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Abstract 
An iterative gradient-modification optimization strategy is applied to the set-point 
optimization of batch chromatography in presence of a plant-model mismatch. A new 
method is used to deal with process-dependent constraints. The methods requires the 
estimation of the gradient of the real process mapping which is computed by a 
technique which considers the influence of errors and the number of additional set-point 
perturbations. A simulation study illustrates the potential of the proposed strategy. 
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1. Introduction 
In the chemical industry, life science products are considered to be a very promising 
market for the near future. Since chemicals for pharmaceutical products, cosmetics, 
food additives etc. are subject to strict purity requirements and tight regulations, 
efficient methods for the separation of the valuable product from often complex 
mixtures are needed. These separations usually cause a significant share of the 
production cost. Chromatographic separations constitute an important element of 
downstream processing steps because they provide high purities at moderate 
temperatures. While quasi-continuous chromatographic methods are available and are 
increasingly used in industry, most chromatographic separations are still operated in the 
batch mode. The optimal operation of these processes with respect to throughput and 
solvent consumption is an important factor to reduce the overall production cost. 
Dünnebier et al. (2001) proposed a model-based online optimization strategy for batch 
chromatography. To improve the model accuracy and to track changes in the plant, an 
online parameter estimation is performed. This technique has been tested at pilot scale 
plants and works well for separations with linear adsorption isotherms. However, most 
of the chromatographic separation processes are characterized by nonlinear adsorption 
isotherms which are often not reproduced exactly by the standard isotherm models (e.g. 
Langmuir, Bi-Langmuir). One important reason for this is the presence of additional 
components in the mixture. If a structural mismatch between the model and the plant 
occurs, a model-based optimization cannot give good results and the constraints must be 
established by an additional control layer (Hanisch 2002), causing a loss of 
performance. 
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Figure 1. Principle of batch chromatography (binary separation) 

n recent years, methods have been developed which perform a set-point optimization in 
he presence of model uncertainties. The Integrated System Optimization and Parameter 
stimation (ISOPE) strategy combines parameter estimation and optimization. It 
enerates a sequence of set-points which converges to the optimum of the true process. 
t performs an update of the model parameters to satisfy an equality constraint at every 
teration. Tatjewski (2002) redesigned the ISOPE strategy such that parameter 
stimation is not necessary. This leads to a simple iterative gradient-modification 
ptimization strategy. In this paper we extend this strategy to the handling of constraints 
n the process output and apply it to the set-point optimization of batch 
hromatography. The efficiency of the method is shown by a simulation study with 
lant-model mismatch. 

. Batch Chromatographic Separation 
atch chromatography is most often operated in the elution mode (Fig. 1). A mixture is 
eriodically injected into a column filled with solid adsorption particles. Due to 
ifferent adsorption affinities, the components in the mixture migrate at different 
elocities and therefore they are gradually separated. At the outlet of the column, the 
urified components are collected between cutting points whose locations are decided 
y the purity requirements on the products. The flow rate Q and the injection period tinj 
re considered as the manipulated variables here. The cycle period tcyc is fixed to the 
uration of the chromatogram. The performance criterion is the production rate 
r=mproduct/tcyc. The set-point optimization of batch chromatography is formulated as the 
ollowing nonlinear optimization problem:  
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here Rec denotes the recovery yield of the valuable component. The set-point 
ptimization is based on the general rate model (Guiochon et al., 1994). For a given set-
oint, the model is simulated. Then the production rate and the recovery yield can be 
alculated from the chromatogram. When a model mismatch exists, the chromatogram 
redicted by the model is different from the actual chromatogram. As a result, the 
ptimization generates a suboptimal or even infeasible set-point at which the recovery 
ield constraint is violated.  



