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Abstract
The ability of a real-time optimization (RTO) system to track the changing optimum closely relies on an
accurate model for representing the plant behavior. This paper investigates the effect of model fidelity on
RTO performance using a simulated industrial boiler network case study. Three optimization approaches
with very different modelling fidelity are investigated; 1) model-free direct search method, 2) model-
based method using a simplified efficiency curve model, and 3) model-based method using a fundamental
model. The model-free direct search method builds a locally linear model using empirical data. It takes
many steps to reach the optimum, which causes a significant profit loss during tracking. This tracking loss
can be reduced by using the model-based RTO system. The RTO system with an updated, detailed
fundamental model is able to track fast and large disturbances because the model is accurate in a large
range of operation. An RTO system with a simplified efficiency model requires periodic experimentation
to correct for the disturbances, which can cause significant profit loss during experimentation and
tracking. This study demonstrates how quantitative performance measures improve as higher fidelity
models are used in real-time operations optimization.

1. Introduction
Real-time operations optimization (RTO) of steady-state chemical plant has become attractive in
improving the operating profit (Culter & Perry, 1983; Darby & White, 1988; Marlin & Hrymak, 1997).
There are two typical approaches in RTO: 1) model-free direct search methods and 2) model-based
methods. Model-free direct search methods track the optimum based on the gradient of plant performance
estimated from the plant data. Model-based methods make use of a fundamental model to represent the
plant, and the optimum is determined by optimizing the plant performance subject to the model. The RTO
performance depends on the accuracy of the plant model. This paper investigates the crucial factors in
deciding the model structure to be used in RTO systems.
    A typical model-based closed-loop RTO system shown in Figure 1 includes the following subsystems:
1) updating of model parameters using plant measurements, 2) optimization of the updated model, and 3)
process control. Measurements are taken from the plant, validated and low-pass filtered. Process
parameters are estimated from the measurements in the model updater to minimize the mismatch between
the model prediction and plant measurements. The optimum operating policy is determined by
optimization of the updated model. The optimizer results are implemented by process controllers.
    An RTO system relies on model updating as feedback to correct for modelling errors and disturbances
and to enable the RTO system to track the optimum closely. Therefore, good RTO performance, i.e. a
small offset between the true plant optimum and noise-free model prediction and small variability of the
prediction (Forbes and Marlin, 1996), can be achieved by using a high fidelity model for optimization and
having data sets with sufficient information content for accurate parameter estimation. Plant variation in
the data sets is required to have sufficient information content to reliably estimate the adjustable
parameters, which can be generated by disturbances (Yip and Marlin, 2001a) and designed experiment
(Yip and Marlin, 2001b). This paper compares the RTO performance achieved using three
modelling/optimization approaches for boiler load optimization. These are; 1) model-free direct search
methods, 2) model-based methods using a simplified efficiency curve model, and 3) model-based
methods using a fundamental model. This case study can provide guidelines on selecting the appropriate
optimization approach for RTO application in a boiler network system.



2. Description of the Boiler Network Case Study
A boiler network is selected to investigate the effect of model fidelity on RTO performance because it is
commonly used in chemical plants for generating steam for heat and power. Typically, a number of
boilers supply steam to a common header to satisfy the steam demand, and these boilers have different
performance or efficiency. Opportunity exists for optimization to distribute the steam demand to different
boilers to maximize the overall boiler network efficiency.
    The boilers used in this paper are modified from the boiler in a steel mill. Details of the configuration
of the boiler and the fundamental model for the plant are reported in Yip (2002). Superheated steam is
produced by heating water/steam in generating tubes, risers and superheaters using the hot flue gas
generated by combustion of fuel with air. The dominant mode of heat transfer in generating tubes and
superheaters is convection, while the dominant mode of heat transfer in risers is radiation. Part of the heat
in the flue gas is recovered by heating the feed water and incoming air in the economizer and air
preheaters, respectively.
    Boiler performance is measured by boiler efficiency which is defined as the ratio of the energy
absorbed by the feed water to generate superheated steam and energy input to the boiler from combustion
of fuel. Different boilers have different efficiency curves as a function of steam load, depending on the
boiler design and operating conditions such as fuel composition, blowdown flow and air/fuel ratio. In this
paper, three boilers with different heat transfer areas and hence different efficiency curves are used. The
boiler design and operating conditions are reported in Yip (2002), and the efficiency curves are shown in
Figure 2.
    The shape of the efficiency curve has a maximum when the steam load is varied. At high boiler load,
more energy is required to produce superheated steam. Although the high flue gas velocity increases the
heat transfer coefficient, the flue gas temperature exiting the boiler increases.  This increased loss to the
environment results in a lower efficiency. At low boiler capacity, excess air has to be increased to
generate turbulent mixing of fuel and air (Dukelow, 1991). Part of the heat from burning fuel is wasted in
heating the excess air, so that the efficiency drops at low steam load.

