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Introduction 

The application of equations of state to model the phase behaviour of mixtures is 

advantageous since one model is used for all phases. Equations of state can be used over a 

wide range of temperatures and pressures. They handle the properties of gases as well as of 

liquids and polymers and can be applied to the gaseous, liquid and supercritical state. 

Although recent research has created a number of powerful molecular based equations of state 

- see [1] and the references within - in industrial process design, cubic equations play still an 

important role. The success of the cubic equations of state is due to their relatively simple 

mathematical structure, which particularly makes the calculation of the volume and the 

derivation of the fugacity coefficient less complex. Its simple extension to mixtures led to the 

success of the cubic equations of state but also to a nearly unmanageable number of mixing 

rules [1,2]. One approach among these mixing rules is the combination of the equation of 

state with an excess Gibbs energy model. Particularly for mixtures with strong interacting 

components the cubic equations of state provides a poor description of the non-ideal mixing 

behaviour. To overcome these problems Huron and Vidal proposed an alternative approach 

[3]. They equated the excess Gibbs energy from an activity coefficient model with that of the 

equation of state at infinite pressure and described successfully a number of non-ideal 

systems. However, the Huron-Vidal mixing rule does not satisfy the quadratic composition 

dependence of the second virial coefficient. Since Huron and Vidal equated the excess Gibbs 

energies at infinite pressure, parameter tables for G
ex

-models could not be used because they 

are fitted to low pressure data. Based on the approach of Huron and Vidal a number of authors 

have proposed mixing rules which satisfy the quadratic composition dependence of the 

second virial coefficient and allow the use of G
ex

-parameter tables [4-15]. In this work it is 

proposed to use the Peng-Robinson equation of state together with the Wong-Sandler (WS) 

mixing rule and predict the excess Gibbs energy of the mixture using the a priori model 

COSMO-RS. The WS mixing rule has been chosen since they satisfy the quadratic 



concentration dependence of the second virial coefficient and is correct at high- and low-

pressure limit. 

 

Theory 

As example the Peng-Robinson equation of state is used: 
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where P is the pressure, T the temperature, v the molar volume, R the ideal gas constant, a and 

b the parameters representing the attractive interactions and repulsive interactions. For the 

mostly non-ideal components considered here the modification of Stryjek an Vera [16]. Pure 

component parameters a and b are obtained from: 
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TC is the critical temperature, PC the critical pressure,ω  the acentric factor, 1κ a component 

specific constant, and TR the reduced temperature. 

When the WS-mixing rule is applied, the mixing parameters are calculated in the following 

way: 
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In Eq. 9 C is an equation of state specific constant which is ( ) 2/12ln −=C , kij is the 

binary interaction parameter. G
ex 

is the excess Gibbs energy calculated here with the 



COSMO-RS [17] model. Orbey and Sandler [18] reformulated equation (8) – the combination 

rule - in the following way: 
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Further they introduced a modified version of the NRTL equation for calculating the Gibbs 

excess energy. The only difference from the classical NRTL model is the definition of the 

local composition, which leads to the introduction of the volume parameter bj in the 

calculation of Gij: 

)exp( jijji

k

kik

j

jijij

i

i

E

bG

and

Gx

Gx

x
RT

G

ατ

τ
γ

−=

















=
∑

∑
∑

       (11) 

bj is the volume parameter of the equation of state for component j. This model can be used 

for binary mixtures as a four parameter mixing rule. Orbey and Sandler found that by setting 

the α parameter to a constant value, the binary interaction parameter kij to zero and using 
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to determine τij, it is possible to predict the phase behavior of several nonideal mixtures of 

organic components by only knowing the activity coefficients at infinite dilution. In this work 

we used the COSMO-RS model for predicting the activity coefficient at infinite dilution. 

COSMO-RS uses the COSMO approach developed by Klamt and Schüürmann [19] to predict 

an activity coefficient of a component in mixture. It is based on the calculation of the 

electrostatic interaction of a solute with the surrounding solvent. The solvent is treated as a 

continuous media of dielectric constant ε. The solute is embedded inside an arbitrary shaped 

cavity in the continuum. Klamt and Schüürmann [19] developed an efficient approach which 

replaces the dielectric medium of permeability ε with the scaled screening charges of a 

conductor. A COSMO calculation provides the screening charges on the surface of the cavity 

and is usually carried out at an adequate quantum level which is provided by the density 

functional theory. A COSMO calculation gives the energy, the geometry, and the screening 

charge density σ on the surface of a solute after quantum chemical self-consistency and 



geometry optimization loops. The transfer from the state of the molecule embedded in a 

virtual conductor to the real solvent is done by applying the COSMO-RS concept [20]. For 

further details see the publications of Klamt and co-workers [20,21]. As a result a COSMO-

RS calculation provides the chemical potential of a component i in the mixture. The activity 

coefficient γ of a component i can be written as: 
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where µi is the chemical potential of i in the mixture and µi
0
 is the chemical potential of the 

pure component, the reference state.  
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The combining Eq. 9 and 14 enables one to predict the mixing parameters am and bm.  

 

 

Results: 

The ability of COSO-RS to predict the excess Gibbs energy was tested at the system acetone-

water at 298.15K. Figure 1 shows the results in comparison with the NRTL model. It can be 

seen that COSMO-RS predicts the excess Gibbs energy in almost the same ways NRTL does. 
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Figure 1 excess Gibbs energy in the system acetone-water at 298.15K 

 

The performance of the mixing rule in combination with the COSMO-RS model will be 

shown at different binary mixtures. 

As an example here the binary mixture of acetone-water are presented at temperatures 

between 323K and 523K. 
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Figure 2 Predictions (dashed lines) and correlations (solid lines) of the vapour-liquid equilibrium for the acetone-water system. With the 

original and the reformulated Wong-Sandler mixing rule and the modified Peng-Robinson equation of state. Experimental data: 

Griswold,J.;Wong,S.Y., Chem. Eng. Progr. Symp. Ser.,48, 1952 

 

The solid lines in figure 2 are correlations where one binary interaction parameter has been 

fitted to low temperature data. This parameter was held constant in all calculations. The 

dashed lines are pure predictions using the reformulated mixing rule and predicting the 

activity coefficients at infinite dilution with the COSMO-RS model. As can be seen, the 

predictions are in good agreement with the experimental data except for the data at 523K.  

Conclusions 

The combination of the Wong-Sandler mixing rules with the COSMO-RS model is able to 

predict and correlate the phase behaviour of nonideal binary mixtures. By fitting a binary 



interaction parameter to experimental at a low temperature it is possible to extrapolate the 

phase behaviour up to the supercritical region of the low boiler. 
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