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Abstract

In this paper we present an important new concept for real-time
control law implementation based on bit-serial approach. It is
shown that control laws can be efficiently implemented by 1-bit
processing through the use of ∆Σ modulation. After process-
ing, the bitstream output can be directly applied to analogue
interface according to pulse-density-modulation (PDM). This
technique is quite promising for system-on-chip (SoC) appli-
cations as the system cost can be greatly reduced by bit-serial
architectures and eliminating the decoding of a bitstream prior
to processing.

1 Introduction

This paper investigates a highly-efficient signal processing al-
gorithm and architecture for real-time control. There has been
much work on bit-parallel processing, including one of the au-
thor’s own work which has resulted in a targeted Control Sys-
tem Processor (CSP) architecture [6], but the approach taken
here relates to 1-bit signal processing which is becoming in-
creasingly common in the audio world but has not yet been ap-
plied for real-time control. One-bit processing almost certainly
involves higher sampling frequencies, but results in significant
reduction in computational complexity. The long-term aim of
the research is to determine the overall benefits, particularly
for implementing higher-order dynamic controllers; this paper
describes the development of appropriate algorithms and archi-
tectures.

∆Σ modulation has been rapidly gaining popularity in audio
signal processing as an effective method for building high res-
olution A/D and D/A converters. ∆Σ A/D and D/A converters,
illustrated in Figure. 1, can modulate the analogue input into
a simple bitstream and demodulate the digital signal into ana-
logue form at a very high frequency. From Fig. 1, the ∆Σ
modulated signals are in the format of 1-bit. Thus, it is use-
ful to consider signal processing directly without decimation
filter and interpolation filter in an attempt to reduce the circuit
complexity and save the valuable silicon area.

As ∆Σ modulation can be implemented in control systems eas-
ily, it is desirable to perform signal processing on ∆Σ modu-
lated signals. However, it is essential to choose some suitable
structure of digital controllers. Ideally there will be no multi-bit
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Figure 1: A/D and D/A converters based on ∆Σ modulation

multipliers as multipliers on DSPs and also processor solutions
are a dominant factor in i.c. design and performance. In section
2.3, a controller structure is designed based on the modified δ-
form. As the controller output after ∆Σ modulation is either 1
or -1, it is obvious that multiplication becomes a simple ‘con-
ditional sign switch’, i.e. not a multiplier in the normal sense.

Signal conversion with ∆Σ modulation requires a very fast
sampling frequency. It is sometimes argued that the sampling
frequency cannot be too high otherwise numerical issues arise,
but in fact this is not strictly correct [3]. It is usually necessary
to sample perhaps 50-100 times the system bandwidth if the
phase lags introduced by sampling and computation delays are
to remain small, and this intrinsic requirement for fast sampling
with real time control (which does not necessarily apply for
other forms of signal processing) means that much more mod-
est sampling frequency increases are needed in a relative sense.
Therefore, because the signal is necessarily fast sampled, the
system characteristics can approach those of high quality ana-
log processors in terms of phase responses and distortion ef-
fects, while retaining the advantages of digital processing tech-
niques.

For 1-bit signal processing, it can be implemented into FPGAs
easily with bit-serial architectures despite the bit-parallel pro-
cessing still shows its advantages over traditional control sys-
tem processing. The advantage of bit-serial architectures is that
all of the bits pass through the same logic, resulting in a huge
reduction in the required hardware. Typically, the bit serial ap-
proach requires (1/n)th of the hardware required for the equiv-
alent n-bit parallel design. The price of this logic reduction is
that the serial hardware takes n clock cycles to execute, while
the equivalent parallel structure executes in one. However, the
time-hardware product for the serial structures is often smaller
than that for equivalent parallel ones because the logic delays
between registers are generally significantly smaller [1].

In this paper we describe 1-bit signal processing algorithms
and bit-serial architectures, which operate on ∆Σ modulated
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Figure 2: ∆Σ based control system

signals. The remainder is organized as follows. Section 2 in-
troduces the principles of 1-bit signal processing including ∆Σ
modulation, δ-operator and controller structures. Section 3 dis-
cusses the basic blocks of bit-serial architecture. Section 4 de-
scribes an application of digital controller implementation us-
ing ∆Σ modulation. Section 5 concludes and discusses future
research directions.

