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Abstract 

The objective of this work is the development of a Computer Based Tool for the 
Simulation, Integrated Design of Activated Sludge Processes and their Control 
Systems. Integrated Design methodology allows for the simultaneous design and 
evaluation of plants and control system parameters. In the paper, the ID problem is 
stated mathematically as a constrained non-linear multi-objective optimization 
problem, in which economic and control objectives are considered together with some 
constraints. The solution of the problem is obtained following a numerical cost 
optimization procedure that uses dynamic models together with a set of predefined 
constraints to evaluate plant dimensions, operation points and controller parameters. 
The constraints are selected to ensure that the process variables and some 
controllability measures lie within specified bounds. In this context, the aim of the 
work was to design and to implement a software tools to support engineers during the 
complex task of designing Wastewater Treatment Plants. The integration of 
Numerical Optimization, Model Identification, Dynamical Model Simulation and 
Model Based Predictive Control, is the most relevant feature of the package and the 
key point to succeed in the design of flexible processes reducing the operation costs 
while legal specifications on the quality of the treated water are fulfilled. The package 
allows dealing with different type of treatment processes, several plant configurations 
and scenarios. Some of the available models and data records, representing real 
Wastewater Treatment Plants, can be taken as starting point either for being 
redesigned or just as simulation models (to be compared with others, for its control 
system design, etc.). In fact, the software is very flexible and, apart from the first 
main functionality (Integrated Design), the use of other implemented modules can 
lead to the integration of various related fields (Simulation, Control System Design, 
Fault Detection and Diagnosis, Adaptive Control, etc).  
The paper begins with a simple introduction to the Integrated Design concept, 
problem definition, and support tool design, to end up with some application 
examples. 
Keywords: Process and Control Integrated Design, Advanced Control, Multi- Objective 
Optimisation, System Identification. 
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1. Introduction 