3. Strategies of the Closed-Loop Optimization of Boiler Network
Three approaches are implemented to optimize the boiler network in real time. The objective is to
maximize the overall efficiency of the boiler network for the disturbances in demand, fuel composition
and heat exchanger fouling. The boiler network consists of three boilers supplying steam to a common
header. Therefore, the optimization variables are the steam loads of two of the boilers because the steam
demand must be satisfied. In the direct search methods, the optimum is determined solely from the plant
data without using a rigorous model. In the model-based approaches, the RTO system shown in Figure 1
is used for tracking the changing optimum. Two different modelling alternatives are used in the model-
based methods, the simplified efficiency curve model and fundamental model. The following subsections
discuss briefly these optimization approaches.

3.1 Direct search method
    A direct search method tracks the changing optimum by using the local derivative of the plant
performance estimated from the plant data without using a rigorous mathematical model. The method
presented by Bozenhardt (1986) is used in this paper. The plant performance is assumed to be a linear
function of the optimization variables as shown in (1)
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where P is the plant performance (overall boiler network efficiency), and x is the vector of the
optimization variables (two boiler loads, because the total steam produced must meet the demand). P0 and
the elements in the vector g are the model parameters that are estimated from the plant data. These
parameters are estimated by the least squares method using several recent data sets. The direction of the



vector g is the direction of improving the plant performance. The plant is moved along that direction with
a fixed step size, which is a tuning parameter in this method. After the plant movement, a new data set is
available, the oldest data set is discarded, and the above calculation is repeated. In this case study, five
data sets are used for parameter estimation and a step size of 0.1 klb/h is used for the optimization move.

3.2 Model-based method using the simplified efficiency curve model
    In the simplified efficiency curve model, a second order polynomial in (2) (Green & ai-Shaikh, 1980)
is used for approximating the efficiency curves shown in Figure 2 for each boiler
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where η is the boiler efficiency, F is the steam load, A, B and C are the updated parameters, and i denotes
the boiler number. The overall boiler network efficiency is maximized subject to the model in (2) and the
material balance equation in the steam header in which the sum of the steam loads is equal to the steam
demand.
    Updating the parameters in the second order polynomial in the efficiency curve model in (2) requires
multiple (historical) data sets at different steam loads. Data sets with different steam loads can be
generated by disturbances in demand or periodic experimentation. The disturbances in fuel composition
and heat exchanger fouling can change the shape of the boiler efficiency curve. Since the shape of the
efficiency curve for each boiler is required for optimization, experiments are needed to generate new data
sets for updating the parameters in (2).
    The expected profit experimental design criterion (Yip and Marlin, 2001b) is implemented to design
plant experiments for updating the efficiency curve model. This experimental design criterion considers
profit explicitly in designing plant experiments for RTO systems to find the best tradeoff between the
profit gain due to improved modelling and the profit loss before and during experimentation. The
objective function for the experimental design, which is the total expected profit over a future horizon
after an unmeasured disturbance has occurred, consists of three terms. The first term is the profit change
due to offset, the second term is the profit loss due to experimentation, and the third term is the profit
change due to variability. The profit change due to offset is estimated based on the anticipated size and
speed of disturbance from process knowledge. The loss in profit during experimentation is estimated from
the current model optimum and its reduced Hessian matrix. Therefore, low cost experiments are close to
the current optimum or along the ridge of the profit contours to reduce this loss. To increase the profit
gain due to an improved model, large plant perturbations are beneficial to improve the information
content in the data sets. By maximizing the total expected profit, the time to start experimentation and the
experimental operating conditions are designed to trade off the profit loss before and during
experimentation and the profit gains after experimentation by reducing the offset and variability.
    The model using an updated efficiency curve is optimized subject to a �trust region� in which the
approximated model is locally accurate. The trust region is required because the model is valid within the
operating or data window bounded by the historical data sets. However, the trust region is defined to be
larger than the data window for extrapolation, because if the model is optimized subject to the data
window in which the model is valid, the optimum cannot be tracked. The model is assumed to be accurate
over a small region extended from the region defined by the data window. The size of the trust region is
the tuning parameter in this strategy. When the model optimum is reached, the data window will bracket
the optimum.