3. Iterative Optimization Strategy  
The Integrated System Optimization and Parameter Estimation strategy was proposed 
first by Roberts (1979). Tatjewski (2002) proposed a new variant of this strategy. By 
introducing a model shift term in the performance function, an iterative parameter 
estimation is no longer necessary. The strategy requires the knowledge of the gradient 
of the real performance function (which depends on variables which are continuously 
measured) with respect to the optimization parameters. The optimization problem is 
assumed to be stated as 
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where J(u,y) is the performance function, u is the set-point, y is the model output, g(u) 
is the constraint function. As the output of the real system y* differs from the model 
prediction due to plant-model mismatch, the performance function of the ith iteration is 
modified using the measured information y*

i-1 at the previous set-point ui-1 : 
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where a = y*
i-1 - yi-1.represents the difference between the model output and the process 

output at the previous set-point. If the constraint function g(u) is known exactly, the 
modified optimization problem can be solved by any nonlinear optimization algorithm. 
Let um

i denote the solution to (3) computed in step i, then the next set-point is chosen as: 
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where K is a diagonal gain matrix whose diagonal elements are in the interval (0,1], i.e. 
K is a damping term. Starting from an initial set-point, the strategy will generate a 
sequence of set-points which, for an appropriate gain matrix, will converge to a set-
point which satisfies the necessary optimality conditions of the actual process.  
3.1 Handling of process-dependent constraints 
If the constraint function depends on the behaviour of the actual process, e. g. the 
recovery yield constraint in batch chromatography, it cannot be assumed to be precisely 
known, and using a model for the computation of the constraint function will not assure 
that the constraints are actually satisfied. In the original derivation of the ISOPE 
strategy, the constraints were assumed to be process-independent. An extension of the 
ISOPE strategy which considers process-dependent constraints can be found in (Brdyś 
et al., 1986). In this formulation, a recursive Lagrange multiplier is used. Tatjewski et al. 
(2001) proposed to use a follow-up constraint controller which is responsible for 
satisfying the output constraints in the ISOPE strategy.  
A different method to handle the process-dependent constraint is proposed here. It is 
based on the idea to use the acquired process information to correct the model-based 
constraint function. The corrected constraint function approximates the true constraint 
function of the actual process in the vicinity of the correction point. Let g(u) denote the 
model-based constraint function and g*(u) denote the actual constraint function of the 
real plant. Then the modified constraint function for iterative online optimization is: 
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As the corrected constraint is only valid in the vicinity of the correction point, a bound 
is added at every iteration to limit the search range for the next set-point. This 
guarantees that the constraints are not violated greatly. The optimization problem with 
process-dependent constraints at the ith iteration is thus formulated as: 

maxmin

11

0)( t.s. 

Minimize

uuu
uuuuu

ug
u

≤≤
∆+≤≤∆−

≤

−− ii

m
i

m
iJ

 (6) 

3.2 Computation of the gradient from measured data 
A key element of the iterative optimization strategy is the computation of the gradient 
of the process mapping with respect to the optimization variables. A novel method 
which considers both the influence of errors and the number of additional set-point 
perturbations is proposed here. It uses the information gained from the measurements at 
the previous set-points as a basis for the finite difference approximation of the gradient 
at the current set-point. Let n denote the dimension of the set-point vector u. To 
estimate the gradient at the jth set-point, n+1 set-points, uj, uj-1, …., uj-n, are used. 
Assume first that the vectors ∆ujk=uj-uj-k (k=1, …, n) are linearly independent. Let y*

j, 
y*

j-1, …, y*
j-n denote the measured process outputs at these set-points. We define the 

matrix Sj=(∆uj1  ∆uj2  ···  ∆ujn)T, and approximate the gradient by : 
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Theoretically, the smaller the difference between the set-points the more accurate will 
the approximation of the gradient be. On the other hand, because the measured process 
outputs are usually corrupted by errors, Sj should be sufficiently well conditioned in 
order to obtain a good approximation of the gradient. Let dj=σmin(Sj)/σmax(Sj) denote the 
conditioning of Sj in terms of its singular values. If dj is too small, the errors in the 
measurements will be amplified considerably and the gradient estimation will be 
corrupted by noise. Therefore if dj is less than a given constant δ (0<δ<1), an additional 
set-point ua

j-1 is added between uj and uj-1 to keep the new matrix Sa
j=(∆ua

j1  ∆uj1  ···  
∆uj n-1) well conditioned. The location of the additional set-point ua

j-1  is optimized such 
that  da

j=σmin(Sa
j)/σmax(Sa

j) becomes maximal under the constraints (6). By the choice of 
δ, the propagation of the measurement errors and the reduction of the convergence 
speed by the additional set-point perturbations can be balanced.  
 