The public view concerning wastewater treatment these days is fairly positive. The 
EU Urban Water Directive (91/271/EC) adopted years ago, together with the newly 
adopted EU Water Framework Directive (2000/60/EC), define stringent requirements 
for urban wastewater treatment and a time frame for the step-wise implementation by 
the member countries. The application of the directive has lead to the construction of 
new plants and redesigns of the existing plants with the aim of reducing as much as 
possible the level of pollutant and the environmental impact. 
This norm imposes several objectives to achieve, like the  design of more complex 
and flexible plants considering the new environmental restrictions facilitating their  
adaptation to future environmental legislations, and avoiding their redesign, and for 
the urgent need to realize a stricter Operation and Control (more quality of the water, 
menus sludge production...). To achieve the above mentioned objectives, its necessary 
the use of Integrated Design Techniques  of the plants and their control systems, 
Advanced Control Techniques and Intelligent Supervision, and the use of a Computer 
Aided  Tools that permit the simulation and design of plants and controllers. 
Traditionally, process design and control system design are performed sequentially. It 
is only recently displayed that a simultaneous approach to the design and control 
leads to significant economic benefits and improved dynamic performance during 
plant operation. 
The field of integrated process design and control has reached a maturity level that 
mingles the best from process knowledge and understanding control theory on one 
side, with the best from numerical analysis and optimisation on the other. Direct 
implementation of integrated methods should soon become the mainstream design 
procedure. (Seferlis, Georgiadis, 2004). 
Within this context, 'The Integration of Process Design and Control’ brings together 
the development of a variety of design tools for the process design which has 
immense potential because of its several advantages. The biggest is that it will reduce 
costs significantly. It will also reduce the iterations between separate design 
operations - like synthesis and control system design, in addition to save design time, 
and improve design efficiency. 
Moving beyond the present, there are other reasons also as to why it’s strongly 
advocate and feel that the time has come for integrated tool suites. Today's designers 
need to consider several critical parameters and objectives. All of these parameters are 
closely coupled - optimisation of one affects the others. Their interrelationships 
require design tools that can perform concurrent optimisation, which can only be 
accomplished when the tools are part of an integrated design-tool suite and used 
within the right design flow. Concurrent optimisation lets the designer solve problems 
that affect multiple design parameters. 
Jussi, et al 2005 presented an integrated multi-objective design tool for chemical 
process design that combines the rigorous calculation of the BALAS process 
simulator and the interactive multi-objective optimisation method NIMBUS. Pajula, 
Ritala, 2006 presented a tool for the uncertainty measurement in the integrated control 
and process design showing a study how the control structure design is affected by 
uncertainty measurement and how the corresponding dynamic problem is defined and 
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solved with rather regular tools. Choo et al, 2004 proposed DePlan as a method for 
integrated design management during the detail design phase; DePlan integrates two 
techniques, namely, Analytical Design Planning Technique and planning according to 
Last Planner, each involving a software tool.  
Lim et al. 1999 applied a multi-objective optimisation concept to chemical processes. 
They used sequential modular simulator ProSim and an optimiser based on infeasible 
path successive quadratic programming (SQP). Two objectives were analysed, 
namely a global pollution index functions and the cost-benefit functions. 
In this tool designing and implementation phase, we tried to integrated various 
optimisation algorithm and the sate of the arte advanced control system that show 
high efficiency in the waste water control process. Many simulation software 
packages such as ASPEN PLUS, CHEMCAD and BALAS include single objective 
optimisation capabilities. These optimisation tools can be used for simple multi-
objective optimisation; however, these simple tools are not efficient in solving 
complex real world process, Miettinen, 1999. With our integrated tool the designer 
can consider several conflicting performance criteria simultaneously and find efficient 
design alternatives in flexible way. 
The main contributions of the method used in this work are the following. First, a new 
method for optimal automatic tuning of linear MPC controller parameters taking into 
account input and output constraints, and making use of a specific random search 
method based on the optimisation algorithm (Solis, 1981) for MPC integer parameters 
tuning, has been developed and tried for linear plants and the activated sludge 
process. The  second contribution is to develop integrated design techniques in order 
to perform at the same time the design of the optimal plant for activated sludge 
process and the optimal linear MPC for this process. This strategy has been tested in 
one simulated example based on a real wastewater treatment plant. In addition to 
costs, other performance specifications were considered in the integrated design 
procedure, such as the Integral Square Error (ISE) or the integral of changes in the 
manipulated variables. The methodology proposed here is a general one, and any 
other dynamical performance criteria can be considered. The use of linear models also 
allows us for the specification of other convex performance criteria using an LMI 
framework. 

2.  Integrated Design 

Integrated Design methodology considers that the changes in the process design 
might make the system more controllable. The methodology allows for the evaluation 
of the plant parameters and the control system at the same time. The problem is stated 
mathematically as a non-linear multi-objective optimisation problem with non-linear 
constraints, including economic and control considerations. 
The methodology that the support tool use combines the design of the plant, and the 
controller following a cost optimisation procedure, with the desired closed loop 
dynamic as constraints. The cost functions include the investment, operation costs, 
and dynamical indexes (like the Integral Square Error (ISE)). The constraints are 
selected to ensure that the values of some controllability parameters, the H� norm 
performance and many other performance criteria are within specified bounds. The 
independent variable set includes plant dimensions, an operation point and the 
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controller parameter. This problem is stated mathematically as a NLP /DAE multi-
objective optimisation problem with non-linear constraints.  Many works apply 
integrated design techniques, particularly to chemical process design (distillation 
systems, reactors, etc.), stressing the interactions of design and control (Ross, 2001; 
Gil, 2001). These works also tackle process structure selection by solving a synthesis 
problem. A comprehensive review of advances in the area is given in (Sakizlis, 2004). 
Some good examples of integrated design applied to the activated sludge process are 
(Francisco, 2003), where PI controllers and the plant were obtained, including linear 
matrix inequality (LMI) constraints to state stability conditions and some desired 
closed-loop behaviour, and (Vega, 1999), that presents an study of integrated design 
with PI controllers applied to different plant structures. Despite of the complicated 
dynamics of the process under design, works adding advanced controllers to the 
integrated design procedure have not been reported in the literature, and it could be a 
good way to improve control performance. In this work we have selected advanced 
controller because of the existence of several successful applications in activated 
sludge control (Vega, 1999; Nejjari, 1999; Sotomayor, 2002), and the easiness to deal 
with constraints. 
 
