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Abstract

In this paper the problem of lateral dynamics control of a rail-
way car is addressed. A full dynamic model, including car, bo-
gies and wheelsets dynamics is considered, leading to a 34-th
order linear system. Two different sensor/actuator configura-
tions are considered and corresponding performances are crit-
ically compared. The control strategy is based on a MIMO
high order sliding manifold approach, which provides high ro-
bustness with respect to system uncertainties and exogenous
disturbances. The design procedure yields a MIMO controller
in terms of LMFD description. Simulations are used to show
the effectiveness of the proposed approach and to carry out the
comparisons among the two considered solutions.

1 Introduction

Control of various kinds of vibrations in railway vehicles is a
problem that has attracted the interest of many researchers in
the last decade. While traditionally vibration alleviation con-
trol strategies were used only to increase riding comfort, the
use of high speed trains with lighter cars has dramatically in-
creased the importance of vibration reduction controllers [1],
in order to compensate not only for increased noise levels, but
also for possible unstable behaviors exhibited above the “criti-
cal speed”. For instance, it is well known that the coupled lat-
eral and yaw vibration of the bogie, caused by the interaction
between wheel and rail, can result in the so-called “hunting in-
stability”, which degrades both the wheel and the line and, in
some cases, increases the risk of derailment.

In order to reduce vibrations, both primary and secondary sus-
pension systems are used in railway cars. However, the effec-
tiveness of traditional passive suspension systems is limited in
frequency, because their major contribution is around a fixed
nominal resonance frequency. To overcome this limitation and
increase the damping in a broad frequency band, active suspen-
sion systems have to be designed and controlled.

Active suspensions control systems have been approached from
many points of view. Optimal LQ-based control strategies are
widely discussed in [2] and the same paper collects a large

number of references approaching the problem with classi-
cal techniques, nonlinear programming and fuzzy logic ap-
proaches.H∞ approaches have also been applied, the reader
can refer for instance to [3] in which lateral, yaw and roll
motions are reduced by using a frequency shaping approach.
Moreover, alsoµ-synthesis approaches [4] have shown their
effectiveness in the control of longitudinal dynamics of a half-
car model.

Very recent papers attack the problem from different a point of
view: in [5] a double nested control loop is considered, where
the inner loop controls the ride and the outer the attitude. The
two loops are decoupled by means of an input decoupling trans-
formation, and the resulting controller reduces heave, pitch and
roll motions. Also controller parameterizations based on LFT
approach have been used [6] and tested on quarter-car, half-car
and full car models, considering also the nonlinear dynamic
model of the car. Hunting instability is dealt with in [7], where
active electro-mechanic yaw dampers and experimental results
are presented.

Finally, mechatronic approaches have been proposed, using a
new concept for the control of car vibrations. Specifically,
active steering [8] with different control strategies and active
tilt [9] with experimental tests have been considered.

In this paper we propose a robust controller design based on a
high order sliding manifold approach. Specifically, the order of
the sliding strategy is defined by the actuators/sensors location.
A 34-th order linear model is derived and two cases are consid-
ered. In the first case, four linear actuators on the wheelsets are
considered, and colocated sensors are used. In the second case,
the sensors are moved to the bogie, in order to operate them in
a less harsh environment. This control strategy has been cho-
sen for its robustness properties, since some parameters of the
vehicle are very uncertain and extyernal disturbances have to
be considered.

In [10], [11] it has been shown that, by using the mathemati-
cal tools of the Singular Perturbation Theory [12], it is possible
to design a state feedback controller that has robustness prop-
erties similar to these of high-gain control systems. However,



the controller does not exhibit any “peaking” phenomenon that
affects the latter. In fact, it is well known [14] that using high
gain systems the system state is decomposed into a “fast” and
“slow” part, while in the proposed control strategy the whole
state is “slow”, while the control is the “fast” variable.

In [13], the above procedure has been extended to the case of
MIMO output feedback. In detail, the controller order is based
on the (multivariable) pole-zero excess, that can be exactly de-
fined based on the plant Markov’s parameters. A number of
transfer zeros is added by the controller so as to fill up the
pole-zero excess, and, to make the controller proper, suitable
faraway poles are introduced and justified by using the singu-
lar perturbation theory. The zeros are located by defining a
suitable time-varying sliding manifold so that the system out-
put and its successive time derivatives up to the order of sliding
are assigned with a desired behavior. The resulting controller is
again very robust against external disturbances, like a high-gain
controller.

