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Abstract

This article covers a method to make the description of the
force-slip curve generated by the brush tire model more flex-
ible. A calibration factor is applied to make the slope more
or less convex. The main use is in car applications where road
friction estimation is a major issue. If the real tire characteristic
differs from the model there will be a bias in the estimation and
a higher brake force is needed before a reliable friction coeffi-
cient can be estimated. Introduction of calibration parameters
is a way to enhance the estimation, specially at lower brake
forces.

1 Introduction

There are several ways to describe the relation between the gen-
erated force and the slip of a car tire. The most widely used
is the Magic Formula, an empirical tire model including five
parameters, see Section 2.2. To obtain good values of the pa-
rameters, measurements from the whole slip range xx € [0, 1]
are necessary. If only low slip values are available the Magic
Formula is too flexible and an extrapolation to values outside
the measurement region is not always possible. The brush tire
model is not that flexible and it includes only two parameters.
The advantage is then that only by regarding low slip values,
estimation of the curve at higher slip is possible. A drawback
is that the mismatch to the real data can be larger since approx-
imations have been done in the modeling. The stiffness in the
model also makes it hard to adjust for unmodeled effects. This
article covers a method to make the description of the force-
slip curve generated by the brush tire model more flexible. A
calibration factor is introduced to make the slope more or less
convex. For the further reading it is necessary to clearify the
definition of the slip, since it can be defined in several ways.
The difference between the general definitions is the normal-
ization of the slip velocity. The notation is shown in Table 1,
where the velocity vector of the wheel, v, has the components,
Vi and vy. The slip velocity is denoted vs = vx — QR;, where
Q is the rotational speed of the wheel and R, the dynamical

Origin Notation Long. Lateral
SAE, ISO K Vix/ Vi Vy/Vx
SAE praxis s Vex/V A%

Physical c V/(QRy)  W/(QRy)

Table 1: Slip definitions.

radius. The index x denotes the longitudinal and y the lateral
direction.

For the braking case the SAE praxis is the most convenient
definition, since it the always stays between —1 and 1. The
other definitions get singular either at wheel lock or at zero
lateral speed. For the driving case o is most often used. In
Section 2 we derive an expression for the force, depending on
oy, Which corresponds to the deformation in the tire. Hence, it
is a physically motivated definition. For the empirical modeling
the main thing is not how to define the slip, but rather to know
which definition that has been used for the measurements.

2 Review of the brush tire model

The brush model, see [4], relies on the assumption that the slip
is caused by deformation of the rubber material between the
tire carcass and the ground. The material is approximated as
small brush elements attached to the carcass, which is assumed
to be stiff, see Figure 1. The carcass can still flex toward the
hub, but it can neither stretch nor shrink. Every brush element
can deform independently of the other.

2.1 Longitudinal force-slip model

A brush element i comes in contact with the road at time t=0
and position x = a. The position can be defined either by the
bristles upper point (x;., attached to the carcass) or by its lower
point (x;,, the contact to the road), which is illustrated by Fig-
ure 2. As long as there is no sliding the positions are:

t
Xg = a—/0 QR dt 0
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Figure 1: Illustration showing the deformation of the rubber
layer between the tire carcass and the road according to the
brush model. The carcass moves with the velocity v relative
the road. The contact zone moves with the vehicle velocity vy.

Carcass

Figure 2: The relative velocity and the position of upper and
lower point of a brush element is shown in A. Figure B shows
the force equilibrium of the element. The additional torque M,
working on the element to get rotational balance is not used in
any calculations.

The deformation of the element is:

t t

If constant velocities are assumed, (3) together with (1) or (2)
gives

V. V.
aizﬁ(a_xci)zv_i((a_xri) (4)
where v/ QRy is the longitudinal slip denoted ox.

Rubber does not necessarily deform linearly, but it is approxi-
mated in that way. The force needed to achieve the amount of
deformation given in (3) is then

F; =K, (5)

The deformation of a bristle is limited by the friction between
the tire and the road and the maximum force acting on the brush
element is given by

in,max = uF; (6)
Putting (5) and (6) together the maximal deformation can be
expressed as

uF,
6i,max: kZ| (7)

The brush element starts to slide when the deformation reaches
this value. The force acting on the bristle is then uF,. Three
different choices for the entire contact patch arises.

e Adhesion in the entire contact area. The slip curve is only
depending on the rubber properties.

e Both sliding and adhesion. The contact area is split into
two sections, one with adhesion and one with sliding.

e The entire tire surface slides against the ground. The brak-
ing force is then only depending on the friction coefficient
at the actual condition.