Mathematically the Integrated Design can be formulated as: 

)(min xf
x

 

Subject to  ubxlb ≤≤  
0)( ≤xg   

Where x = plant dimensions, flows and working point parameters.  
lb = lower bounds for optimisation variables. 
ub = upper bounds for optimisation variables. 
g = non-linear function that represents the physical, process and controllability 
constraints. 
g(x) is the mathematical model of the optimisation problem 
 
The problem as we mentioned before can be classified as a non-linear multi-objective 
optimization problem, that consists of several conflicting objective functions 
describing the properties that we want to improve and  constrains that  determine a 
feasible solution. The cost function could include three cost elements, which are, 
construction cost, operational cost, and controllability. The feasible solution  is  a set 
of design parameters which optimise the cost function subject to group of constrains 
which include the physical, operational,  and controllability constrains. 
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Figure. 2.1  Integrated Design Methodology 
 

Mathematical Optimization for Integrated Design 

The discussion of this section assumes that the objective function of the optimization 
problem is to be minimized (rather than maximized), unless stated otherwise. 
The objective of the application of an optimization procedure is to find values of the 
parameters describing the plant dimension, and to find values of the parameters 
describing the control strategy so that minimum possible adverse impacts of the 
strategy are applied to the environment. Solutions resulting not only in minimum 
impacts but also those leading to less detrimental impacts than the currently applied 
strategies minimizing a cost functions. 
The control strategy is applied during the simulation, the tool serves as a means of the 
computing the objective function within the optimization procedure. The tool has the 
strategy parameters as input ( controller type, control parameters, identification 
parameters, initial values, process restrictions…etc) and the value of objective 
function, plant dimension, and control strategy parameters as output.  See Figure 2.2 

Advanced Control for Integrated Design 

The allowed levels of pollutants in treated wastewater have become increasingly 
stringent with time. Taking into account current environmental problems, it is not 
unrealistic to believe that this trend will continue. At the same time loads on existing 
plants are expected to increase due to growth of urban areas. This situation demands 
more efficient treatment procedures for wastewater. 

 
Figure 2.2  Role of the simulation tools in the definition of the optimization problem 
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One way to improve efficiency could be to construct new and larger basins, but this is 
expensive and often impossible since the land required is just not available. Another 
way would be the introduction of more advanced control and operating systems. This 
is expected to reduce  
the need for larger volumes, improve the effluent water quality, decrease the use of 
chemicals, and save energy and operational costs. Sustainable solutions to the 
problems of wastewater treatment will require the development of adequate control 
systems. 
 

 
Figure 2.3 Iterative loop for integrated design 

 
 