2 ∆Σ based control system Design

1-bit signal processing has been explored in audio industry for
the last decade. Companies like Sony, Philips, etc. have already
applied this technique into digital recording systems. In con-
trol, however, it is still unknown as control engineers are used
to bit-parallel processing. But bit-parallel processing shows its
limits in system-on-chip applications. It is especially true when
the ambition is to integrate the whole control system into one
FPGA as A/D, D/A converters and multi-bit multipliers con-
sume a lot of silicon area. In this case, 1-bit signal processing
seems to be an alternative good solution. The question is how
it works?

Fig. 2 shows the scheme of ∆Σ based control system. The A/D
converter can be replaced by a simple ∆Σ modulator with the
output of 1-bit signal. The controller is modified for 1-bit signal
processing. The output of controller is two-level (1/-1) signals,
hence a series of pulses. The physical system can be controlled
by the density of the pulses, which is so called PDM. So the
D/A converter can often be removed in the ∆Σ based control
systems, although in some cases simple analogue filtering may
be needed.

2.1 ∆Σ Modulation

∆Σ modulation is an algorithm by which analogue and digital
signals are coded in a low resolution and high sampling rate
format. The simplest ∆Σ modulator is the first-order imple-
mentation in Fig. 3 (a). The quantizer works as a comparator,
from which the output is a single bit 1 or -1. The relationship
between the input and output can be described as follow: The
bitstream out is subdivided into intervals of L bit. The number
M of ’1’-states and N of ’-1’-states contained in an interval are
counted. The average output value can be computed as

Ō = (M − N)/L. (1)

As the input is constrained between -1 and 1, the Uout should
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Figure 4: The digital second order ∆Σ modulator

equal to Uin when Uout is computed as

Uout = K · out, (2)

where K is a scaling value.

The control system containing ∆Σ modulation can be thought
of as a non-linear one. With the uniform quantizer in the loop,
it is surprisingly difficult to analyze such a control system pre-
cisely. Notice the fact that the output bitstream will definitely
contain noise due to the quantization. For the purpose of an-
alyzing conveniently, here, we can make a simple assumption
that the ∆Σ modulator introduces quantization noise into the
loop [7]. Hence, the modulator can be modelled as a linear
approximation shown in Fig. 3 (b).

Although many ∆Σ modulators are possible, in this paper
the control system will be based on a second-order modulator
shown in Fig. 4. Here, the input and output signals are multi-bit
and one-bit respectively.

Now we consider the quasi-linear analysis of the second order
∆Σ modulator. From Fig. 3 (b) and Fig. 4, the output signal,
Y, can be shown in the z transfer function as

Y (z) = z−1X(z) +
(z − 1)2

z2
E(z). (3)

Thus, the output signal, Y (z) is equal to the delayed input sig-
nal plus quantized noise as in Fig. 3 (b). The noise transfer
function of the modulator is equal to

N(z) =
(z − 1)2

z2
. (4)

Obviously, the ∆Σ modulator is a high-pass filter for the quan-
tized noise. By choosing a sufficiently high sampling fre-
quency, the noise is shaped to lie outside the frequency range
of the interest.

2.2 δ-operator

As discussed before, signal conversion with ∆Σ modulation
requires a very fast sampling frequency. However, a very fast
sampling frequency may result in long word-lengths for both



coefficients and variables within the controller, primarily be-
cause the differences between successive values of the input
and output become increasingly small.

The discrete state-space form is a natural way of expressing the
implementation equations for digital controllers. Transforming
other expressions, e.g. continuous and discrete transfer func-
tions, into this form is rather straightforward. The discrete
state-space equations can be expressed as follows:

zX = AzX + BzU ;

Y = CzX + DzU. (5)

However, there are particular problems of coefficient sensitiv-
ity with these conventional forms of control system processing
using the shift operator z [8], a feature that becomes particu-
larly critical with the high sample rates required for 1-bit sig-
nal processing. It has been recognized that the alternative forms
using δ-operator overcomes a number of these problems since
a difference operator is more like a derivative, resembling the
continuous operator d/dt. Thus, the state-space equation be-
comes

δX = AδX + BδU ;

Y = CδX + DδU. (6)

The δ-operator can be defined as

δ = z − 1. (7)

Some researchers also defined δ-operator as

δ =
z − 1

T
, (8)

in which T is the sampling period. This definition shows that
there is a unification between discrete and continuous time
since δ → s (s is the Laplace operator) as T → 0 [9]. How-
ever, it is in fact just a difference of scaling factor between these
two definitions, and the first one is more direct since no mul-
tiplication is involved. Fig. 5 shows the diagram of δ-operator
according to the first definition. It can be represented as

δ−1 =
z−1

1 − z−1
. (9)

Obviously the δ-operator is easy to implement as the equation

y(k + 1) = x(k) + y(k), (10)

where k is the sample number, although it is possible to create
a new state-space equation with a new set of states and a state
matrix Aδ which is structured to give δ-operator arithmetic [5].