4. Simulation Study  
The iterative optimization strategy was tested in a simulation study of a nonlinear 
enantiomer separation process which has been used as a test case in laboratory 
experiments before (Hanisch, 2002). A model with a Bi-Langmuir isotherm that was 
fitted to measurement data is considered as the “real model” in the simulation study. A 



model with isotherms of 
a different form is used 
in the set-point 
optimization. Fig. 2 
shows the 
chromatograms of the 
“real” and the perturbed 
plant for the same set-
point. The second 
component is 
considered to be the 
valuable product, the 
purity requirement is 
98%. The recovery 
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igure 2. Illustration of the model mismatch, solid line:
real” model, dash-dot line: optimization model 
d should be greater than 80%. There is an upper-limit for the flow rate: 2.062 cm3/s. 
 flow rate and the injection period are normalized to the interval [0, 1]. The gain 
fficients in K are set to 0.5. The bounds of the change of the inputs at each iteration 
Qi-1-0.1≤ Qi ≤ Qi-1+0.1 and tinj,i-1-0.1≤tinj,i≤tinj,i-1+0.1, where Qi-1 and tinj,i-1 denote the 
vious operating parameters. In order to approximate the gradients at the initial set-
nt, two additional initial set-points (Q0-0.02, tinj,0-0.02) and (Q0-0.02, tinj,0) were used. 
 iterative optimization procedure is performed as follows:  

p 1. At the ith iteration, apply the i-1th set-point (and the additional set-point if it is 
needed) to the real model and calculate the production rate and the recovery yield. 
Random measurement errors are added to the results. 

p 2. Approximate the gradients using the proposed method. Modify the 
performance function and correct the constraint function. Then solve the modified 
model-based optimization problem and update the set-point using Eq. (4); 

p 3. If the distance between the previous set-point and the new set-point is less than 
0.01, stop the optimization procedure. Otherwise go to the next step; 

p 4. Check dj=σmin(Sj)/σmax(Sj). If it is less than δ, an additional set-point is 
generated by maximizing da

j=σmin(Sa
j)/σmax(Sa

j). i=i+1. Go to step 1. 

as set to 0.2. The procedure stopped after 18 iterations and generated a set-point 
se to the real optimum. Fig. 3 shows the trajectory of the set-point and the 
formance and constraint contours of the real model and the mismatched model. The 
rs denote the set-points generated by the iterative optimization procedure. The 
cles denote the additional set-point perturbations used for the gradient computation. 
hough there is a considerable model mismatch, the iterative optimization terminates 
r the real optimum while keeping the recovery yield constraint. The slight difference 
ween the final set-point and the real optimum (about 0.04 in the normalized search 
ce) is due to the indirect influence of the added measurement errors on the 

mination constraint. When there is no error, the difference is about 0.02.  
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Figure 3. Set-point trajectory, solid lines: performance contours of the “real”

model, dotted lines: contours of the mismatched model

5. Conclusions  
The identification of an accurate model requires considerable efforts for batch 
chromatography of multi-component mixtures. In practice, inaccurate models must be 
used for set-point optimization. A purely model-based optimization will generate a 
suboptimal or even infeasible set-point. The iterative gradient-modification optimization 
strategy discussed here converges to a neighbourhood of the real optimum in a few 
steps while respecting the constraints. Additional set-points are introduced to reduce the 
effect of measurement errors on the gradient approximation. 
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