New control strategies may involve the use of simplified biological/physical models, 
feed forward control from measurable disturbances, simple estimation models, 
supervision control, and real-time estimation. For a control engineer the activated 
sludge process in a wastewater treatment plant is a challenging topic for several 
reasons like that the  process is time-varying, non-linear, and multi-variable. From the 
nature of wastewater treatment process it can be shown that a simple control loops is 
not sufficient and it was one of the motivations beside the cost effective to the use of 
advanced control strategies. 
One important issue in integrated design is the tuning of controller parameters. 
Usually the tuning of these parameters has been performed using expert knowledge 
and a trial and error procedure. However some works deal with automatic tuning of 
MPC controllers. (Ali, 1993) proposed a procedure for tuning the algorithm 
parameters of a non-linear predictive controller. This was accomplished by using an 
off-line interactive multi-objective optimization package, specifying time-domain 
performance criteria. Results are good, but the tuning of integer parameters such as 
horizons is performed using a non intelligent grid search. For linear model predictive 
control, (Al-Ghazzawi, 2001) has developed an on-line tuning strategy based on the 
linear approximation between the closed-loop predicted output and the MPC tuning 
parameters, but without considering output constraints on the on-line optimization 
step.  
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When tackling the integrated design mathematical problem, specific features of the 
process (non-linearity, different sensitivity for plant parameters and controller 
parameters, etc.) increase the complexity of the problem. For this reason, when 
solving closed loop integrated design, we used a methodology consisting of an 
iterative two steps approach.  For open loop design, optimization of function (1) is 
sufficient, but for closed loop integrated design, the optimization procedure involves 
the two cost functions (1) and f2. The first step performs the plant design optimizing 
f1, and the second step the controller tuning optimizing f2. At every step, plant or 
controller parameters obtained are used as constant values for the following 
optimization step. The loop ends when a convergence criterion is reached.  (Figure 
2.4). 
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Figure. 2.4 Iterative loop for integrated design 
 

3.  The Computer Based Tool 

This tool has been developed as a prototype tool for the Simulation, Integrated Design, and 
Control System Design Process for activated sludge process, beside the Integrated Design 
module, the tool contains a simulation module that able the user to simulate the most common 
fault occurs in the waste water treatment plants, and a Control System Design Module for the 
design of Wastewater Plants control loops. Figure 3.1  shows the general schema of the 
Integrated Design Module.  
The tool contains considerable number of user case like Plant Design, Integrated Design 
(Plants + controller), various types of controller (PID, MPC....etc),different optimization 
algorithm, various cost function formulate simulation with/without faults, control system 
design (PID, MBPC, GMV…etc).  
The package is  an integrated tool for optimization system which integrates programs for the 
optimization and predictive control of WWTP (Activated Sludge Processes), simulators 
(SIMULINK), computer aided control system design (Matlab, toolboxes) and user interface 
(GUIDE toolbox). 
 

Integrated Design Module Main Component 

Three types of elements can be distinguished in the tool: section of parameters, 
menus, and graphics. The first one is composed by the different parameters that 
define the problem to optimise, optimisation methods, disturbances, set of constrains, 
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simulation parameters and type  for both the model and the plant. On these parameters 
it is possible to interactively modify a lot of parameters like optimization parameter, 
constraints, simulation parameters, disturbance etc. The second set of elements 
mainly allows modifying the initial values, load optimise plants, and save the 
obtained results. set of elements is linked to the menu file from which it is possible to 
modify the initial vales for the plant and save obtained results, third elements usually 
use to show the obtained results graphically, system behaviour via simulation, and to 
compare the obtained results of different plant configuration. 

1. Plant type: (without/with N Removal) at the first the visual appearance of the 
wastewater was improved via sedimentation and filtration process. The visual 
problems were of course the most obvious, and also the most simple to deal 
with. To improve the situation, biological treatment is evolved. This treatment 
consisted of adding oxygen to wastewater in reactor, thus allowing the organic 
matter to oxidize (Plants without Nitrogen Removal), the objectives of these 
plants was the elimination of organic matter from the wastewater and keep its 
concentration below a certain limits, In the 1980s, nutrient pollution from 
nitrogen and phosphorus was found to cause problems such as eutrophication, 
and the focus therefore shifted towards removal of nutrients from wastewater. 
(Plants with Nitrogen Removal, to remove organic matter and nutrients. In 
1990s the EU Urban Water Directive (91/271/EC) increasing the demands on 
nitrogen removal from wastewater in the member country     (Samuelson, 
2005). 

2. Cost Function: The Integrated Design, for the activated sludge  process, 
consists of minimizing an objective function which represents construction, 
and operation costs,(Controllability can be also consider as a part of the 
objective function) while the desired open or closed loop dynamic is 
considered as constraint. Mathematically it is stated as a NLP/DAE 
optimization of the cost function, subject to process and controllability 
constraints. The tool considers three formulas for the cost function definition, 
the first formula contains the construction and operational cost, the second 
considers the controllability but as part of the original cost function, the third 
formula considers the controllability but as separate function. 