2.3 Controller Structure

Another important issue is to choose a suitable controller struc-
ture in order to reduce the circuit complexity for applications
of system-on-chip. First let us see a canonic δ form [4], illus-
trated in Fig. 6, a particular feature being the coefficients on

2
Out1

1
Out2

delta

1

z

1
In

1
In1

Figure 5: The δ-operator

1
Out

delta2delta1

r

q

p

m2m1
1
In

Figure 6: A second order structure for filters using the δ-
operator

the ”forward path” of the computations. This structure is def-
initely a perfect one for multi-bit processors because it gives
low sensitivity coefficients and excellent scaling properties for
the internal variables. However, there are many multi-bit mul-
tipliers involved in this structure. For the single bit processor, a
simple structure is preferred to implement the ∆Σ modulation
and perform 1-bit signal processing, in which the coefficients
are moved from the feed-forward back to the feedback path, i.e.
a more conventional canonic form. Fig. 7 shows the scheme.

As the output is in multi-bit format, it is necessary to remod-
ulate the signal into 1-bit format. This can be accomplished
easily by inserting a ∆Σ modulator after the output. Thus it
shows that there are 5 ‘conditional sign switches’ in the mod-
ified structure compared to 5 multi-bit multipliers in Fig. 6.
Other structures are possible for ∆Σ signals processing [2],
but this structure is the most simple and straightforward one.
In this paper the controller will be implemented in this scheme.

3 Implementations

It has shown great advantages to implement ∆Σ-based control
systems with bit-parallel architectures. However, for reducing
the complexity of circuits and the price of chips further, the bit-
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Figure 7: A second order structure with the modified δ form
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Figure 8: ∆Σ modulator using RC lowpass as integrator

serial approach is a more efficient solution. This is especially
true when designing system-on-chips with FPGA. Using a bit
serial architecture, it is frequently possible to pack a relatively
complex function into a single FPGA. A throughput improve-
ment may even be realized over an equivalent parallel structure
implemented in FPGAs [1].

Using 1-bit signal processing, it is quite straightforward to im-
plement the control system into bit serial-architecture. From
the modified controller structure (Fig. 7), multiplication hap-
pens only in forward route and feedback route. As we referred
before, multiplication is only a ‘conditional sign switch’ be-
cause the input and output signals are either 1 or -1. Coeffi-
cients are small because of the nature of δ operator and high
sampling frequency. They can be stored in a simple floating
format with typically 6 bits of mantissa and 5 bits of exponent
[10]. Thus, the total operations involved are addition, negation,
shift and delay. Because most operations are accompanied by
an add operation, a shift-add element is promoted here.

3.1 1-bit A/D conversion

1-bit A/D conversion is a first step of control system process-
ing, which performs the conversion of analogue signals to a
bitstream. Here, the A/D converter is replaced by a simple ∆Σ
modulator. Fig. 8 shows a first order ∆Σ modulator for ana-
logue to digital conversion. It applies an RC-lowpass filter as
an integrator and a simple comparator. The output switches to
logic high when the input is greater than 0V, and to logic low
when the input is less then 0V. High-order ∆Σ modulators can
be expanded from this model.

3.2 Basic bit-serial blocks

A bit serial adder is constructed using a full adder with registers
on both its carry and sum outputs. The registered carry output is
wired back to the carry input. Fig. 9 (a) illustrates its schematic.
In operation, the two words are simultaneously shifted least
significant bit first into the remaining two inputs. The carry
out from the addition of each bit is stored and then used in the
summation of the next bit. The carry flip-flops must be cleared
before each new data word so that the previous word’s carry is
not added to the current addition.

Bit-serial 2s complement is required to compute the 2s comple-
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ment of the input. A bit-serial 2s complement circuit is shown
in Fig. 9 (b). The input should be presented least significant bit
first. The carry flip-flop must be reset before each input word.

The delay is useful for aligning words. It is simply a D flip-
flop inserted into the data path for each bit of delay desired.
Word delays are constructed from a string of bit delays equal
in length to the number of bits in the word. A sample layout of
a word delay is shown in Fig. 9 (c).

