal to the bath age of 2-3 days.



This incomplete data control problem can be converted to
complete data and solved as an equivalent control problem of
minimising the square functional (32) with respect to the
completely observable process (27)-(29) as solved in a sepa-
rated control problem with estimation independent of the
controls. Although minimization of (32) with respect to the
filtrated (27)-(29) and original processes (22), (25), (26) are
equivalent, some simplifications are required to obtain con-
trols in an explicit form suitable for practical implementation.
They are introduced to ignore the nonlinear and random be-
havior of the system (27)-(29) partially.

1. The electrode reaction equation (6) is approximated with
linear model with respect to the controllable processes. This
allows linearization of the matrix function A(t,ξ) = kt(ft + Ftξt).

2. The future values of the current densities are assumed to be
predictable through the current values M{i(s)Ft

ξ} ≈ i(t), s ≥ t.
This inaccuracy is small, because the current densities are
relatively constant. For the same reason the future values of
the non-stationary coefficients fs, Fs are also predictable
through the current values ft, Ft, s ≥ t.

3. The vector ft and matrix Ft functions are considered as de-
terministic - independent of Poisson and Weiner processes.

Eventually the controllable process can be represented as a
linear stochastic process with jumping coefficients

dξ = [kt(ft + Ftξt) + Gut]dt + BdWu.                         (33)

This simplified control problem (32), (33) can be solved ana-
lytically as an optimal regulator problem for a linear com-
pletely observable stochastic system [1], [2]. The control law
obtained can be represented as

ut = -LTπtG
-1ft - Ψ

-1GT(Pξt + p)                                (34)

where
ξ - measured pH-index and nickel percentage,
p, P - solution of the Riccati equations for tracking gain

-
dP
ds

= ks/t(PFt + Ft
TP) - PGΨ-1GTP + I,                    (35)

and level

    -
dp
ds

 = (ks/tFt - GΨ-1GTP)Tp - ζt,                              (36)

ks/t - loading forecast  ks/t = LTeΛ(s-t) πt.

The control horizon that covers several days is a too long pe-
riod for fast calculations. At the same time, solution of the
Riccati equation is a constant for gain and tracking level if the
forecast time exceeds the plating period τ. If the bath loading
process is forecasted analytically then the Riccati equations
(35), (36) can be initialised without any loss of accuracy with
solutions p(τ), P(τ) of the algebraic equations

(LTeΛτπtFt - GΨ-1GTP)Tp - γt = 0,                             (37)

LTeΛτπt(PFt + Ft
TP) - PGΨ-1GTP + I = 0                  (38)

adapted to the loading forecast at every moment t0 ≤ t ≤ T0.
This makes the control algorithm fast; it is similar to the de-
terministic control but depends on the random coefficients
through loading program. The industrial PID controller is less
rapid in tracking of the bath loading and other changes in a
plating process.

The proposed control is stable because the loading and track-
ing trajectories are bounded and the pair (ks/tFt, G) is com-
pletely controllable for any predicted s ≥ t and current t ≥ t0

moments. The included simulation experiment is a simple
proof of stability.

7  Experiments

The prediction accuracy evaluated from the mass balance as
overall characteristic of all models applied is shown in Figs 1,2.
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Fig. 1. Model-predicted and measured weight of nickel deposed
on plates and fed in bath with nickel sulphate.
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Fig. 2. Model-predicted and measured weight of phosphorous
deposed on plates, converted in orthophosphite and fed in
bath with hypophosphite.



It was evaluated as overall weight of nickel removed with
produced plates (predicted weight) compared with nickel sul-
phate fed in bath (measured weight). The overall weights of
phosphorous removed with plates and converted in ortho-
phosphite (predicted weights) are compared with hypophos-
phite fed in bath (measured weight). The model-predicted
weight calculated by several unobservable processes is close
to measured weight in Figs 1, 2.

7  Control simulation

The bath-loading process simulated as a Markov pure jump
process and filtrated from the measured data as the least-
square estimate is shown in Fig. 3.
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Fig. 3. Simulated and estimated bath loading.

Besides the bath loading the Wiener processes with 20 % in-
tensity were included in every model to simulate inadequacy.
Irrelevant to perturbations the plating film thickness and
phosphorous content can be kept stable at the desired level
with proposed controls as shown in Figs 4, 5.
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Fig. 4. Stabilised thickness of deposit.

The control effect obtained in the simulation experiment is
essential. The real variation tested with industrial PID con-
troller was about 10 times larger for thickness and 5 times
large for phosphorous content.
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Fig. 5. Stabilised phosphorous content in alloy.

8  Conclusion

In this paper, it was shown that PTH-boards could be charac-
terised online during nickel-plating process using standard
analysers. The state can be controlled at the electrochemically
balanced trajectory using improved control with respect to the
industrial PID controller at the expense of use of more rele-
vant plating process information (bath loading, chemical state,
electrochemical state) than currently used.
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