3. Optimization Algorithm: The tool combines between the classical gradient 
based optimization techniques such as sequential quadratic programming 
(SQP) and the stochastic optimisation techniques such as   genetic algorithms 
and simulated annealing. The classical gradient based optimization 
techniques,, have being broadly applied for constrained optimisation obtaining 
good solutions in a reasonable amount of computing time (Edgar, 2001; Gill, 
1981). However, for complex problems these algorithms sometimes fail to 
give any solution, and its effectiveness decreases when discontinuities and non 
convexity are present. The tool uses a two steps optimization approach that 
has been developed by Salamanca University to improve SQP algorithm 
convergence and results. 
 



                                                                                                 P Vega  et al.2007                             
  

 
Figure 3.1 General Scheme of the Integrated Design Module. 

 
The stochastic optimisation techniques such as   genetic algorithms and 
simulated annealing (Salamon, 2002; Laarhoven, 1987) are recommended for 
complex non-linear and discontinuous problems where classical optimisation 
techniques might fail. This algorithms have been used with good results for 
this type of problems, and particularly for solving process synthesis (Costa 
and Oliveira, 2001; Tsai and Chang, 2001; Revollar et al., 2004), but their 
main drawback is the difficulty to handle constrained problems because the 
stochastic search operators frequently produce infeasible solutions. 
Also the tool use a hybrid method for the solution of these complex problems, 
such as process integrated design and synthesis, combining genetic algorithms 
and SQP to make use of the advantages of both methods. First, the genetic 
algorithm is good to find candidate solutions close to an optimum, exploring 
all the search space, without suffering numerical problems, and then these 
candidate solutions are improved using SQP methods to find a real feasible 
optimum. Figure 3.1 
In the integrated design problem, the iteration between control and process 
design is avoided because the dynamic analysis is included in the 
simultaneous control and design optimization. However, this means that 
external disturbances and changes of operation point become a part of the 
problem formulation. Defining realistic scenarios for disturbances and 
changes in operation point, and, in particular, their frequency of occurrence is 
a most challenging task. The knowledge gained from earlier experiences with 
the same or similar processes is highly valuable in design. (In the tool we use 
two type of disturbance, real disturbance taking from Manresa Plant, Spain, 
and Cost 624 Benchmark disturbance). The co-existence of disturbances and 
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their frequencies need to be carefully studied in order to include all relevant 
process specific interactions in the scenarios. Whenever disturbances are 
measurable, the design superstructure should include these measurements and 
the control structure based on the measurements. The disturbances during 
transients, such as changes of operation point are often known to differ from 
those in stationary operation. The design superstructure should allow 
controllers to be tuned differently in these cases. Obviously, this results in a 
search space of increased complexity. The scenario data greatly affects the 
optimization results.  

4. Restrictions: Physical, Operational, and Controllability Constrains. The 
controllability constraints are stated to guarantee disturbance rejection 
capability, either in open or closed loop status. Example of controllability 
constrains are: 

( ) dtssISE
T

t
r ⋅−= �

=

max

0

2
11  

 
Where Tmax =165 hours is the simulation time   and (s1r) is the steady-state 
value or reference for substrate.   

 
5. Controllers: The most common control strategies for the activated sludge 

control process are used in the tool. 
 
 
 

 
 
 

Figure 3.2 Plant Selection Interface. 
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Figure 3.3 Integrated Design Module Interface. 
 

 
 

Figure 3.4 Plant Modification Interface. 
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Figure 3.5 Plant Modification Interface. 
 