In this paper, based on the methodology presented in [13], we
propose two control strategies for robustly stabilizing the lat-
eral dynamics of a railway car. Simulation results address the
case of the lateral control of a railway vehicle, which is sub-
ject to lateral disturbances on the wheels. The disturbances are
such as to yield flange contacts of the wheels on the rail in the
non controlled car, and are strongly rejected by the controller.

2 System modeling

In Fig. 1 the bogie is reported, while in Fig. 2 a scheme of half
a car is depicted.

The model of lateral dynamics of the railway vehicle comprises
17 dof’s, whose meaning is summarized in Table 1.

Car Front bogie Rear bogie

yc lat. displ. yb1 lat. displ. yb2 lat. displ.

αc yaw αb1 yaw αb2 yaw

θc roll θb1 roll θb2 roll

Wheelsets (front bogie) Wheelsets (rear bogie)

y1 lat. displ. (front) y3 lat. displ. (front)

α1 yaw (front) α3 yaw (front)

y2 lat. disp.(rear) y4 lat. disp. (rear)

α2 yaw (rear) α4 yaw (rear)

Table 1: Degrees-of-freedom meaning

Based on the derivation of the dynamic models of railway ve-
hicle systems in [15], the equations of motion can be written
as
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Figure 1: Bogie and wheelset.

Mcÿc + 4Kby

�
2yc + 2θch1 − yb1 − yb2 + (θb1 + θb2)h2

�
+

4Cby

�
2ẏc + 2θ̇ch3 − ẏb1 − ẏb2 + (θ̇b1 + θ̇b2)h4

�
= 0

Jzcα̈c + 2Kby

�
2αc(L + a)− (αb1 + αb2)a + yb1 − yb2+

(θb2 − θb1)h2

�
(L + a) + 2Kby

�
2αc(L− a) + (αb1 + αb2)a+

yb1 − yb2 + (θb2 − θb1)h2

�
(L− a) + 2Cby

�
2α̇c(L + a)−

(α̇b1 + α̇b2)a + ẏb1 − ẏb2 + (θ̇b2 − θ̇b1)h4

�
(L + a) + 2Cby�

2α̇c(L− a) + (α̇b1 + α̇b2)a + ẏb1 − ẏb2 + (θ̇b2 − θ̇b1)h4

�
(L− a)

+2Kbx(2αc − αb1 − αb2)d2
5 + 2Cbx(2α̇c − α̇b1 − α̇b2)d2

5 = 0

Jxcθ̈c + 4Kby

�
2yc + 2θch1 + (θb1 − θb2)h2 − yb1 − yb2

�
h1+

4Cby

�
2ẏc + 2θ̇ch3 + (θ̇b1 − θ̇b2)h4 − ẏb1 − ẏb2

�
h3+

4Kbz(2θc − θb1 − θb2)d2
3 + 4Cbz(2θ̇c − θ̇b1 − θ̇b2)d2

4+

Mcg/2(2yc − yb1 − yb2) = 0

Mÿb1 + 2Ky(2θb1h5 + 2yb1 − y1 − y2) + 2Cy(2θ̇b1h5 + 2ẏb1−
ẏ1 − ẏ2)− 2kby(yc + θch1 − yb1 + θb1h2 − αcL)− 2Cby(ẏc+

θ̇ch3 − ẏb1 + θ̇b1h4 − α̇cL) = 0

Jzα̈b1 + 2Ky(y1 − y2 + 2αb1l)l + 2Kx(2αb1 − α1 − α2)d2
1 + 2Cy

(ẏ1 − ẏ2 + 2α̇b1l)l + 2Cx(2α̇b1 − α̇1 − α̇2)d2
2 + 2Kbx(αb1 − αc)d2

5+

2Cbx(α̇b1 − α̇c)d2
5 + 4Kby(αb1 − αc)a2 + 4Cby(α̇b1 − α̇c)a2 = 0
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Figure 2: Half a car with bogie.

