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Abstract 
Controlled reverse flow reactor processes show typical hybrid phenomena due to 
interaction between continuous and discrete dynamics. In this paper, the dynamical 
behaviour of a controlled RFR is discussed within the context of hybrid system theory. 
We focus our attention on a typical feature of hybrid system dynamics: Zeno 
trajectories. Such phenomena are discussed and their influence on the dynamics of a 
controlled RFR is presented. 
 
Keywords: Controlled reverse flow reactor, hybrid system, Zeno phenomena, Zeno 
regularization 
 
1. Introduction 
Authothermal operation in chemical reactors, in which exothermic operation are carried 
out, has attracted considerable interest in the last years. For this purpose the catalytic 
reverse flow reactor (RFR) is very efficient for treatment of industrial off-gas with low 
concentration of volatile organic compounds (VOC). In fact, in the RFR the hot reaction 
zone is trapped by a periodically inversion of the flow direction (Matros and 
Bunimovich, 1996).  
Two problems are related to the use of RFRs for VOC treatment: the extinction of the 
reaction and the formation of hot spots, which could be caused by a variation of the feed 
temperature and/or concentration. Barresi and Vanni (2002) proposed control systems 
for keeping the system always close to the maximum of the combustion efficiency, even 
in the case of variable feed conditions. A temperature sensor is located at either end of 
the catalytic bed and when the prescribed condition is fulfilled the feedback controller 
reverses the flow direction.  
In this paper we consider the simplest of control systems proposed by Barresi and Vanni 
(2002). This one point controller takes into account only the temperature measured by 
the sensor located close to the inlet of the reactor: the flow is reversed when this 
temperature falls below a fixed value.  
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The controlled system is characterized by discrete events (the inversions of the flow 
direction) and continuous dynamics between two successive switches. So this system is 
a hybrid (time continuous/discrete) system. Roughly speaking, a hybrid system consists 
of a number of modes (continuous dynamics) and modes transition rules (Scumacher 
and Van der Schaft, 2000). The mode transition rules specify when mode changes 
(called events) occur. Each mode will be active until the condition for the switch, 
defined by a mode transition rule, is again fulfilled.  
Hybrid systems have been used successfully in a number of engineering applications 
and, recently, also in chemical engineering. It was found that some processes have to be 
modelled as hybrid systems. Indeed Moudgalya and Ryali (2001a, b) have showed that 
a model for an industrial slurry reactor for the production of polyethylene is a Filippov 
system (i.e. a system described by equations with discontinuous right-hand sides, 
Filippov, 1988). Hybrid systems have been shown to exhibit a rich dynamical behaviour 
and several peculiar bifurcations that cannot be studied with standard bifurcation theory 
(e.g. di Bernardo et al., 2002).  
In this paper we will show that RFRs with the above mentioned control exhibit typical 
behaviour of hybrid systems: for many set-point temperatures Zeno phenomena (e.g. 
Schumacher and Van der Schaft, 2000) are detected. Such phenomena correspond to an 
infinite sequence of discrete transition accumultating in finite time. We will discuss 
these phenomena and their relationship to the usual mathematical model for these 
reactors. 
 
2. The Mathematical Model 
The mathematical model of a one dimensonal tubular reactor is written in terms of mass 
and energy balances, and is given by the following equations for the catalytic section: 
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where the parameters and states are defined as in Řeháček et al. (1998). The inert 
sections are described by the same equations only there is no chemical reaction in the 
solid phase (Barresi and Vanni, 2002). Danckwerts boundary conditions are assumed 
for concentration and temperature in the gas phase: 
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The IO variable takes into account the switching rule and is equal to 0 when the flow is 
from the left and equal to 1 when the flow is from the right. The spatial discretization of 
the Eqs. (1)-(2) has been performed by reducing the infinite dimensional PDE system to 
a finite one by orthogonal collocation technique on finite elements. The time integration 
is performed connecting a standard time-step integrator (LSODE, Brown et al., 1989) 
with a specific event-driven subroutine (DA2CJF from the NAG toolbox) for the 
detection of the time value and the state of the system at the inversion, as dictated by the 
control rule.  
Denoting with ( ) ( ) ( )(( , ) , , , , , n

g g sx z t y z t z t z tθ θ≡

( ), , , , , , , , ,g g s s s
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Eq. (1), with boundary conditions given by Eq. (2), can be written in abstract form as 
the following dynamical system: 
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The closed loop system is described by two alternating vector fields (F1 and F2) and by 
a control law that dictates the switch from one vector field to the other. Each vector 
field describes the system dynamics until the inlet temperature is higher than the set 
point value (Tsp is set-point temperature). The switching action is a discrete event and is 
assumed to be instantaneous. So the mathematical model of this controlled catalytic 
combustor is a particular type of hybrid (time continuous/discrete) system. Namely, the 
model is characterized by a discontinuous right-hand side and hence can be classified as 
a Filippov system (Filippov, 1988). 
A hybrid system can be effectively represented as a graph characterized by nodes and 
edges (e.g. see Schumacher and Van der Schaft, 2000). The continuous flow evolves 
according to the differential equation specified in each node of the graph. When certain 
conditions are fulfilled, a discrete transition takes place from one node to another if the 
nodes are connected by an edge. The continuous flow is then forced to satisfy the 
differential equation in the new node. Denoting with 1ϑ  the controlled temperature 
when the flow is from the left and with 2ϑ  the controlled temperature when the flow is 
from the right, the graph corresponding to the closed loop reactor is shown in Figure 1.  
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Figure 1 Schematic representation of a controlled RFR as a hybrid system. 
 