Integrated Design Procedure According to the Tool 

The Integrated Design Procedure starts with the selection of the plant configuration, 
the tool offers various common configurations of plants with or without N removal, 
after the plant configuration, the user should select the control structure and type  that 
want to use (in the tool there are various types of controller PID, MPC, GMV, 
Adaptive...etc). At this stage the user know what configuration and control system he 
will use, depending on what the user choose the tool activate or deactivate some 
options and some menus. 
At this stage, the tool loads a plant with the same specification that the user chose, 
this plant call Default Plant. At this stage the user can: 
 

��Modify the plant data which include, the input data, type of perturbations the 
user want to use, objective function’s formula and associated weights, initial 
values of state variables and corresponding initial values of selected 
controller, upper and lower limits, physical constrains, operational constrains, 
and controllability constrains. In all the interfaces for the plant data 
modifications, the user can save the modification, set the default values, or 
cancel the modification that he did.  Figure 3.5 

��The user can optimize directly with the loaded plant parameters, but he also 
can loads new plant parameters saved in folders, or loads the parameters of 
optimized plants, also the user can save plant parameters, save the session, or 
exit the program. 

��User also can modify the optimization method that the tool will use; the tool 
contains 4 optimization methods, SQP (the default optimization methods that 
the tool uses), Genetic Algorithm, Simulated Annealing, and hybrid method. 
For each optimization method, user should determine the parameters of each 
method, in the SQP case, the user should determine the simulation time, 
number of iteration of the plant optimization, number of iteration for the 
controller optimization, and the global iteration for the optimization process. 
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��After the modification process, the optimization process starts calling a 
MATLAB file (Prinicpal.mat) where the optimization algorithm execute and 
the optimization results obtained. 

��After the end of the optimization process, the user can simulate choosing other 
perturbation, plot the simulation results, like for example the substrate 
graphic, biomass graphic, visualize the optimization results (dimension and 
operating point), calculation of   cost and controllability index (ISE. H�) , 
save the optimization results, save the plant parameters, compare the obtained 
results with the results obtained from other optimization process of plants 
from the same configuration, the user also can go back to main menu, or exit 
the program. 

Simulation Module 

The simulation procedure starts with choosing the plant configuration (plants 
with/without N removal), after that a default defined plant be loaded by the tool, 
where the user can simulate directly without any modifications, user can modify: 

��The plant data which include the input data and the perturbation type, tank 
operating point, settler operating point, model parameters and dimension. 

 

 
Figure 3.6 General Scheme of the Simulation Module. 

 
��User can choose between set a control system or design a control system (if 

the user chooses design control system option, the tool enter to control system 
design which we will explain later) the user chooses the control structures 
(which means to choose the controller configuration, what variable to measure 
and what variable to manipulate, what to control (Oxygen or Nitrogen)) and 
controller type (PID, MPC, GMV, Adaptive…etc)
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Figure 3.7 Simulation Module Main Interface. 
 

��User can choose if he want to simulate with or without fault, the tool contains 
the most common faults that usually occur in the WWTP like Toxicity Shock, 
Inhabitation, Bulking, and Sensor Faults. For each fault user should determine 
the type, magnitude, and the duration of the fault. 

��User also can modify the simulation parameters, which include, the simulation 
time, the interval time, and steady state time. 

��After the simulation process the user can, plot the obtained results, compare 
the obtained results with other simulation results, save the results, go back to 
main menu, or exit the program. 

Control System Design Module 

The Control Module includes Generalized Minimum Variance PID Control (Vega et 
al., 1991), Generalized Minimum Variance Control (Clarke and Gawthroop, 1975), 
Generalized Predictive Control (Clarke et al., 1987) and Multivariable Predictive 
Control (Maciejowsky, 2002). Each control strategy can operate in continuous 
identification mode or self tuned (identification on demand) mode.  
There are three design options on every control strategy: plant model identification 
(identification layout on Figure 13), controller parameters estimation and 
identification and control calculation altogether. First of all, for any cased to be 
simulated, the simulation parameters have to be entered; these include simulation 
time, sample time, step size (for control evaluation), noise power factor, input mean 
value (steady state) and output mean value (steady state). 
 