3.3 Model-based method using the fundamental model
    A detailed fundamental model could be accurate over a wider range of operation and might be able to
track the changing optimum even for large disturbances. In this case study, the fundamental model
described in Yip (2002) is used in the RTO system. Each heat exchanger is modelled by material and
energy balance equations, pressure drop equation for fluid flow and log mean temperature difference
model for heat transfer. Thermodynamic and transport properties are derived by fitting the physical data



with temperature and pressure using polynomials. Combustion of fuel with air in the furnace is assumed
to be complete, and a uniform gas temperature is assumed in the furnace.
    In the fundamental model, the updated parameters have physical meanings, such as the heat transfer
coefficients and heating value of fuel. Updating the heat transfer coefficients in the heat exchangers
require temperature measurements of the fluids entering and leaving the heat exchangers. A single data
set is used for updating, because experience shows that experimentation is not required for updating in
this boiler network case study.

3.4 Measurements for the closed-loop optimization
    Different optimization approaches require different sets of measurements. In the direct search and
simplified efficiency curve model approaches, the fuel heating value measurement is required to estimate
the boiler efficiency using the input-loss method (Dukelow, 1991; Payne, 1985). When using a detailed
fundamental model, fuel heating value measurement is not required, because the fuel heating value can be
estimated from the available flow and temperature measurements. The lists of measurements used for
updating in different optimization approaches are reported in Yip (2002).

3.5 Model Mismatch
The model representing the plant in the closed-loop RTO studies was different from any of the models
used in the RTO optimizers.  Naturally, the �fundamental� RTO model was closest to the plant, but
mismatch in structure and parameters existed, even with the most rigorous RTO approach.

4. Case Study Results
Case studies are designed to investigate the RTO performance of different optimization approaches for
tracking commonly encountered disturbances in a boiler network. The disturbances considered in this
case study are the fast and slow periodic changes in steam demand and fuel composition and continuous
fouling of heat exchangers.
    The RTO performances are compared based on the overall boiler network efficiency attained and the
magnitudes of the change in steam loads, ∆F. The magnitude of the change in steam loads is expressed as
the sum of the change in steam loads between successive RTO executions for all the boilers as stated in
(3)
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where N is the RTO execution, and Nboiler is the number of boilers which is equal to 3 in this case study.
    Typical performance measured by the efficiency attained for a periodic disturbance change in fuel
composition is shown in Figure 3. The dotted line is the optimum efficiency calculated by using a perfect
plant model with exact measure of disturbances. This optimum efficiency is not realistically achievable,
but it is a basis for comparing performance. The RTO system using the fundamental model can track the
changing optimum closely. The fundamental model, which is accurate over a wide range of operation, is
able to predict the boiler performance even if there is a large disturbance in fuel composition. It takes a
few steps to reach the optimum after the disturbance change, which is especially advantageous for high
disturbance frequency. The RTO system using the simplified efficiency curve model with
experimentation requires more steps to reach the optimum. During experimentation, there is a loss in
boiler network efficiency. The optimum may not be reached immediately after experimentation because
the trust region defined from the data window restricts the plant movement. The efficiency loss during
experimentation and tracking can be significant for fast disturbances. The direct search method is unable
to track the optimum closely because the linear model in (1) is accurate locally. A small step size is
chosen to restrict the plant movements to avoid excessive extrapolation of the linear model. Therefore, the