Jxθ̈b1 + 2Ky(2yb1 + 2θb1h5 − y1 − y2)h5 + 2Cy(2ẏb1 + 2θ̇b1h5−
ẏ1 − ẏ2)h5 + 2Kzθb1d2

1 + 2Cz θ̇b1d2
2 + 4Kbz(θb1 − θc)d2

3+

4Cbz(θ̇b1 − θ̇c)d2
4 + 4Kby(yc + θch1 + θb1h2 − yb1 − αca)h2+

4Cby(ẏc + θ̇ch1 + θ̇b1h2 − ẏb1 − α̇ca)h4 + Mcg/2(yc − yb1)+

Mbg/2(2yb1 − y1 − y2) = 0

Mÿb2 + 2Ky(2θb2h5 + 2yb2 − y3 − y4) + 2Cy(2θ̇b2h5 + 2ẏb2−
ẏ3 − ẏ4)− 2Kby(yc + θch1 − yb2 + θb2h2 − αcL)− 2Cby(ẏc+

θ̇ch3 − ẏb2 + θ̇b2h4 − α̇cL) = 0

Jzα̈b2 + 2ky(y3 − y4 + 2αb2l)l + 2kx(2αb2 − α3 − α4)d2
1 + 2Cy(ẏ3

−ẏ4 + 2α̇b2l)l + 2Cx(2α̇b2 − α̇3 − α̇4)d2
2 + 2Kbx(αb2 − αc)d2

5+

2Cbx(α̇b2 − α̇c)d2
5 + 4Kby(αb2 − αc)a2 + 4Cby(α̇b2 − α̇c)a2 = 0

Jxθ̈b2 + 2Ky(2yb2 + 2θb2h5 − y3 − y4)h5 + 2Cy(2ẏb2 + 2θ̇b2h5−
ẏ3 − ẏ4)h5 + 2Kzθb2d2

1 + 2Cz θ̇b2d2
2 + 4Kbz(θb2 − θc)d2

3 + 4Cbz

(θ̇b2 − θ̇c)d2
4 + 4Kby(yc + θch1 + θb2h2 − yb2 − αca)h2 + 4Cby

(ẏc + θ̇ch1 + θ̇b2h2 − ẏb2 − α̇ca)h4 + Mcg/2(yc − yb2)+

Mbg/2(2yb2 − y3 − y4) = 0

Maÿ1 + 2Ky(y1 + αb1l − yb1 − θb1h5) + 2Cy(ẏ1 + α̇b1l − ẏb1−
θ̇b1h5) + 2F0(ẏ1/v − α1) + Fuy1 = u1

Jsα̈1 + 2Kx(α1 − αb1)d2
1 + 2Cx(α̇1 − α̇b1)d2

1 + 2F0s(sα̇1/v+

y1γ/r) = 0

Maÿ2 + 2Ky(y2 − αb1l − yb1 − θb1h5) + 2Cy(ẏ2 − α̇b1l − ẏb1−
θ̇b1h5) + 2F0(ẏ2/v − α2) + Fuy2 = u2

Jsα̈2 + 2Kx(α2 − αb1)d2
1 + 2Cx(α̇2 − α̇b1)d2

1 + 2F0s(sα̇2/v+

y2γ/r) = 0

Maÿ3 + 2Ky(y3 + αb2l− yb2 − θb2h5) + 2Cy(ẏ3 + α̇b2l− ẏb2−
θ̇b2h5) + 2F0(ẏ3/v − α3) + Fuy3 = u3

Jsα̈3 + 2Kx(α3 − αb2)d2
1 + 2Cx(α̇3 − α̇b2)d2

1+

2F0s(sα̇3/v + y3γ/r) = 0

Maÿ4 + 2Ky(y4 − αb2l− yb2 − θb2h5) + 2Cy(ẏ4 − α̇b2l− ẏb2−
θ̇b2h5) + 2F0(ẏ4/v − α4) + Fuy4 = u4

Jsα̈4 + 2Kx(α4 − αb2)d2
1 + 2Cx(α̇4 − α̇b2)d2

1+

2F0s(sα̇4/v + y4γ/r) = 0

whereui, i = 1, . . . , 4 are the control inputs acting on the lat-
eral dynamics of the wheelsets. The dynamic parameters of the
model are explained in Tab. 2. In the following, the subscriptx

denotes the longitudinal direction, the subscripty denotes the
lateral direction and the subscriptz denotes the vertical direc-
tion.

