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Abstract 
This work describes a stochastic approach for the optimal placement of sensors in 
municipal water networks to detect maliciously injected contaminants. The model 
minimizes the expected fraction of the population at risk. Our work explicitly includes 
uncertainties in attack risks and population density, so that the resulting problem 
involves optimization under uncertainty. In our formulation, we include the number of 
sensors as first stage decision variables of a two-stage mixed-integer stochastic linear 
problem where the costs of sensors are included in the objective function. Since the 
model is integer in the first-stage, a generalized framework based on the stochastic 
decomposition algorithm allows us to solve the problem in a reasonable computational 
time. The paper describes the mixed-integer stochastic model and the algorithmic 
framework, and compares the deterministic and stochastic optimal solutions. The 
network used as our case-study has been derived through the water network simulator 
EPANET; four acyclic water flow patterns are considered. Results show a significant 
effect of uncertainty in sensor placement and total cost. 
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1. Introduction 
Recently, Berry et al. (2003) presented an integer programming (IP) formulation for 
optimal placement of sensors in municipal water networks to quickly detect accidental 
or malicious contamination of the system. Such a formulation seeks to minimize the 
expected fraction of the population at risk. An attack is modelled as the release of a 
large volume of harmful contaminant at a single point in the network with a single 

                                                           
* Author to whom correspondence should be addressed: vicente@iqcelaya.itc.mx 



injection. In general, it is difficult to know a priori where an attack will occur, so a 
compromise solution across a set of weighted attack scenarios is generated. For each 
flow pattern, each node is weighted by the number of people potentially consuming 
water at that point. The resulting IP formulation assumes constant probabilities for 
attack risks and population densities, making the problem a deterministic IP. The results 
of the analysis show that the optimal configuration is a strong function of the fixed 
number of sensors used in the formulation. The model does not include the cost and 
type of the sensors, which could be major factors in the solution achieved. Further, 
although uncertainties in the demand and variability in the population density can 
impact the solution, they are not formally considered.  
Our work proposes extensions to such a model to explicitly include uncertainties in 
attack risks and population density. This changes the problem to an optimization under 
uncertainty problem. In our formulation, we include the number of sensors as first stage 
decision variables of a two-stage mixed-integer stochastic problem, where the costs of 
sensors are included in the objective function. 

2. A Two-Stage Stochastic Mixed-Integer Programming Model 
Although the fundamentals of this new model are very similar to those proposed by 
Berry et al. (2003), our main contribution is the reformulation of the problem as a first-
stage integer, two-stage stochastic mixed-integer linear problem. That is significant for 
two reasons: i) first, the uncertainties are formally incorporated into the model, and ii) 
the basic stochastic decomposition (SD) algorithm (Higle and Sen, 1991) can be used to 
provide the optimal solution to the problem. 
The network is represented as a directed graph G = (V,E), where E is the set of pipes 
(E=e1,…,em) and V is a set of nodes (V=v1,…,vn) where the pipes meet. Each pipe 
connects two nodes and is usually denoted as (vi, vj). Also, it is assumed that the 
network is planar. The analysis is performed under a number of water flow patterns, 
where the direction of the flow in each pipe is known. The parameters fijp describe the 
pattern; fijp is equal to one if there is a positive flow along the directed pipe e=(vi, vj) 
during flow pattern p, and is equal to zero otherwise. The probability of attack for node 
vi during flow pattern p is represented as ωip; we have used 1=∑ ipω . δip is the 

population density at node i while flow p is active. Finally, Xmax is the maximum 
number of sensors, Cij is the sensor cost, and S is a cost associated to each member of 
the population which suffers from the attack. Cij and S can both be interpreted as 
weighting factors in the objective function. 
The first stage (integer stage) decisions,  xij, define the sensor placement, and the second 
stage decisions,  yipj, define the propagation of an injected contaminant. A sensor on 
pipe (vi, vj),  xij, detects contaminants moving on either direction. yipj  is equal to one if 
node vj is contaminated by an attack at node vi during pattern p, and zero otherwise. 
Equation (1) and Equation (2) provide the structure of the stages. The first stage tries to 
minimize the cost of the sensors as well as the expected value (Eω) of the cost 
associated to the population suffering the attack (computed through the objective of 
stage two); the constraints of the first stage impose the maximum number of sensors to 



be placed in the network. The constraints in the second stage propagate contamination if 
there is no sensor which prevents it.  
 
First stage (integer): 
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2.1 The solution approach 
Because the problem is integer in the first stage, the solution can be achieved with the 
same basic steps of the SD algorithm developed for linear problems; the only difference 
is that, instead of a linear problem, now a mixed-integer linear programming problem 
has to be solved in order to find the first stage decisions in each of the iterations. Our 
computational implementation of the algorithm involves a framework that integrates the 
Hammersley sequence sampling technique (Kalagnanam and Diwekar, 1997) coded in 
FORTRAN, the GAMS modelling environment (Brooke et al., 1998), and a C++ 
manager program. The manager program generates the appropriate MILP and LP 
problems for each of the SD iterations, transfers the control of execution and verifies the 
convergence of the algorithm. The steps of the SD algorithm can be found in Ponce-
Ortega et al. (2004); a brief summary of such steps is given as follows: 
• Assume the initial values of the first stage decision variables, set ν=0. 
• Set the iteration counter to ν = ν +1 and sample to generate an observation uν 

independent of any previous observation. 
• Determine the coefficients of a piecewise linear approximation to Q(x): Solve the 

dual program of the second stage problem to get the coefficients of the optimality 
cut and update the coefficients of previous cuts. 