3.3 Shift-add element

Fig. 10 illustrates a schematic of the shift-add element. The
2−i shift is accomplished using delays to realign the bits in X
relative to the bits in Y . The data is presented LSB first. In
order to shift Y i bits to the right, the bits in X must arrive at
the processing element i bit times before the corresponding bit
in X . By inserting the delay on the X path, X is shifted to the
left relative to Y which is the as Y being shifted to the right
relative to X . Notice the carry from the full adder is registered
(effectively a 1-bit shift) and returned to the carry input of the
adder. This is an implementation of the ripple transitive form
of the adder. The carry flip-flops must be cleared before before
each new data word.

4 A ∆Σ control system application

We have discussed ∆Σ modulation and developed a suitable
controller structure before. Now let us demonstrate a d.c. mo-
tor control system, which controls the position of a rotating
load with flexibility in the drive shaft. Fig. 11 shows the motor
model.

A 4th order command-tracking controller has been designed in-
cluding a PI, a phase advance and a notch filter to minimise the
effect of the resonance caused by the flexibility. Thus, the over-
all control scheme can be illustrated as Fig. 12. Any sampling
and computation delays introduced by the discrete controller
are critical because both gain and phase margins are important
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Figure 12: An overall control scheme

in the design.

In the δ form with the modified canonic structure (Fig. 13) the
transfer function becomes

Y

X
=

p4δ
4 + p3δ

3 + p2δ
2 + p1δ + p0

δ4 + q0δ3 + q1δ2 + q2δ + q3

, (11)

where p0 . . . p4 are feedforward coefficients and q0 . . . q3 are
feedback coefficients of the controller. These coefficients are
calculated according to the sampling frequency. The higher the
sampling frequency, the smaller the coefficients (see Table 1).

The procedure of the control system processing can be de-
scribed as follows. Firstly the analogue signals (command and
motor position) are sampled by a simple ∆Σ modulator and
give a bitstream output. Then the signals feed into the digital
controller and cause an update of the state variables so they are
ready for next sample:

x1 = p0u − q3y1 + x1;

x2 = p1u + x1 − q2y1 + x2;

x3 = p2u + x2 − q3y1 + x3;

x4 = p3u + x3 + x4;

y = p4u + x4, (12)

in which y1 is the modulated 1-bit signal of y. Then y1 can
be directly output using pulse-density-modulation (PDM) tech-
nique to drive the motor.

To implement this controller into an FPGA, there are 8 switch
logics for ‘conditional sign switch’, 7 bit-serial adders, 11 bit-
serial shift-adders. Obviously, the whole system architecture is
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Figure 13: Modified controller structure

Feedforward coefficients 1kHz 10kHz
p0 4.0e−11 4.0e−15

p1 4.0e−5 4.0e−8

p2 4.0e−3 4.0e−5

p3 1.0e−1 1.0e−2

p4 1.0e+1 1.0e+1

Feedback coefficients 1kHz 10kHz
q0 0 0
q1 4.0e−5 4.0e−8

q2 4.1e−4 4.1e−6

q3 1.0e−1 2.22e−2

Table 1: Controller coefficients at 1KHz and 10KHz

quite simple compared to 8 multi-bit multipliers and 13 multi-
bit adders. The architecture should be more simple because of
the elimination of A/D and D/A converters.

Fig. 14 shows simulation results of the step response of the
closed-loop system at a sampling frequency of 10kHz. Graph
(a) gives results of continuous model, discrete model with
multi-bit processing and discrete model with 1-bit processing.
The difference between the results is very slight. Graph (b)
is an expanded particular of the response, and we can see that
there are small differences in the residual oscillation of the flex-
ible mode, but these are within 0.1%. This means the 1-bit
signal processing is applicable for real-time control.

5 Conclusion

One-bit signal processing has been shown applicable for real-
time control. With bit-serial architecture, it is also simple
and easy to implement. This technique is quite promising for
system-on-chip solutions for embedded controllers as the valu-
able silicon area can be saved to reduce the chip cost.

The dynamic range of this type controller largely depends on
the sampling frequency and the noise shaping ability of the
modulator. For the future research, as the sampling frequency
cannot be increased indefinitely, it is still necessary to improve
the structure of ∆Σ modulators. At the same time, the ∆Σ
based control system is expected to be implemented practically
for a Magnetic Levitation (MAGLEV) demonstrator, where a
magnetically-suspended vehicle will be controlled by a single
chip.
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