Parameter Definition

Mc, M, Ma Car, bogie and wheelset mass

g gravity acceleration magnitude

Jxc, Jx Car and bogie roll inertia

Jzc, Jz , Js Car, bogie and wheelset yaw inertia

Kx, Ky , Kz Primary suspensions stiffness

Kbx,Kby ,Kbz Secondary suspensions stiffness

Cx, Cy , Cz Primary suspensions damping

Cbx, Cby , Cbz Secondary suspensions damping

r, γ Wheel radius and conicity

v Vehicle travel speed

F0, Fu Creep coefficients

h1 Vertical distance car barycenter-secondary suspensions

h2 Vert. dist. bogie barycenter-secondary suspensions

h3 Vert. dist. car barycenter-secondary lateral dampers

h4 Vert. dist. bogie barycenter-secondary lateral dampers

h5 Vert. dist. bogie barycenter-primary suspensions

2d1 Lateral distance primary vertical suspensions

2d2 Lateral distance primary vertical dampers

2d3 Lateral distance secondary vertical suspensions

2d4 Lateral distance secondary vertical dampers

2d5 Lateral distance secondary longitudinal suspensions

2a Longitudinal distance secondary suspensions

2s Wheelset gauge

2l Spacing between the two wheelsets in the same bogie

2L Spacing between the two bogies

Table 2: Dynamic parameters

The above model can be written in state space form

ẋ = Ax + Bu + χ (1)

y = Cx (2)

wherex ∈ R34 is the state vector, collecting the variables in
Table 1 and their time derivatives,u ∈ R4 is the input vector,



d ∈ R4 is a state disturbance vector andy ∈ R4 is the system
output vector.

3 Control strategy

In this Section, we present the control system design. The ob-
jective of the controller is to reject the disturbances while guar-
anteeing closed-loop stability. Specifically, assuming that some
bounded disturbances enter the system we want the system out-
put and its firstρ time derivatives to asymptotically remain in a
bounded neighborhood of zero, i.e.

lim
t→∞

‖y(k)(t)‖ < δk, k = 0, . . . ρ− 1 (3)

for given small real numbersδk > 0, k = 0, . . . ρ − 1, where
ρ is a given integer to be defined next, based on the MIMO
pole-zero excess.

In order to fulfill the above requirement, we define a time-
varying sliding manifoldS as

S =
{

(x, t) ∈ R34 × R+ : σ(k)(y, t) = 0, k = 0, . . . , ρ− 1
}

(4)
whereσ : R4 × R+ 7→ R4 is given by

σ(y, t) = −y + η(t), η(t) = eWt

ρ−1∑

i=0

ci
ti

i!
(5)

andW is a Hurwitz4 × 4 real matrix to be suitably selected,
while ci, i = 0, . . . , ρ−1 are real vectors given by the recursive
equation

ck = y(k)(0)−
k−1∑

i=0

(
k

i

)
W k−ici,

k = 1, . . . , ρ− 1, c0 = y(0), (6)

beingy(k)(0), k = 0, . . . , ρ−1 the initial conditions of the sys-
tem output and its time derivatives. The functionη(t) takes into
account initial conditions on the output and its time derivatives
so as to haveσ(k)(y, t)|t=0 = 0, k = 0, . . . , ρ− 1.

The design of the robust controller is addressed by the follow-
ing Theorem, that is a slightly modified version of Theorem 1
in [13]:

Theorem 1 Consider the completely controllable and observ-
able MIMO plant

ẋ = Ax + Bu + χ (7)

y = Cx (8)

wherex ∈ Rn, u ∈ Rr, y ∈ Rr.

Let the control law be defined by the differential equation

ενDνu(ν) + εν−1Dν−1u
(ν−1) + · · ·+ εD1u̇

= Nρσ
(ρ) + Nρ−1σ

(ρ−1) + · · ·+ N1σ̇ + N0σ, (9)

whereε > 0 is a “small” real constant, andDi, i = 1, . . . , ν,
Ni, i = 0, . . . , ρ are real constantr×r matrices to be selected,
with ν andρ integers such thatν ≥ ρ.

Assume that:

(i) the plant is minimum phase;

(ii) the disturbances are “matched”, i.e. there existsg ∈ Rr

such thatχ = Bg;

(iii) the integerρ and the matricesNk, k = 1, . . . , ρ are such
that theρ-th Markov parameterHρ = CAρ−1B is invert-
ible and letNρHρ = D0, with D0 invertible r × r real
matrix, while the previous Markov parameters are zero,
Hi = 0, i = 0, . . . , ρ− 1;

(iv) the polynomial

det
(
Dνsν + Dν−1s

ν−1 + · · ·+ D1s + D0

)
(10)

is strictly Hurwitz;

(v) the polynomial

det
(
Nρs

ρ + Nρ−1s
ρ−1 + · · ·+ N0

)
(11)

is strictly Hurwitz;

(vi) there exists a realγ < 0 such that

Reλmax(W ) < γ < 0 (12)

whereReλmax(X) denotes the largest real part of the eigen-
values of the matrixX.