Therefore the time evolution of the system will be over sets of the form: 
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with iτ ∈  and '
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continuous as dictated by the vector field (3). 
Hybrid trajectories can extend to infinity if  is an infinite sequnces. A Zeno traiectories 
we have an infinite sequences of switches witht <∞. Euristically , for a Zeno trajectory 
there is an infinite number of discrete transitions in a finite time. 
 
3. Results 
We study the influence of the feed temperature on the dynamic behaviour of the closed 
loop system. The set point temperature is chosen equal to the catalyst ignition 
temperature so that the control action forces the gas to have enough enthalpy to allow 
the reaction at the first catalyst layers. Varying the feed temperature, the controlled 
reverse flow reactor shows a very complex behaviour: multiplicity of regimes, 
symmetric and non-symmetric regimes (Russo et la., 2002) and Zeno trajectories. Here 
we focus our attention to the existence of Zeno phenomenon. These kind of trajectories 
are strictly related to the hybrid nature of the system and are characterized by infinitely 
many discrete transitions within a finite time interval. More precisely, the series 
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periodic regime to a Zeno state. When the feed temperature is 100° C, the closed loop 
reactor exhibits a periodic regime. In this case the flow direction is reversed 
periodically. If the feed temperature is decreased to 50 °C this periodic regime looses 
stability and the closed loop reactor exhibits a Zeno trajectory. Now the flow direction 
is reversed with higher and higher frequency and an infinite number of switches occurs 
in a finite time value ( )'

0
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Note that Zeno phenomena are unfeasible in real systems. Typically they arise due to 
modelling abstractions or are related to the control policy (Johansson et al., 1999). In 
applications they are associated to high frequency switching or chattering , which is 
undesirable from a practical view point.  



Zeno systems are hard to analyze and simulate in a way that gives a constructive 
information about the behaviour of the real system. Therefore, it is important to be able 
to determine if a hybrid system exhibits Zeno trajectories and, if this is the case, to find 
ways to remove Zenoness from the abstract mathematical model. In the case under 
study, the Zeno state corresponds to an extinction regime and thus its detection has 
practical relevance in spite of the numerical difficulties. This behaviour can be 
explained by considering that with this feed temperature the heat of reaction is not 
enough to sustain autothermally the process. On the other hand the control policy 
dictates that the inlet temperature cannot be lower than the set point value. So the 
extinction of the reactor is reached with an infinite number of switches. 
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Figure 2 The uppermost plot shows the temperature evolution, and the lower most plot 
reports the inlet temperature imposed policy. 
 
Generally, Zeno phenomena are due to model simplifications. In the case of the 
controlled reverse flow reactor, this simplification is in the assumption that the flow 
inversion is instantaneous. So a way to resolve the Zeno phenomena is to consider a 
temporal regularization (Johansson et al., 1999). In many cases, this regularization can 
be obtained modelling the switching action with a more realistic time delay (τε) between 
the time at which the set point valued is reached and the time at which the flow is 
commanded to switch. A temporal regularization of the closed loop reactor is shown in 
Fig. 3. 
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Figure 3 Time series of a temporally regularaized closed loop reactor. 



In the case reported in Fig. 3 we use a time delay τε=0.05. As it is apparent in Fig. 3 
after a short transient that shows many high frequency switches, the inlet temperature 
decreases until the extinction of the reaction. The longer the time delay chosen is, the 
shorter the transient. It is important to stress that, though the Zenoness is removed, a 
wide time range exists where the closed loop system exhibits many fast switches. Note 
that regularization itself is a process bound with difficulties, as different regularaization 
methods can lead to different simulation results (Johansson et al. 1999). 
 
4. Conclusions 
In the present work, the hybrid system approach for a closed loop reverse flow reactor is 
adopted. With this approach the existence of Zeno phenomena is addressed. Motivated 
by physical considerations we have discussed the regularization of this dynamical 
behaviour. Introducing a time delay (τε) between the time at which the set point valued 
is reached and the time at which the flow is commanded to switch, Zenoness is removed 
allowing more efficient simulation of the system behaviour. In spite of that, there is a 
wide range where the system exhibits high frequency oscillations. This behaviour can 
damage the controller and then other types of control actions have to be explored. We 
wish to emphasize that understanding and characterizing Zeno phenomena is essential 
when dealing with hybrid systems. As these models are being increasingly used in 
chemical engineering, we conjecture that the analysis of such phenomena will become 
an essential part of the design process.  
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