direct search method requires many steps to reach the optimum and is not suitable for tracking fast
disturbances.
    The distribution of the magnitudes of change in steam loads is shown in Figure 4. There are
significantly larger magnitudes of change in steam loads (||∆F|| > 1 × 105 lb/h) for the RTO system using
the simplified efficiency curve model. These large plant movements result from the plant perturbation
determined by the expected profit experimental design criterion. Relatively small changes in steam loads
(||∆F|| < 0.3 × 105 lb/h) are observed in the direct search method because of the restriction of the plant
movement from the chosen step size.
    Case study results for other disturbance scenarios at different frequencies were studied. The RTO
system using the fundamental model tracked the changing optimum closely for the disturbances
considered at different frequencies. The RTO system using the efficiency curve model experienced larger
efficiency losses. The direct search method takes many steps to reach the optimum, resulting in
significant loss in efficiency during tracking even for slow disturbances.

5. Conclusions
The performance of three optimization strategies with different modelling approaches have been
investigated: 1) model-free direct search method, 2) model-based method using the simplified efficiency
curve model, and 3) model-based method using the fundamental model. For the commonly encountered
disturbances in demand, fuel composition and heat exchanger fouling, case study results showed that
using a high fidelity fundamental model could track the changing optimum closely at different
disturbance frequency without experimentation. The disturbances could be corrected by updating the heat
transfer coefficients and fuel heating value. The model-based RTO system using a simplified efficiency
model required plant experimentation to correct for the disturbances in fuel composition and heat
exchanger fouling. There was a significant profit loss during experimentation and tracking which was not
desirable for tracking fast disturbances. The model-free direct search method took a lot of steps to reach
the optimum, and a significant loss in boiler efficiency was observed during transient.

The engineer must select the model fidelity, RTO approach, and sensors in a consistent manner.  In the
boiler case, the more complex fundamental model requires less expensive sensors.  The simper, efficiency
curve model requires less model development, but it requires a heating value sensor and periodic
experiments for model updating.  The direct search approach requires no fundamental modelling and
simple real-time calculations, but it also requires the heating value sensor.

Based on the case study results, a fundamental model is always advantageous for this RTO application.
However, the cost of model development is also a concern for practicing engineers, and the simplified
efficiency curve model might be a good compromise in some cases.  The direct search has poorer
performance and high sensor cost, and it is not recommended.
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Figure 1 Closed-loop RTO system Figure 2 Efficiency curve as a function of steam load

Figure 3 Boiler network efficiency attained for a fuel composition change (o : direct search, + : efficiency
curve model, ∆ : fundamental model, -- : true optimum)

Figure 4 Distribution of the magnitude of change in steam loads for fuel composition change

Plant

Model
Updater

Model-
Based

Optimizer

Process
Control

      Measurements

Parameters

Optimizer
Results

Steam load (105 lb/h)

Ef
fic

ie
nc

y 
(%

)

0.5 1 1.5 2 2.5 3 3.5 482

83

84

85

86

87

88

89

90

Boiler 1

Boiler 2

Boiler 3

0 10 20 30 40 50 60 70 80 90 10084

85

86

87

88

89

90

Ef
fic

ie
nc

y 
 (%

)

                  RTO execution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y Direct Search

Efficiency Curve Model

Fundamental Model

          Magnitudes of change in steam loads, ||∆F || (105 lb/h)


	1. Introduction
	2. Description of the Boiler Network Case Study
	3. Strategies of the Closed-Loop Optimization of Boiler Network
	3.1 Direct search method
	3.2 Model-based method using the simplified efficiency curve model
	3.3 Model-based method using the fundamental model
	3.4 Measurements for the closed-loop optimization

	4. Case Study Results
	where N is the RTO execution, and Nboiler is the number of boilers which is equal to 3 in this case study.
	5. Conclusions
	References