When both adhesion and sliding occurs in the contact patch it
is possible to calculate the position where the sliding starts, the
so called breakaway point. Use of (4) and (7) renders

KR QR
Vaxk

Xis = &— (8)
The partition of the contact patch into discrete bristle elements
is abandoned and an integration over the whole contact length
is performed instead. The following changes, k = cpdx; and
F, = 0z(Xc) dxc are introduced, where ¢, denotes stiffness per
length unit and g is the vertical force per length unit between
tire and road. Adding the force from the area of adhesion to the
force from the sliding region the total braking force is

Fe= /X:cpg%d(a—xc)dxﬁ / " hud  (9)

It can be discussed whether to use X, or Xc in the the formulas.
For the vertical force F,; = qz(x5), X might be used instead of
Xc, While the pressure distribution usually is defined between
the tire and the road. However, since the bristles are attached
to the carcass they are equally spaced there, i.e. dx is con-
stant. dx; is not constant along the contact length and then not
suitable as integration variable. From now on the index c is
dropped and x denotes the carcass position of the bristle. The
vertical pressure distribution is assumed to be parabolic,

=25 (1 ()

and the situation is as illustrated in Figure 3. Curve no. 1 is
the maximum available friction force pgz(x) according to the
pressure distribution. Line 2 is the theoretical force needed to
deform the bristles due to the velocity difference v according
to (4) together with (5). The incline of this line is —cpox. The
marked area is the total force from the resulting brush defor-
mation. The first contact choice with only adhesion can not be
achieved assuming this pressure distribution, since sliding will
occur somewhere in the region as long as the slip is nonzero.
The breakaway point xs can be derived from the following for-
mula:

(10)

Cpo(a—Xs) = U0z(Xs) (11)

Evaluating (9) with the pressure distribution given by (10) the
equation for the force-slip will be

4 (cpa’ox)? 8 (cpaloy)®
Fx = 2cpa% 0y — = ~—> —-P
TEAOT TR 2 (a2

(12)
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Figure 3: Picture showing the deformation of the rubber layer
between carcass and road. Curve 1: Maximum available fric-
tion force per length unit (l.u.) pqz. Curve 2: Force per l.u.
necessary for the deformation of the rubber bristles due to the
velocity difference. Curve 3: Corresponds to the slip where
there are no adhesion in the contact patch (oy).

According to this expression the slip behavior is mainly de-
pendent on the tire properties at low slip. Often the relation
between the force and the slip in this region is assumed to be
linear with a coefficient called braking stiffness Cy. In this case
Cx = 20pa2. At higher slip the friction coefficient is the ma-
jor source for the characteristics. If the inclination of line 2 in
Figure 3 is steeper than the inclination of curve 1 at x = a the
entire surface will slide, which is illustrated by line 3. Hence,
the incline of the pressure distributionat x = a sets the slip limit
where the entire rubber surface starts to slide against the road.
In this case it is given by

o _ 3 ,LLFZ
O = 2 cpa?

(13)

For slip exceeding this value the braking force will simply be
Fx = uF;. The resulting force-slip function is plotted in Fig-
ure 4. Since constant friction is assumed, the brake force is
constant for slip values above oy.

2.1.1 Discussion

This section has mainly treated the way to physically derive a
relation between the braking force and the slip. The formula
includes the rubber stiffness cp, the length of the contact patch
24, the tire/road friction u, and the vertical wheel load F,. The
vertical pressure distribution q(x) is another very important
factor for the formula. cp, is a material parameter depending on
the rubber thickness, temperature, age, etc. The contact length
depends on the pressure inside the tire and the wheel load F,.
The friction is the most uncertain parameter and it is affected by
certain factors as road condition, slip velocity, and tread thick-
ness.

0.8r

0.6

Normalized brake force
o
>
|

slip

Figure 4: Normalized brake force contra longitudinal slip (o)
using the brush tire model with different values of u and c .

2.2 Empirical model

There exist several empirical models that describe the input-
output formulas for a tire. The most well-known is the Magic
Formula, presented by H. B. Pacejka in [1], and is used as ref-
erence curve in this paper. It is represented as

Fx = Dsin(Carctan (Bx — E(Bx — arctan Bx))) (14)
The parameters B, C, D, and E have to be identified from mea-
surement data. Both the longitudinal and lateral force can be
expressed in this form. x denotes the slip in the corresponding
direction, see Section 1.