The Control Module includes Generalized Minimum Variance PID Control (Vega et 
al., 1991), Generalized Minimum Variance Control (Clarke and Gawthroop, 1975), 
Generalized Predictive Control (Clarke et al., 1987) and Multivariable Predictive 
Control (Maciejowsky, 2002). Each control strategy can operate in continuous 
identification (adaptive) mode or self tuned (identification on demand) mode.  
There are three design options on every control strategy: plant model identification 
(identification layout on Figure 13), controller parameters estimation and 
identification and control calculation altogether. First of all, for any case to be 
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simulated, the simulation parameters have to be entered; these include simulation 
time, sample time, step size (for control evaluation), noise power factor, input mean 
value (steady state) and output mean value (steady state). 
 
 

 
 
 
                                          Figure 3.8 Control Design Main Interface 
 
 

 
 

Figure 3.9 ARMAX model identification. 
 
 
Once these parameters have been established, there are three options for simulation: 

��First, for identification purposes, the user must introduce the ARMAX model 
orders (N, M, L and k), adaptation mechanism, adaptation gain and initial and 
final time for identification so the ARMAX parameters and the plant output 
prediction can be calculated. 

Model orders, 
Sample time, 
Adaptation 
mechanism 

ARMAX model: 
A.y(t)=B.z-k.u(t)+C.ξ(t) 

y(t) u(t) Test signal 
(Operating 
point, time 
variant) 

Plant 

Model 
Identification 

Where: 
A = 1 + a1 + … + an 
B = b0 + b1 + … + bm 
C = 1 + c1 + … + cl 
k: System’s delay 
ξ: Noise 
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Figure 3.10 General Schema of the Control Design Module. 

 
��In the second case, the controller is estimated from a fixed ARMAX model 

given by the user, introducing the control parameters depending on the 
selected algorithm and the initial and final time for control calculation. 

��Finally, the third option allows for complete model identification and 
calculation of the controller. Figure 3.11 represents the adaptive PID 
controller option (Vega et al, 1991). In this case, the parameters needed are 
model orders, adaptation mechanism (identification), adaptation gain 
(identification), initial and final time for identification, control weighting 
factor, control forgetting factor (when applicable) and the initial and final time 
for control calculation. 

 
Figure 3.11 Adaptive PID controller. 

 
Once the simulation is done, the results are shown graphically for assessment. The 
user can pan and zoom graphics and save the results. 
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Integrated Design Example 

 
Although the original wastewater treatment plant comprises several steps, we will 
focus on the aerobic treatment-activated sludge and clarification processes.  
For open loop design, optimisation of function (1) is sufficient, but for closed loop 
integrated design, the optimisation procedure involves the two cost functions. 
 

1
2 2 2 2( ) 1 2 3 4 2f x w v w A w fk w q= ⋅ + ⋅ + ⋅ + ⋅  

ISEwxf ⋅= 5)(2
 

 
Process constraints: 

��Residence times and mass loads in the aeration tanks:      

2.5 8
v
q

≤ ≤  

Constraints on the non-linear differential equations of the plant model to obtain a 
solution close to a steady state (e close to zero): 

( ) ( )
2

1 1 1 1
max 1 1

1 1
d c

s

dx s x x q
y K K x xir x

dt K s s v
µ ε= − − + − ≤

+
 

Controllability constraints: 
The controllability constraints are stated to guarantee disturbance rejection 
capability, either in open or closed loop configurations. 
��The ISE norm    

( ) dtssISE
T

t
r ⋅−= �

=

max

0

2
11  

Where Tmax =165 hours is the simulation time and s1r is the steady-state value or 
reference for substrate. 
 