Then, there existε0 > 0, δ > 0, λ < 0, with λ > γ, such that
for any ε ∈ (0, ε0], the solution(x(t, ε), u(t, ε)) of (7), (9), is
such that

ρ−1∑

k=0

‖y(k)(t, ε)‖ ≤ δ + aeλt for any t ∈ [0, +∞), (13)

wherea is a positive constant depending on the plant initial
conditions.

The proof of this Theorem can easily be deduced form the one
in [13].

The above Theorem suggests us a procedure for designing the
controller:

1. Select the boundary layer dynamics by assigningν + 1
matricesDk, k = 0, . . . ν such that eqn. (10) holds;

2. selectρ matricesN̄k, k = 0, . . . , ρ− 1 such that the poly-
nomial

det
(
sρ + N̄ρ−1s

ρ−1 + · · ·+ N̄0

)
(14)

is Hurwitz;



3. let Nρ = D0H
−1
ρ , Nk = NρN̄k, k = 0, . . . , ρ− 1.

4. select a “small”ε and compute the controller.

The MFD of the controller is obviously computed as

C(s, ε) =
(
Dνενsν + Dν−1ε

ν−1sν−1 + · · ·+ D1εs
)−1

(
Nρs

ρ + Nρ−1s
ρ−1 + · · ·+ N0

)
. (15)

and the control signal isu(s) = C(s, ε)σ(s). As far as the
selection ofW , it defines the way the system output recovers
possible initial offsets, hence it can be chosen as a Hurwitz
matrix with eigenvalues related to output recovery time.

4 Simulation results

The procedure presented in the previous section is applied
in two cases. Four linear actuators have been considered on
the lateral displacement of the four wheelsets. Moreover, a
band-limited random disturbance has been considered the front
wheelset of the front bogie, and the same disturbance has been
applied to the other wheelsets considering a time delay corre-
sponding to the train speed (300 km/h) and the wheelset dis-
tances. The disturbance is such that the open-loop lateral dis-
placement of the wheelsets is5mm. In the first simulation
set we have considered sensors on the four wheelset displace-
ment. Hence we have a colocated actuators/sensors configura-
tion, which results inρ = 2 andH2 diagonal. Using the pro-
cedure in the previous Section, we have selectedDk ’s, N̄k ’s
andW as diagonal matrices, hence the resulting controller is
decentralized. The results of the simulation show very good
robustness properties, with high disturbance rejection. How-
ever, placing sensors on the wheelsets can be not realistic, since
the wheelset vibrations can reduce sensors life time. Hence, a
second sensor configuration has been considered, moving the
sensors on the bogies in order to put them in a less harsh envi-
ronment. Specifically, lateral displacement and yaw have been
measured for each bogie, and in this caseρ = 4. Using again
the procedure given in the previous Section, in order to sim-
plify computation we have still chosenDk ’s, N̄k ’s andW di-
agonal, but, since the Markov parameterH4 is no longer di-
agonal, the resulting controller is fully coupled. Simulation
results are shown and compared in Figures 3, 4, 5. In Figure 3
the wheelset lateral displacement is depicted, and it is appar-
ent that the first strategy, colocated feedback, exhibits better
performance. Nevertheless, in both cases significant displace-
ment reduction have been achieved with respect to open-loop
(5 mm). Moreover, also body acceleration have been consid-
ered as a measure of ride comfort. In Figure 4 the closed-loop
behavior is reported in the two cases. Again, the colocated
strategy works better, and again closed-loop systems outper-
form the open-loop system, whose maximum acceleration is
about0.3 m/s2. The same performances can be shown to hold
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Figure 3: Closed-loop front wheelset lateral displacement
(front bogie). Solid line: colocated feedback; dashed line: non-
colocated feedback.

on car yaw and roll accelerations. Finally, in Figure 5 the con-
troller output are shown, whose shapes are such as to compen-
sate for applied disturbances.

5 Conclusions

In this paper the model of the lateral dynamics of a railway car
has been presented, and a robust MIMO control strategy has
been presented and applied to control the car. The car has two
bogies, each bearing two wheelsets, hence a 17 dofs’ model
results. The control strategy is based on the Theory of Singu-
lar Perturbations, and exhibits very good robustness properties
with respect to external disturbances and uncertain model pa-
rameters. Simulations are performed in order to test the pro-
posed strategy in two cases: a colocated feedback policy, that
is shown to give the best results in terms of disturbance rejec-
tion, and a noncolocated centralized controller, that, although
slightly degrading the closed-loop performances, allows better
sensor placement. Performances are also evaluated in terms of
passengers comfort.
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