3 Modified brush tire model

The brush tire model presented in Section 2 is widely used to
estimate the friction coefficient between the tire and the road,
see for instance [3] and [5]. The advantage of the brush model
is its simplicity. It only includes two parameters to describe the
shape of the force-slip curve, the braking stiffness Zcpa2 and
the maximal friction force uF,. By knowing only these two pa-
rameters the slip characteristic up to the brake force peak can be
determined. The parameters can be estimated by measurements
of the real tire characteristic even at rather low tire slip. As seen
in Section 2 some approximations has been done when deriv-
ing (12) and the result does not always agree exactly with real
tire characteristics. A legitimate question is how such an error
affects the parameter prediction. In Figure 5 the brush model
is compared to a Magic Formula estimation from a measure-
ment of a real tire. The slip on the x-axis is the SAE standard
definition xy defined by (vx — QR;)/Vx and since the input for
the brush model is ox = (v — QR)/QR,; it has been rescaled
by the relation oy = xx/(1 — xx). The curves agree well with
each other, but the fact that the measurement has been done
on a test bench and the Magic Formula approximation might
not exactly cover the true characteristics must be considered.



These circumstances can make the fit of the brush model to the
reality both better or worse, probably worse. An estimation of
the friction u at low slip gives a better estimate if the agree-
ment to the real curve is good at slip values where the effect
of the second order term, from (12), starts to be noticeable.
A way to compensate the behavior of the brush model in this
area and make it more flexible could be a useful way to cali-
brate the p estimation. In the following, a calibration parame-
ter is introduced to make the brush tire model more flexible, by
use of a changable pressure distribution. It could also be done
by assuming a velocity dependent friction coefficient, which is
further developed in [6].
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Figure 5: Comparison of brush tire model (solid line) and
a Magic Formula realization of real tire data (dashed line)
from [2]. The different sets of curves are from road founda-
tions with different friction.

3.1 Pressure distribution

The usual derivation of the brush tire model assumes a
parabolic function to describe the vertical pressure distribution
between the tire and the road. In this section different distribu-
tions are introduced and their effect on the force-slip relation is
examined. The new proposal is an asymmetric third order ap-
proach with an extra parameter to change its asymmetric prop-
erties. The equation is scaled so the total force is equal to F..
The distribution is only defined in the longitudinal direction
and it is supposed to be the average value of the distribution in
the lateral direction. The pressure distribution defined by (10)
used in Section 2 is now changed to

=3 () 04

The factor d enables movement of the point of the maximal
pressure to the left or to the right. The value on d has to stay
in the range of |d| < 1, otherwise negative pressure values oc-
curs within some parts of the contact patch. Examples of the
curve for some values on d are shown in Figure 6. It is diffi-

(15)

cult to determine the choice of d giving the best coherence to
real case. In fact, the pressure distribution, generally variates
widely depending on the circumstances. For the static case the
vertical pressure may not exceed the tire pressure. If the tire
deformation is large enough this value is reached in a region
around the center of the contact patch. Since the tire deforms
continuously during rolling, the damping and the mass forces
due to the deformation increase the pressure at the leading side
and decrease it on the trailing side. The center of the verti-
cal force then moves slightly forward for a rolling tire. The
third order function with a positive d is a good choice then.
The situation also changes when the tire developes a force in
the horizontal plane. A brake force would, for instance, make
the carcass strained in the leading end and compressed in the
trailing end. This would probably increase the movement of
the vertical pressure forward and d could reach even a higher
value. Usually, the center of the vertical force moves in the
opposite direction as the developed tire force is working. A
correct choice of pressure distribution needs a lot of further in-
vestigation and measurements. Later on the effect of different
distributions on the force-slip curve is studied and it is shown
that the choice of d might not be done on theoretical founda-
tions.
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Figure 6: Plot of variants of the proposed pressure distribution.
The wheel is supposed to move to the right. The leading side
is then to the right and the trailing side is accordingly to the
left. The solid line shows the pressure distribution according
to equation (10), the dashed and the dashed dotted curve to
equation (15) with different choices on d.

3.1.1 Force-slip function

Curve 1 in Figure 3 is now exchanged by (15) and by elimi-
nating the root xs = a from (11) the breakaway point can be
derived by

3Fzu
4a2

(1+§) (1+dg) — Cpox (16)



with the solutions

Xs = 2d(d+1) zd\/(d 1)2 4+

To be able to use the calculation scheme from Section 2, one
and only one solution can be inside the contact region. There-
fore the sign in front of the square root has to be positive. For
d less than —0.5 there are two solutions inside the interval.
Physically it means that there are two sliding areas split by one
adhesive region. To avoid that, the interval for d is restricted
0 [-0.5,1]. The total brake force, which is illustrated by the
marked area in Figure 3, is described by the integral

e [ (1 () T

/ “(a—x)cooxdx  (18)