 

4. Results 

Integrated Design Case 

Four scenarios are presented to study the integrated design problem and the 
effectiveness of the algorithms used in tool. First, the design was performed to 
optimise investment and operation costs without any controllability considerations. 
The second case is focused in open loop design including disturbance sensitivity gains 
and H∞ norm as controllability measures, the integrated design of the plant with a PI 
controller is developed. Finally the integrated design for MPC is shown. For the four 
design cases, results with deterministic and stochastic methods are presented, and also 
results using the hybrid methodology (AG refined) available in the tool. 
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Figure 4.1 Integrated Design Results 

 
 

 
 

Figure 4.2 Integrated Design Simulation Results 
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Simulation Case Study 

In this case, we will show the effect of three of most common faults by simulation, 
which are, Toxicity Shock, Inhabitation, and Bulking, in all the cases the simulation 
time will be 150 days, the fault will occurs on the 20th day and its effect will finish on 
the 40th day of simulation and the fault magnitude will be high, in all case the effect 
of the fault and its interpretation will be shown. 
 
 
Case 1. Toxicity Shock: 
This fault usually occurs when there is some toxicity material in the influent, and a 
chemical substance stop the biomass growth process, as a results the substrate 
concentration increase because we biomass does not growth. Figure 4.3 shows the 
effect of the Toxicity shock in the substrate concentration. 
 

 
Figure 4.3 Fault Simulation Results (Toxicity Shock) 

 
Case 2: Inhabitation. 
It has the same symptom of the toxicity shock, but the chemical substance not only 
stops the biomass growth, but also kills them, the fault effect is higher than in the 
toxicity shock. 
 
Case 3: Bulking. 
This fault occurs when the type of bacteria change because of certain conditions, and 
this lead that the sedimentation velocity decrease, and concentration of Total 
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Suspended Solid (TSS) in the last layer of the settler decrease, and the output 
substrate increase. Fig 16 shows the effect of the Bulking. 
 

 
Figure 4.4 Fault Simulation Results (Bulking) 

 

Control Design Case Study: 

The results discussed in this section refer to discrete adaptive PID controller design 
for controller parameters evaluation, plant model identification, control parameters 
calculation and identification and control calculation altogether. The Simulation 
conditions for each case are the same, Simulation time: 28 days, Sample time: 0,02 
days, Step size: 0,2 (corresponds to 10% for DRBS in identification and control 
calculations), Noise power-factor: 5x10-7, input mean value: 7,5 h-1 and output mean 
value: 3,73 g O2/m3. 
 
Case 1: Controller Parameters Evaluation. 
The simplest case for simulation is this where the user introduces the values of the 
discrete PID controller (g0, g1 and g2) and simulates the closed loop response of the 
plant. The results show the reference (step), plant input and output (step response) 
 
Case 2: Plant Model Identification. 
This case is intended purely for modelling the plant. The user introduces the orders of 
the ARMAX model to be calculated, the adaptation mechanism to use and its gain 
and the initial and final time for identification. The results show the ARMAX 
parameters (An, Bm, and Cl) evolution and the model predicted output to a DRBS 
input. 
 
Case 3: Control Parameter Calculation. 
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In this option, the ARMAX model of the plant, the forgetting and the weighting 
factors (for control purposes) are needed. After simulation, the results show the 
evolution of the estimated controller parameters, the controller output estimation, the 
response of the plant to a DRBS and a step input, the input signal and the control 
signal. 

 
Figure 4.5 Identification and Control Results 

 
For this option the parameters of cases 3 and 4 are needed. For better results, the 
control estimation should start (control initial time) after identification has been – at 
least partially – achieved. The results include model parameters evolution, plant 
model zero-poles placement, model output prediction, controller parameters 
evolution, controller output estimation, input signal, output signal and control signal. 
 
5. Conclusion 
As we can see from the case studies, the tool showed its efficiency as a support tool as 
support tool for the integrated design process or for the simulation process. The tool 
integrated the most common optimisation methods, and applied the control systems 
which shown there efficiency in the control process of activated sludge process. 
  
Using the tool make the Integrated Design process easier and friendly. Advantages 
achieved by using user interface were making the data entry, and getting results 
process easy and understandable. Work is going on the improvement of this support 
tool adding more modules for the fault detection and diagnosis, control system design, 
and synthesis calculations. Many private companies are interesting in the marketing 
of this tool after an extends developing phase. 
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