• Solve the first stage problem (MILP) after the addition of the optimality cut to 
obtain xν+1. Go to the sampling step and repeat the procedure. 

The algorithm stops if the change in the objective function is sufficiently small. 



3. Illustrative Example and Results 
This section presents the solution of example network number 2 of EPANET 1.0 
(Rossman, 1999). The water network is shown in Figure 1a. It has 36 nodes and 40 
pipes with 1 pump station and 1 storage tank. 4 time periods (four water flow patterns) 
of 6 hours are considered in a 24 hour total period. Figure 1b shows one of the flow 
patterns used. Also, the nodes are distributed in 4 fictitious zones: Pump station, 
residential neighbourhood, business district and industrial district (see Table 1). The 
maximum number of sensors is 7. All nodes in the same zone have the same probability 
of being attacked. We use normal distribution for the probability of attack. For the 
density population we use normal and triangular distributions with mean equal to 500. 
After sampling, the density population and probability of attack are normalized so that 
the total population is always 18000 and the sum of the probabilities of attack is 1. Four 
possible scenarios are considered, assuming different zone with higher probability of 
attack in each of them. 
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(a)                                                            (b) 

Figure 1. Case study. (a) Municipal water network.  (b) Example of a flow pattern,  100 gpm 
 25 gpm 

 

Table 1. Distribution of nodes of the network 

Zone Nodes Total 
Pump Station 1 1 
Industrial District 3,10,11,12,16,17,18,20,21,22,26,30 12 
Residential Neighbourhood 2,4,5,6,8,9,19,23,27,28,31,32 12 
Business District 7,13,14,15,24,25,29,33,34,35,36 11 

 



Table 2 shows the probability data for each of the four scenarios. In addition, two costs 
for sensors are used: low (15 000 000) and high (45 000 000). Finally, the cost assumed 
(S) for each affected person is 30000. Such values are assumed as constant. You can 
also interpret those constant values as weights in the objective functions. The number of 
samples and iterations of the SD algorithm was 400. Table 3 shows the optimal 
stochastic solutions for the scenario where the residential neighbourhood is under risk. 
The deterministic solution (mean values used for stochastic parameters; for population 
density the mean value is 500) is also presented. 
The solutions for the other 3 zones present similar behaviours. There are meaningful 
differences among the cases of high and low sensor costs, and even more significant 
between the stochastic and deterministic cases. On the contrary, the effect of the 
distribution used for the population density seems to be less important. In general, one 
could expect that the fraction of the population at risk decreases with the number of 
sensors; however, because of the compromise between the cost of the sensors and the 
associated cost to each affected person, the optimal solution does not always include the 
maximum number of sensors. Specifically, that is true for the cases of high sensor cost. 
 

Table 2. Probability of attack used for each zone and scenario 

Probability of Attack (%)  
Scenario Pump 

Station 
Industrial Residential Business 

1 65 12 12 11 
2 1 76 12 11 
3 1 12 76 11 
4 1 12 12 75 

 

Table 3. Results for the residential neighbourhood 

Population 
Density 

Sensor 
Cost 

Variable Stochastic 
Solution 

Deterministic 
Solution 

Sensors allocated X6-7,X12-13,X14-15, 
X28-30, X31-32, X32-

33, X35-36 

X6-7,X12-13,X27-

28,X31-32 

Population affected (%) 13.64 30.71 

Low 

Total Cost 1.7866887E+8 2.2585000E+8 
Sensors allocated X6-7,X12-13,X27-

28,X28-30 
X6-7,X28-30 

Population affected (%) 26.19 42.61 

Triangular 

High 

Total Cost 3.2145500E+8 3.2010000E+8 
Sensors allocated X5-6,X6-7,X7-8,X11-

12,X19-18,X31-32, 
X35-36 

X6-7,X12-13,X27-

28,X31-32 

Population affected (%) 13.48 30.71 

Low 

Total Cost 1.7781497E+8 2.2585000E+8 
Sensors allocated X6-7,X28-30,X31-32 X6-7,X28-30 
Population affected (%) 35.19 42.61 

Normal 

High 

Total Cost 3.2507400E+8 3.2010000E+8 



4. Analysis of Results and Conclusions 
Table 4 shows the values of the stochastic solution (VSS) for each of the cases 
considered. VSS represents the difference between the objective functions of the 
stochastic and deterministic optimal solutions. We can observe values as high as 96% as 
a consequence of the major impact of uncertainty in the solution. To conclude, this 
paper proposes a two-stage mixed-integer stochastic linear programming approach for 
the optimal placement of sensors in a municipal water network. Three main results can 
be summarized: i) First, this approach not only allows the incorporation of uncertainties 
to the problem but also provides an efficient solution strategy through the SD algorithm, 
ii) The results of the illustrative example (VSS, optimal placement and effect to 
population) reveal the significant effect of the uncertainties in the optimal solution of 
the problem and iii) With respect to the parameters under investigation, the sensor cost 
seems to have a more important effect than the population density; that applies for both 
the stochastic and the deterministic case. 
 

Table 4. Value of stochastic solution for each zone and scenario 

Value of Stochastic Solution (%) Population 
Density 

Sensor 
Cost Pump Station Industrial Residential Business 
Low 91.12% 19.70% 26.40% 5.68% Triangular 
High 4.25% 0.18% 0.42% 1.44% 
Low 96.21% 17.57% 27.01% 7.64% Normal 
High 4.04% 0.94% 1.53% 0.96% 
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