16a2cpd
3uF;

Ox 17)

which render the following expression

_ uR _ 2
Fo= 2o (1—d)° (3d+1)+—4d2 (2d +5d% + 1)y
1¢3atcl [ uR , Cpa
3 nEd —(32d3(d—1) —|——6d2)(3d—|—1)6x
16dcpoxa?
. _1)2 4 T EPEXE
\/(d 1)+ 3uF, (19)

The slip limit where the entire contact area slides towards the
ground is given by the incline of the pressure curve in X = a.
Hence,

3uk;

if
Gx>2 Cpad

FX = ,LLFZ

>(1+d) (20)
The result for some different values of d is shown in Figure 7.
The complexity of (19) could be reduced by choosing d to 1 or
—1/3. However, the idea to change the pressure distribution in
this way is to get a calibration parameter that can be changed
continuously.

3.1.2 Discussion

The resulting expressions for the modified brush model have
been compared to a Magic Formula realization of a real tire in
this section. The Magic Formula has got a lot of acceptance and
it is probably the best model to approximate measurement data
to a force-slip function. As mentioned before, it is empirical
and not based on the physics and it can be misleading to draw
too many conclusions from only comparisons to this reference
curve. Besides that, the parabolic pressure distribution gives a
good overall fit to the Magic Formula approximation. However,
choosing the asymmetric curve with a slightly negative d gives
better accuracy specially for lower slip. This is in contradition
with the previous discussion about the pressure distribution, but
implies that there are other unmodeled factors that affect the
shape of the force-slip curve.
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Figure 7: Illustration showing the brake force contra the slip
using the pressure distribution given by (15). The solid line de-
notes a Magic Formula realization from a real tire. The others
are derived using different value of d.

3.2 Taylor expansion

Estimation of parameters using schemes as the least squares
method are facilitated by use of a simple expression. Therefore,
a polynomial approximation for the expression above with pa-
rameters depending on d is necessary. Expanding (19) in Tay-
lor series up to order four, for |d| < 1, gives

2at 8 (3d+1)c,lal
R =2cC a pi 2 R DA 3
X =R KF I uR T 27 (d— 1) 22
16 (3d+1)cp*ald 5
+27W X—I—O(GX) (21)

When truncating a series expansion there is always a question
about the convergence. In this case it is no restriction to a cer-
tain number of terms, but the advantage of the Taylor expansion
gets lost if the convergence is slow. Ifd=—1/3 or 0, only 2 re-
spective 3 terms are needed to deliver exact convergence, since
dand (3d—+ 1) are parts of the nominator for terms of higher or-
der. For estimation intentions the need of accuracy is discussed
in the following section.

3.3 Validation and Simulation

To verify and examine the function of the introduced calibra-
tion factor and the accuracy of the Taylor expansion, an op-
timization was performed. The parameters, 6, = cpa2 and
6, = uF, included in (21) were choosed to minimize the error
between the curve and the real tire data for forces up to 60%
of the peak value and with different value on d. The optimiza-
tion was done for two or three terms. In Figure 8 the results
for the obtained parameter values inserted in (19) are shown. It
clearly shows the difference when using two or three terms for
the optimization. By using a correct calibration factor the effect
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Figure 8: Plot showing optimization of (21) to real tire data
with different values of d (Dotted lines: Three terms used,
dashed dotted lines: two terms used). The solid line is the
Magic Formula representation and the thicker part of it spec-
ifies the optimization interval.

of the truncation can be diminished and an accurate estimation
can be achieved for few terms.

Since two terms seems to give accuracy enough for low slip,
on-line friction estimation using the recursive least squares
method might be performed. This has been verified by sim-
ulations, where the input signal, i.e. the brake force, is con-
tinuously applied to the tire as a repeated ramp function. The
arisen slip is calculated according to the Magic Formula repre-
sentation previously used in the paper. The maximum value of
the input signal is 60% of the peak force value and the corre-
sponding slip is around 4 %. The parameters, 2cpa2 and uF; is
estimated and the resulting u (assuming constant F,) is shown
in Figure 9. The difference between the estimates is clearly vis-
ible, with a of d between —0.2 and 0 giving the estimate best
agreement to 4 = 0.98.

4 Conclusion

This paper has shown different extensions of how to describe
the force-slip curve. A method, with physical interpretation, to
introduce an extra parameter to the brush tire model has been
discussed. The main result is that the modified brush tire model
can be simpler, more flexible, and get a better agreement to the
Magic Formula. Further, this new model is better suited for
on-line parameter estimation.
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